
Automated Verification
of Szymanski's Algorithm 1

E. Pascal Gr ibomont and Guy Zenner

University of Libge (Belgium)

A b s t r a c t . The algorithm for mutual exclusion proposed by B. Szymanski is an
interesting challenge for verification methods and tools. Several full proofs have
been described in the literature, but they seem to require lengthy interactive
sessions with powerful theorem provers. As far as this algorithm makes use of
only the most elementary facts of arithmetics, we conjectured that a simple,
non-interactive proof should exist; this paper gives such a proof, describes
its development and how an elementaxy tool has been used to complete the
verification.

1 Introduction

Many kinds of hardware and software systems are now tentatively subjected to
formal verification. Among the most interesting ones are the algori thms used
to ensure mutua l exclusion in distributed networks. This is due to both practi-
cal and scientific reasons. First, it is of foremost importance to guarantee tha t
concurrently running processes do not interfere in a destructive way; in fact,
most of the communication, cooperation and synchronization problems between
concurrent processes can be seen as variants of the mutual exclusion problem :
this problem therefore deserves much attention. Furthermore, algorithms that
solve the mutual exclusion problem . . . or are thought to solve it, tend to be
rather short but subtle pieces of code. As a result, their formal verification is
challenging but still within reach of tools whose practical efficiency decreases
badly when the size of the code to be verified increases.

Szymanski 's algorithm implements mutual exclusion in a distributed network.
Each process owns only three boolean variables, meaning that computat ions
take place within a finite state space; this algorithm can be verified in a fully
au tomated way with model checking methods and tools. The only problem is
that the number n of processes is arbitrary. The size of the state space grows
exponentially with n, so verification based on model checking is realistic (and
very efficient) for small values of n only. Anyway, a general proof, valid for every
integer n, would be more useful and more elegant, but can not be devised purely
within the model checking paradigm. In fact, Szymanski 's algorithm involves

1 C o r r e s p o n d e n c e to :

P. Gribomont Phone : +32 4 366 26 67
Institut Montefiore Fax : -I-32 4 366 29 84
ULg, Sart-Tflman, B 28 e-mail: gribomont@montefiore.ulg.ac.be
B - 4000 Liege (Belgium)

425

each process accessing the state of all other processes. Statements ' guards are
quantified formulas, and quantified formulas also appear in any useful global
invariant. Even if the quantification is bounded (by the number n of processes),
using first-order logic seems mandatory.

Our purpose in the sequel of this paper is to show that a particular kind of
tautology checking is not impaired by the exponentially growing size of the state
space, even in the case of algorithms like Szymanski's, where quantifications in
both the guards and the invariant are numerous.

A version of Szymanski's algorithm is introduced in Section 2, a propositional
model is built in Section 3, the verification techniques are addressed in Section 4
and the computer-aided verification of the algorithm is described in Section 5.
Section 6 outlines comparison with other approaches and gives a conclusion.

2 Szymanski's algorithm, a hybrid version

This algorithm has been first proposed in [28] but has been slightly modified
several times. The version considered here is adapted from [22].

There are n concurrent processes, numbered from 1 to n, which switch end-
lessly between a non critical section and a critical section. The main safety
requirement is that at most one process at a time can be within its critical
section. (Other requirements, not investigated here, are absence of deadlock,
responsiveness and pseudo-linear waiting.)

Each process executes the same code and has only reading access to the
variables owned by the other processes. Process p owns three boolean variables
ap, sp and wp, which are initially false. An abstract version of the code repeatedly
executed by process p is given in Figure 1.

It is convenient to introduce some terminology. Process p can be either in the
anteroom (executing lines 1 to 3) or in the doorway (line 4) or in the waiting
room (lines 5 to 8) or in the inner sanctum (lines 9 to 13). Now, this abstract,
coarse-grained version (atomic version in [22, 23]) is interesting since it grasps the
essence of the algorithm, without bothering with potential interference problems
between processes; it is also easy to guess what the appropriate invariant for this
algorithm should be. However, the abstract version should not be implemented
as such, with each line being an atomic, uninterruptible piece of code : this would
be very unefficient. In fact, each line involving all processes q Cp should be split
into n - 1 (or, for line 11, p - 1) more elementary statements, to be executed
independently or sequentially.

From the point of view of methods and tools, both versions are challen-
ging. The abstract, coarse-grained one involves quantified guards, but the finer-
grained version (called "molecular" in [22, 23], where both versions are conside-
red) contains more transitions, with a more complex invariant, and gives rise to
a more complex proof.

Presenting both versions in a paper of acceptable size is not possible, but we
can show how to cope with both kinds of problems by addressing a "hybrid"

Fig. 1.

426

1. NCS (Non Critical Section)

2. ap :-- true

3. await Vj _< n : -~sj

4. (w,,,,,,) : = (true, true)
5. if 3j <_ n : aj A-~w 3

6. then sp:=false

7. await 3j < n : s 3 A -,w~

8. sp := true

9. top := false

10. await Vj < n : -~w 3

11. await Vj < p : -~s 3

12. CS (Critical Section)

13. (ap, sp) := (false, false)

Abstract version of Szymanski's algorithm

version. We will split only one quantified statement, which is the crucial "count-
down" statement just before the critical section (line 11). A boolean array Xp
is introduced to control this; Xp[q] holds as soon as process p has checked -~Sq.
This has to be done for all q < p, so initially Xp [q] holds only for all q > p (deno-
ted Xp - Ip); when the countdown is completed, Xp[q] holds for all q (denoted
Xp = TR).

It is also convenient to make explicit the various control points of the system;
for each control point g, there is a predicate at ~ which is true when the execution
is at control point g. The transitions executed by process p in our hybrid version
are listed in Figure 2. A transition (Pi, G --* S, p j) can be executed by process p
when the control state is at Pi and the memory state satisfies the guard G,
that is, when formula (at Pi A G) is true; the effect of the transition is to alter
the memory state according to the assignment S and to transfer the control at
point pj.

The links between control points and program variables are expressed by
assertions (1).

at P5,9.13 r Sp ,

at p3..13 r ap, (1)
at ph..9 r162 wp.

(The expression at P5,9..13 stands for the formula at p5 Y at p9 Y at plo V at p l l V
at pl2 V at P13.)

The terminology introduced above allows for the following intuitive descrip-
tion [22] of the strategy used in the algorithm to grant passage from one "room"
into another, and access to the critical section :

A0 : When p is in the inner sanctum, the doorway is locked.

427

(Pl, true ~ NCS, p2)

(p2, true ~ ap := true,p3)

(m , Vj < n : -,s~ ---* skip, p4)

(p, , true ----+ (wp, sp) := (true, true) ,ps)

(ps, q j < n : a 3 A-~w 3 ~ sp := false, pr)

(pT, 3 j < n : s i A -~w 3 ---* skip, ps)

(Ps, true -----* sp := true,pg)

(Ps,-~3j < n : aj A -~w~ ~ skip, pg)

(pg, true - - ~ wp :=]alse, p,o)

(plo ,Vj < n : ~w , ---+ skip, p1,)

(ply, q < p ^ ^ - - - . Xp[q] := true,p,)

(p n , X p = T R ~ Xp := Ip ,pn)

(P12, true ~ CS,P13)
(p 3, true ---* (a,,, 8,,) : =], Zse,

Fig. 2. Hybrid version of Szymanski's algorithm

A1 : When p is about to leave the waiting room,
some process has entered the inner sanctum.

A2 : Once p is in the latter part of the inner sanctum,
the waiting room and the doorway are empty.

A3 : If p is in its critical section, then no process with smaller index
can be in the doorway, waiting room or inner sanctum.

Four supplementary assertions (2) formalize this :

Ao : at p8..13 ~ -~at q4
A1 : at ps ~ 3k < n : at k lo

A2 : at pll . .13 ==~ "~at q4..9

A3 : ((at p n A X v[q]) V at Pn,13) A q < p ~ -~at q4..13

(2)

The countdown for access to the critical section takes place at s tate Pn ; the
behaviour of array Xp is formalized in assertions (3).

q > p ~ Xp[q] , (3)
(q < p A Xp[q]) =r at p n .

Assume now that I (p , q) denotes the conjunction of all assertions (1,2,3). As
an invariant, the formula VpVq ~ p I (p , q) is a likely candidate. We observe it
is true initially, when each process p is at Pl, with %, sp, wp being false, and
Xp = Ip. Besides, assertion A3 expresses that p and q cannot be both at the
same t ime in their critical section : at P12 ~ ~ a t q12 is a logical consequence of
this assertion.

428

3 A p r o p o s i t i o n a l m o d e l

3.1 Introduction

In order to prove that I is an invariant, we have to check that every transition v
respects formula I; this is written {I}r{I}. We rely on the classical rule: the
triple

{A} r {B}

holds if and only if the formula

A wp[r; B]

is valid. The operator wp (weakest precondition) takes two arguments, a tran-
sition r and a set of states represented by a formula B. The associated value
is the set of all states whose r-successor satisfies B. The operator wp is easily
computable and many tools exist which automate this computation (in the se-
quel, we use our tool CAVEAT [12]). This symbolic computation is based on the
identity

wp[x := f(x, y); B(x, y)] = B(f(x, y), y). (4)

The assertion 1 ~ wp[r;/] is the verification condition associated with r. It
is easy to generate them in a fully automatic way, but less easy to check them for
validity. In general, these assertions belong to first order logic, especially when
the guards of the transitions are quantified formulas.

3.2 Elimination of explicit quantifiers

Earlier verification of Szymanski's algorithm have been completed with the assis-
tance of an interactive theorem prover for first order logic [22, 23]. Our purpose
now is to do it again, but without interactive work. This is possible if we rewrite
the problem in the framework of propositional logic. The first step of this rewri-
ting is the elimination of quantifiers. To achieve this, we introduce six auxiliary
variables (5); these variables are counters, whose role is to record the number of
processes for which some boolean expression is true.

~:(S) ~-'def f{J: 1 ~ j ~ n A Sj}l;
#(ll)) ~-def I{J : 1 < j _< n A sy}];

=dos I{J: 1 < j _< n ^ st ^ - wAI ;
#(aw) ~'def I{J: 1 < j < n A aj A -~wj}[; (5)
#(Xp) =del]{J: 1 < j _< n A Xp[j]}[;
#(10) -'def [{J : 1 < j < n A at jl0}].

The range of all these variables is the set {0 , . . . , n}; for instance, # (s) is the
number of processes whose s-variable is true. With these notations, quantifiers
can be eliminated, according to Figure 3. The quantifier-free version of the pro-
gram is given in Figure 4.
Comment. This translation is not difficult but should be completed with care. For
instance, the statement Sp := false is adequately translated into the statement

429

3 j < n :a 3 A--wjI #(a@) ~ 1]
Vj < n : -~ws I #(w) = 0

I #(10) _> 1 3q<n :argo]

I sp := fatse [(sp, #(~)) := (]aZse, # (~) - 1)

Fig. 3. Eliminating quantification

(sv, #(s)) := (false, # (s) - 1) only if we already know that sp is always true
before the execution (which is a consequence of the invariant).

The invariant is translated in a similar way (6) and the behaviour of the
auxiliary variables is formalized in supplementary assertions (7), added to the
invariant.

at ps..13 ~ -.at q4
atps ~ # (1 0) _ 1

at pll 13 =r -,at q4..9
((at Pll A Xp[q]) V at P12,13) A q < p) ~ -~at q4..13.

#(~) > o
(~) > o

(~) _> o
(a ~) _> 0
#(10) _> 0

atp3,4,10..13 ~ #(a~) >_ 1
atpyo..13 :* # (s~) >_ 1

#(xp) _> ~ - p + l
-"at pn =~ #(Xp) = n - p + 1

at PlO ~ #(10) > 1.

(6)

(7)

3.3 Elimination of implicit quantifiers

We have to prove the triple {VpVq#pI(p, q)}r{VpVq#pI(p, q)} for each transi-
tion r . Due to symmetry, we can restrict to transitions executed by a single fixed
station p, so 14 transitions have to be considered. The "countdown" transition
also refers to some process q < p, so we also select a second station q < p.

Besides, the assertions of the invariant refer to (at most) two distinct stations,
say p' and q'. Instead of proving the original triple (in fact, 14 triples) we can
prove the simpler triples

{VpVq#pI(p, q)} r {I(p', q')}.

These stations can be distinct from p and q, or not. We need therefore to evoke
at most four distinct stations, say p, q, r and s. As argued in [12], our proof task

430

pl, t r u e

(P2 , true

(p3, # (s) = o

(P4, t r u e -----+

(p~, # (a ~) >

(P,, # (*~) >
(Ps, true ,
(p~, # (~) =

(pg, true

skip, p2)
(a,,, # (a ~)) : = (true, # (a ~) + 1),p3)

skip, P4)

(u,,,, s,,, #(u,), #(s) , # (a ~)) : =

(true, true,#(w) or 1, #(s) or 1, # (a~) -- 1), Ps)

1 ----+ (Sp, #(s)) := (false, #(s) -- 1), Pr)

1 ---+ skip, Ps)

(sp, # (s)) : = (true, #(s) or 1),pg)

0 ---+ skip, pg)

(Wp, #(10), #(w), #(a@), #(s~)) :=
(false, #(10) + 1, #(w) -- 1, #(a@) + 1, # (s~) + 1), plo)

(plo,#(w) = 0 ----+ #(10) := #(10) - 1,p11)

(p11, q < p ^ -,x,,M ^ sq --+ (x,,M, #(x , ,)) := (true, # (x p) + 1),p1~)

(P11, #(Xp) = n ----+ (Xp, #(Xp)) := (Ip, n - p + 1), p12)

(p12, true ~ skip, p13)

(Pa3, t rue - -+ (ap, 8p, #(s), #(a~) , # (s~)) :=
(false, false, #(s) -- 1, # (a~) -- 1, # (s~) -- 1),pl) �9

Fig. 4. Quantifier-free version of Szymanski's algorithm

can be reduced to checking the following triples :

{ V p V q # p I (p , q) } r {I(p, q)},
{ V p V q # p I (p , q) } r { I (q ,p)}
{ V p V q # p I (p , q) } r {I(p, r)}
{ V p V q # p I (p , q)} r { I (r ,p) }
{ V p V q # p I (p , q) } r {I(s , q)}
{ V p V q # p I (p , q)} r {I(q, s)}
{ V p V q # p I (p , q) } r {I(r , s)}

However, we have assumed q < p, but know nothing about the positions of r
and s. In the example outlined in [12], that was irrelevant since neither the code
nor the invariant involved comparison between these numbers. This is no longer
true here, so we have to check every possibility. For instance,

{ V p V q # p I (p , q)} 7" {I(s, q)}

splits into three subcases : s < q < p, q < s < p and q < p < s; for the last triple,
there are 12 subcases. Last, it seems safe to assume that, in the precondition
VpVq ~t p I(p, q), only the seven instances I(p, q) , . . . , I(r, s) will be needed, so
we replace the quantified precondition by the conjunction of these instances.

431

3.4 G e n e r a t i o n o f veri f icat ion cond i t ions

Automating wp-calculus is easy, at least when all statements and assertions are
quantifier-free. 2 The tool CAVEAT Was used to generate the verification condi-
tions. These conditions still contain predicates, like q < p and # (w) = 0; these
predicates will be viewed as atoms by the tautology checker.

3.5 A d d i t i o n a l h y p o t h e s e s

A full reduction of first-order theories to propositional calculus is obviously im-
possible. Information is lost if, for instance, the predicate {#(w) = 0} is viewed
as an atomic proposition ("pseudo-atoms" are surrounded by curly braces). As a
consequence, specific axioms are needed to restore this information; they will be
used as additional hypotheses in the verification conditions. The axioms main-
tain the consistency between the original variables like wp, and the pseudo-atoms
like {~(w) = 0}, and also between the pseudo-atoms themselves. For instance,
the axiom

-~(wp A { # (w) = 0})

was used as an additional hypothesesis for verifying Szymanski's algorithm.

4 Propositional verification techniques

Supplementing the set of additional hypotheses seems a fair price to pay for
reducing the first-order validity problem to tautology checking. However, the
elimination of implicit quantifiers has strongly increased the size and the num-
ber of verification conditions. In fact, even state-of-the-art tautology checkers
can barely cope with really big formulas. Fortunately, propositional verification
conditions have a very particular structure. If the invariant I is the conjunction
al A . . . A an, then the condition I ~ wp[v; I] can be written as

(a 1 A . . . A an) :=~ (Cl A . . . A Cn), (8)

where typically the members of the set of hypotheses H = { a l , . . . , a n } are
small, while the size n of this set is big. For the propositional model of the
hybrid version of Szymanski's algorithm, the average value of n is 130, but it is
much higher for the finer-grained, molecular version.

It is often convenient to consider conclusions c l , . . . , cn one at a time, i.e., to
split the verification condition (8) into the (conjunctive) set of formulas (9).

(al A .-- A an) =V c l ,

(al A "'" A an) ::~ Cn.

(9)

2 One should be careful to deal with array assignments, though : the usual assignment
rule (4) has to be adapted for arrays. However, this induces no trouble in the present
framework.

432

The reason is as follows. When condition (8) happens to be valid, most of the
hypotheses have a role in a validity proof, which is therefore lengthy and not
easily constructed. However, experimentation shows that, most of the time, each
formula of the list (8) admits a short proof, using only a small subset Hj of the
big set H = { a l , . . . , an} of hypotheses; it is more efficient to construct n small
proofs than to construct a big one. 3

In order to discover the relevant set Hj of hypotheses, needed to establish
conclusion cj (in fact, as small a superset as possible), we use a three-phased
approach. The first phase interleaves simplification and elimination of provably
irrelevant hypotheses. A hypothesis h is provably irrelevant with respect to a
conclusion c if formulas (hAT) :=~ c and T ~ c are equivalent for every formula ~.
Syntactic criteria for simplification and irrelevance detection are developed in
[13]. Second, the remaining hypotheses are sorted in a list hi , h2 , . . . ; the idea is
that seemingly most relevant hypotheses appear before seemingly less relevant
ones. This notion is investigated in [13] so only an elementary example is given
here. If c is cl ~ c2, then a hypothesis like c3 :=~ c2 is potentially useful (say,
if cl =~ c3 can be established from other hypotheses) and will therefore appear
early in the list. On the contrary, a hypothesis like c~ ~ c4 is provably irrelevant,
and therefore will not appear at all. (See [13] for more details.)
Comment. The nth step of the sorting procedure select hn E H\{h l , . . . , h,,-l}
as the most promising hypothesis with respect to the formula

(hl A -. . A hn-1) ~ c

and not with respect to c alone.
Last, a tautology checker is iteratively called. The first a t tempt is to validate

the conclusion c; if it fails, hi =~ c is tried, and so on either until a member of
the sequence

c, hi ~ c, h2 =~ (hi ::v c) , . . .

is recognized as valid, or until the set of hypotheses has been exhausted. In the
former case, the verification condition is valid.
Comment. The only cause of incompleteness in CAVEAT is the database of ad-
ditional axioms. If the tautology checker does not provide a positive answer,
either the program is not correct with respect to the invariant, or the database
of additional axioms is too weak.

5 A u t o m a t e d veri f icat ion

The proof of correctness of the hybrid version of Szymanski's algorithm with
respect to its invariant has been completed with the tool CAVEAT (for Computer
Aided VErification And Transformation). The first version of the tool has been
presented in [12], but the version used here is rather different.

a This is usually true for verification conditions, but not for arbitrary propositional
formulas.

433

The first component of CAVEAT is a classical generator of verification condi-
tions. The data file contains the code of the program and the invariant as stated
in Section 2, with a slightly different syntax. For the example considered here, the
program contains 14 transitions and the invariant, in the form I(p, q)A. . .AI(r , s),
is the conjunction of 66 assertions (after removing repetitions, since some asser-
tions appear both in I(p, q) and I(p, r), for instance). The output file is the list
of 14 verification conditions, obtained by weakest-precondition calculus. These
are boolean formulas whose atomic propositions are true propositions (like wp),
place predicates (like at q4) and pseudo-atoms, like {p < q} and {#(s) - 1 > 0}.

The second component of CAVEAT works with two data files, containing res-
pectively one of the verification conditions (produced by the first component),
and the list of additional hypotheses. The component simply inserts this list
in the list of hypotheses of the verification condition, and then performs the
splitting described in paragraph 4. This splitting allows for further elementary
simplifications, so many of the 66 * 14 produced conditions reduce to true and
vanish; CAVEAT has in fact produced 155 conditions; one of them, corresponding
to transition

(Ps,-~3j <_ n : aj A -~wj ----+ skip, P9)

and to assertion

is investigated further
conclusion is

at Ps..13 ~ ~at q4

in the appendix; it contains 145 hypotheses, and the

{#(affJ) = 0} =~ (-,at q4).

The list of additional hypotheses is the same for all verification conditions.
For now, they are produced by the user, either from scratch, or by adapta-
tion of some available databases of standard additional hypotheses. In our case,
four databases have been used, for shared boolean arrays, identity, comparison
operators (<, >, . . .) and increment/decrement (properties of unary functions
x ~ x + 1 and x ~ x - 1. For instance, the database for shared boolean arrays
(like a, s and w in our example) is

{#(b) = n} bp, bp {#(b) > 1},

whereas
{x _> 1} ~ - ~ { x = O}

can be found in another database. Further relevant facts are obtained by com-
bining several databases, like

{#(b) > 1} = 0}.

The data file used by CAVEAT in our example contains 84 facts; a sample is given
in the appendix.

The third component of CAVEAT applies simplification and elimination rules,
in order to suppress as many hypotheses as possible. For the aforementioned

434

example, 90 hypotheses have been eliminated (out of 145); the remaining 55
hypotheses are listed in the appendix.

The fourth component consists in sorting the list of potentially relevant hy-
potheses, and the last component is the tautology checking itself. Recall that
the latter work iteratively. For our example, only two hypotheses (out of 55)
were really needed to establish the conclusion; their rank in the sorted list were
2 and 4, so five iterations were needed to validate the condition. (More details
are given in the appendix.)

6 Discussion, comparison and conclusion

Szymanski's algorithm has been frequently used as benchmark for computer-
aided verification tools. Two earlier successful attempts are [22] and [23]. We
were puzzled by the fact that the critical problem in them was associated with
the validation of the verification conditions. Clearly, those conditions are conse-
quences of few elementary mathematical facts; the only difficulty is their huge
size and number.

In fact, state-of-the-art theorem provers like recent versions of NQTHM or
OTTER have been successfully used to prove non trivial mathematical theorems,
but such systems are not at their best with very long formulas (see e.g. [9,21,
24, 27]). That is the reason why the first version of CAVEAT emphasized propo-
sitional reasoning instead of first-order reasoning [12, 13]. However, good results
were obtained only for "nearly propositional" concurrent systems. In particular,
Szymanski's algorithm was outside the practical scope of CAVEAT. To overcome
this worrying limitation, we have eliminated the need of true first-order reaso-
ning from CAVEAT; the only link between first-order reasoning and CAVEAT is
now the database of additional hypotheses. The database itself is purely propo-
sitional; first-order reasoning is required only for its construction and, for now,
little help is available to the user. The propositional part of CAVEAT works very
efficiently, due to the simplification rules and the elimination rules based on the
idea of relevance [13]; we have seen that the size of the formula effectively va-
lidated by the tautology checker was far smaller than the verification condition
itself, 4 hypotheses instead of 145 in our example. As a result, the validation
time needed by CAVEAT is quite short. Naturally, some time has to be spent
for the construction of the database of additional hypothesis, but there is an
important difference : the user faces only very short formulas, whose validity is
trivial, instead of lengthy verification conditions. Besides, using first-order ATP
tools is not easy. For instance, the strength of OTTER relies noticeably on an
appropriate choice of resolution strategies; if the user is not skilled in this do-
main, the strength becomes weakness. In this respect, the main advantage of our
proof of Szymanski's algorithm is that it relies only on wp-sp calculus, proposi-
tional logic, and the (most elementary) mathematical facts used in Szymanski's
algorithm itself.

Validation is not the only difficult step with the assertional approach: the
construction of the invariant can also be a problem. For coarse-grained versions

435

of concurrent algorithms, the construction of the invariant is simply a formal
traduction of the main idea underlying the algorithm. However, as explicitly
stated in [22], and also demonstrated e.g. in [11, 19], the invariant of a rea-
sonably fine-grained version is a complex formula, whose construction can be
challenging. Much work has been devoted to invariant construction, adaptation
and approximation (see e.g. [2, 3, 5, 8, 10]). Most techniques rely on fixpoint cal-
culus, implemented as weakest-precondition and strongest-postcondition calculi.
These are already present in CAVEAT, and a module for invariant adaptation
is planned; its purpose will not be the design of an invariant from scratch, but
the incremental adaptation of a coarse-grained invariant into a finer-grained one
(see [11] for a detailed presentation of this technique).

Another approach for concurrent program verification is model checking. Its
main advantage is that little extra-work is required from the user, not even
writing an inductive invariant. (See e.g. [4,6, 14, 17,25] for presentation and
examples.) The problem is, model checking requires a finite, bounded model
of programs and properties. Basically, a "parametric" system involving some
unspecified integer constant n (the number of processes, for instance) can be in-
vestigated fully automatically only if n has been given an explicit numeric value;
besides, the verification time may grow exponentially with this value. In spite of
several attempts to overcome this limitation, e.g. [16, 30], and the combinatorial
explosion [15, 26, 29], we feel this will remain a serious drawback (see also [1]).
On the other hand, if we request a formal verification only for some fixed small
values of parameters like n, model checking is the most convenient approach.

The approach presented here has also an educational advantage, especially
if several versions of the same concurrent program are considered in sequence,
coarser-grained version before finer-grained ones. The tool allows the user to
understand more easily why some guard or some assertion is needed, for instance;
it is also useful to the program designer, who is able to determine how fine-
grained his/her algorithm can be implemented without destroying its properties.

Several tools and methods have been proposed which combine the assertional
method and model checking, for instance [17, 18, 22]. As far as tautology checking
is an elementary kind of model checking, the new version of CAVEAT also belongs
in this category.

References

1. K.R. Apt and D.C. Kozen, Limits for Automatic Program Verification, Inform.
Process. Letters 22 (1986) 307-309.

2. S. Bensalem, Y. Lakhnech and H. Saidi, Powerful techniques for the automatic
generation, Lect. Notes in Comput. Sci. (1996) 323-335.

3. N. Bjorner, A. Browne and Z. Manna, Automatic Generation of Invariants and
Intermediate Assertions, Lect. Notes in Cornput. Sci. 976 (1995) 589-623.

4. J.R. Burch et al., Symbolic Model Checking: 102~ States and Beyond, Proc. 5th.
Symp. on Logic in Computer Science (1990) 428-439.

436

5. E. Clarke, Program invariants as fixed points, Proc. 18th IEEE Symp. on Founda-
tions of Comput. Sci. (1977) 18-29.

6. E. Clarke, E. Emerson and A. Sistla, Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications, ACM Trans. Program-
ming Languages Syst. 8 (1986) 244-263.

7. K.M. Chandy and J. Misra, Parallel Program Design : A Foundation (Addison-
Wesley, Reading, MA, 1988).

8. P. Cousot and N. Halbwachs, Automatic Discovery of Linear Restraints Among
Variables of a Program, Proc. 5th ACM Symp. on Principles of Programming
Languages (1978) 84-96.

9. D.M. Goldschlag, Mechanically Verifying Concurrent programs with the Boyer-
Moore prover, IEEE Trans. on Software Engineering 16 (1990) 1005-1023.

10. S. Graf and H. Saldi, Verifying invariants using theorem proving, Lect. Notes in
Comput. Sci. 1102 (1996) 196-207.

11. E.P. Gribomont, Concurrency without toil : a systematic method for parallel pro-
gram design, Sci. Comput. Programming 21 (1993) 1-56.

12. E.P. Gribomont and D. Rossetto, CAVEAT: technique and tool for Computer
Aided VErification And Transformation, Lect. Notes in Comput. Sci. 939 (1995)
70-83.

13. E.P. Gribomont, Preprocessing for invariant validation, Lect. Notes in Comput.
Sci. 1101 (1996) 256-270.

14. G. Holtzmann, An improved protocol reachability analysis technique, Software,
Practice, and Experience, 18 (1988) (137-161)

15. C.N. Ip and D.L. Dill, Verifying Systems with Replicated Components in Murk,
Lect. Notes in Comput. Sci. 1102 (1996) 147-158.

16. B. Jonsson and L. Kempe, Verifying safety properties of a class of infinite-state
distributed algorithms, Lect. Notes in Comput. Sci. 939 (1995) 42-53.

17. R.P. Kurshan and L. Lamport, Verification of a Multiplier : 64 Bits and Beyond,
Lect. Notes in Comput. Sci. 697 (1993) 166-179.

18. D. Kaput and M. Subramanian, Mechanically Verifying a Family of Multiplier
Circuits, Lect. Notes in Comput. Sci. 1102 (1996) 135-146.

19. L. Lamport, An Assertional Correctness Proof of a Distributed Algorithm, Sci.
Comput. Programming 2 (1983) 175-206.

20. K. Larsen, B. Steffen and C. Weise, Fisher's protocol revisited : a simple proof using
modal constraints, Proc. 4th DIMACS Workshop on Verification and Control of
Hybrid Systems. New Brunswick, New Jersey, 22-24 October, 1995.

21. W. McCune, OTTER 3.0 Reference manual and guide, Argonne National Labora-
tory, 1994.

22. Z. Manna et al., STEP : the Stanford Temporal Prover (Draft), Report No. STAN-
CS-TR-94-1518, Stanford University, June 1994.

23. M. Nagayama and C. Talcott, An NQTHM Mechanization of Szymanski's algo-
rithm, Report No. STAN-CS-91-1370, Stanford University, June 1991.

24. D.M. Russinoff, A Verification System for Concurrent Programs Based on the
Boyer-Moore Prover, Formal Aspects o] Computing 4 (1992) 597-611.

25. K. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.
26. A. Parashkevov and J. Yantchev, Space Efficient Reachability Analysis Through

Use of Pseudo-root States, Lect. Notes in Comput. Sci. 1217 (1997) 50-64.
27. D.M. Russinoff, A Mechanically Verified Incremental Garbage Collector, Formal

Aspects of Computing 6 (1994) 359-390.
28. B. Szymanski, A simple solution to Lamport's concurrent programming problem

with linear wait, Proc. 1988 Int. Conf. on Supercomputing Systems (1988) 621-626.

437

29. P. Wolper and D. Leroy, Reliable Hashing without Collision Detection, Lect. Notes
in Comput. Sci. 697 (1993)

30. P. Wolper and V. Lovinfosse, Verifying Properties of large Sets of Processes with
Network Invariants, Lect. Notes in Comput. Sci. 407 (1990) 68-80.

A A worked-out example

The verification condition considered here is (I A D) ~ wp[v; a] were I is the
invariant, D is the database of additional hypotheses, 7- is transition

(PS, - .3j ~ . : aj A -~Wj , skip,p9)

and a is the assertion

at ps..13 ~ -.at q4 .

Comment . The syntax used here is nearly the same as in [22]; it is more readable
than CAVEAT syntax, where for instance

becomes

at Ps..10

at8[p] or at9[p] or at lO[p].

In the sequel, everything has been translated back into the external syntax.

A.1 T h e d a t a b a s e o f a d d i t i o n a l facts

It contains a set of 84 mathemat ica l facts. All of them are obviously valid; the
critical point is not to omit any of them. Here is a small sample :

{#(~) = o} ~ -~p,
{#(a~) _> o} => {#(a~) + 1 _> 1},
{#(i0)>_0} => {#(10)-1_>0},
{#(X~) = .} ~ Xp[q])

A.2 Sorting hypotheses

The simplification / elimination phase strongly reduces the number of hypotheses
in a verification condition. In our example, 55 hypotheses were maintained; here
they are :

438

8p

s~ :=~ atp5,9..13
st ==~ at r5, 9
8 s ==~ (a t 85,9,11,12,13

at q3..13 ==~ aq
a t ==# a t 7"3,4,5,7, 9
a s =:~ a t 83,4,5,7,9,11,12,13
a t q5..9 ~ Wq

at r5,7,9 ==~ Wr

at 85,7, 9 ~ w s

at qa,4,:o..ta ~ {#(aft) > 1}

((at s11,12,13 ::~ {#(sft) _> 1}
a t r 9 :r (-~at q4)
-~at qs
~ a t q11,12,13
{#(af t) _> 1} =r (-~{#(aft) = 0})
Xq[q]
xs[d
{#(af t) _> 1} => ((-~wp) V (-~wr))
{#(af t) >_ 1} =~ ((-~w,) V (-~w,))
{#(af t) >_ 1} =~ ((-~wq) V (-~ws))
{#(sf t) _> 1} => (sp V st)
{#(sf t) > 1} ::> (st V Ss)
{#(sf t) > :} (8, v 88)
{#(stY) _> 1} => ((-~wp) V (-=wr))
{#(sf t) > 1} => ((-~Ws) V (-~wt))
{#(sf t) > 1} =r ((-~Ws) V (-~wq))

The conclusion is

at P5,9..13 ~ 8q

at r5,9 :=~ 8r

a t 85,9,11,12,13 ==~ 8 s

ap

at r3,4,5,7,9 ~ ar

a t 83,4,5,7,9,11,12,13 :=~ as
wp
wq =r at q5..9
wt ==~ at r5,7,9
Ws =:~ a t 85,7, 9
at r3,4 =~ {#(aft) > 1}
at qlo..13 =ez {#(sf t) > I}
at qs..ia ~ (-~at r4)
at r9 ==~ (-~at 84)
-~at qlo
at q11,12,13 ==~ (- ,at r4,5,r,9)
Xp]
Xt[r]
{#(aft) >_ 1} ::r ((~wp) V (~wq))
{#(aft) >_ 1} ::~ ((-~wr) V (~wq))
{#(aft)) > 1} :=~ ((-~wp) V (-~ws))
{#(s@) > 1} =~ (sp V Sq)
{#(sft) > :} (st v 80
{#(s@) >_ 1} =ez (sp V s,)
{#(sf t) >__ I} =~ ((-~wp) V (-~wq))
{#(sf t) > 1} v
{#(sf t) _> 1} =r ((-~ws) V (-~wp))

{#(aft) = O} =:~ -~atq4.

The sorting procedure produces this

hi : at q3..13 =:~ aq
h2 :a t q3,4,10..13 ::r {#(aft) > 1}
ha : at r9 ~ (-~at q4)
h4 : {#(aft)) > 1} ::~ (--,{#(aft) = 0})
h5 : . . .

Hypothesis hi seems promising: it could be used to establish aq, which in turn
would refute the antecedent of the conclusion, and therefore validate the conclu-
sion. Hypothesis h2 is interesting too, also as a helper for refuting the antecedent
of the conclusion. Hypothesis ha could be used more directly, to establish the
consequent of the conclusion. The next hypothesis h4 allows to conclude. In fact,

(h2 A h4) :r c

is propositionally valid.

