
Automated Verification 
of Szymanski's  Algorithm 1 

E. Pascal Gr ibomont  and Guy Zenner 

University of Libge (Belgium) 

A b s t r a c t .  The algorithm for mutual exclusion proposed by B. Szymanski is an 
interesting challenge for verification methods and tools. Several full proofs have 
been described in the literature, but they seem to require lengthy interactive 
sessions with powerful theorem provers. As far as this algorithm makes use of 
only the most elementary facts of arithmetics, we conjectured that a simple, 
non-interactive proof should exist; this paper gives such a proof, describes 
its development and how an elementaxy tool has been used to complete the 
verification. 

1 Introduction 

Many kinds of hardware and software systems are now tentatively subjected to 
formal verification. Among the most  interesting ones are the algori thms used 
to ensure mutua l  exclusion in distributed networks. This is due to both practi- 
cal and scientific reasons. First, it is of foremost importance to guarantee tha t  
concurrently running processes do not interfere in a destructive way; in fact, 
most  of the communication,  cooperation and synchronization problems between 
concurrent processes can be seen as variants of the mutual  exclusion problem : 
this problem therefore deserves much attention. Furthermore, algorithms that  
solve the mutual  exclusion problem . . .  or are thought to solve it, tend to be 
rather  short but subtle pieces of code. As a result, their formal verification is 
challenging but still within reach of tools whose practical efficiency decreases 
badly when the size of the code to be verified increases. 

Szymanski 's  algorithm implements mutual  exclusion in a distributed network. 
Each process owns only three boolean variables, meaning that  computat ions 
take place within a finite state space; this algorithm can be verified in a fully 
au tomated  way with model checking methods and tools. The only problem is 
that  the number  n of processes is arbitrary. The size of the state space grows 
exponentially with n, so verification based on model checking is realistic (and 
very efficient) for small values of n only. Anyway, a general proof, valid for every 
integer n, would be more useful and more elegant, but can not be devised purely 
within the model checking paradigm. In fact, Szymanski 's  algorithm involves 
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each process accessing the state of all other processes. Statements '  guards are 
quantified formulas, and quantified formulas also appear in any useful global 
invariant. Even if the quantification is bounded (by the number n of processes), 
using first-order logic seems mandatory. 

Our purpose in the sequel of this paper is to show that  a particular kind of 
tautology checking is not impaired by the exponentially growing size of the state 
space, even in the case of algorithms like Szymanski's, where quantifications in 
both the guards and the invariant are numerous. 

A version of Szymanski's algorithm is introduced in Section 2, a propositional 
model is built in Section 3, the verification techniques are addressed in Section 4 
and the computer-aided verification of the algorithm is described in Section 5. 
Section 6 outlines comparison with other approaches and gives a conclusion. 

2 Szymanski's algorithm, a hybrid version 

This algorithm has been first proposed in [28] but has been slightly modified 
several times. The version considered here is adapted from [22]. 

There are n concurrent processes, numbered from 1 to n, which switch end- 
lessly between a non critical section and a critical section. The main safety 
requirement is that  at most one process at a time can be within its critical 
section. (Other requirements, not investigated here, are absence of deadlock, 
responsiveness and pseudo-linear waiting.) 

Each process executes the same code and has only reading access to the 
variables owned by the other processes. Process p owns three boolean variables 
ap, sp and wp, which are initially false. An abstract version of the code repeatedly 
executed by process p is given in Figure 1. 

It is convenient to introduce some terminology. Process p can be either in the 
anteroom (executing lines 1 to 3) or in the doorway (line 4) or in the waiting 
room (lines 5 to 8) or in the inner sanctum (lines 9 to 13). Now, this abstract, 
coarse-grained version (atomic version in [22, 23]) is interesting since it grasps the 
essence of the algorithm, without bothering with potential interference problems 
between processes; it is also easy to guess what the appropriate invariant for this 
algorithm should be. However, the abstract version should not be implemented 
as such, with each line being an atomic, uninterruptible piece of code : this would 
be very unefficient. In fact, each line involving all processes q Cp  should be split 
into n - 1 (or, for line 11, p -  1) more elementary statements, to be executed 
independently or sequentially. 

From the point of view of methods and tools, both versions are challen- 
ging. The abstract, coarse-grained one involves quantified guards, but the finer- 
grained version (called "molecular" in [22, 23], where both versions are conside- 
red) contains more transitions, with a more complex invariant, and gives rise to 
a more complex proof. 

Presenting both versions in a paper of acceptable size is not possible, but  we 
can show how to cope with both kinds of problems by addressing a "hybrid" 
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1. NCS (Non Critical Section) 

2. ap :-- true 

3. await Vj _< n : -~sj 

4. (w,,,,,,) : =  (true, true) 
5. if 3j  <_ n : aj A-~w 3 

6. then sp:=false  

7. await 3j < n : s 3 A -,w~ 

8. sp := true 

9. top := false 

10. await Vj < n : -~w 3 

11. await Vj < p : -~s 3 

12. CS (Critical Section) 

13. (ap, sp) := (false, false) 

Abstract version of Szymanski's algorithm 

version. We will split only one quantified statement, which is the crucial "count- 
down" statement just  before the critical section (line 11). A boolean array Xp 
is introduced to control this; Xp[q] holds as soon as process p has checked -~Sq. 
This has to be done for all q < p, so initially Xp [q] holds only for all q > p (deno- 
ted Xp - Ip); when the countdown is completed, Xp[q] holds for all q (denoted 
Xp = TR).  

It is also convenient to make explicit the various control points of the system; 
for each control point g, there is a predicate at ~ which is true when the execution 
is at control point g. The transitions executed by process p in our hybrid version 
are listed in Figure 2. A transition (Pi, G --* S, p j )  can be executed by process p 
when the control state is at Pi and the memory state satisfies the guard G, 
that  is, when formula (at Pi A G) is true; the effect of the transition is to alter 
the memory state according to the assignment S and to transfer the control at 
point pj.  

The links between control points and program variables are expressed by 
assertions (1). 

at  P5,9.13 r Sp , 

at p3..13 r ap, (1) 
at ph..9 r162 wp.  

(The expression at P5,9..13 stands for the formula at p5 Y at p9 Y at plo V at p l l  V 
at pl2 V at P13.) 

The terminology introduced above allows for the following intuitive descrip- 
tion [22] of the strategy used in the algorithm to grant passage from one "room" 
into another, and access to the critical section : 

A0 : When p is in the inner sanctum, the doorway is locked. 
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(Pl, true ~ NCS, p2) 

(p2, true ~ ap := true,p3) 

(m ,  Vj  < n : -,s~ ---* skip, p4) 

(p, ,  true ----+ (wp, sp) := (true, true) ,ps)  

(ps, q j  < n : a 3 A-~w 3 ~ sp := false, pr) 

(pT, 3 j  < n : s i A -~w 3 ---* skip, ps) 

(Ps, true -----* sp := true,pg ) 

(Ps,-~3j < n : aj A -~w~ ~ skip, pg) 

(pg, true - - ~  wp := ]alse, p,o ) 

(plo ,Vj  < n :  ~w ,  ---+ skip, p1,) 

(ply,  q < p ^ ^ - - - .  Xp[q]  :=  true,p, ) 

( p n , X p =  T R  ~ Xp := Ip ,pn)  

(P12, true ~ CS,P13) 
(p 3, true ---* (a,,, 8,,) : =  ], Zse, 

Fig. 2. Hybrid version of Szymanski's algorithm 

A1 : When p is about  to leave the waiting room, 
some process has entered the inner sanctum. 

A2 : Once p is in the latter part  of the inner sanctum, 
the waiting room and the doorway are empty. 

A3 : If  p is in its critical section, then no process with smaller index 
can be in the doorway, waiting room or inner sanctum. 

Four supplementary assertions (2) formalize this : 

Ao : at p8..13 ~ -~at q4 
A1 : at ps ~ 3k  < n : at k lo 

A2 : at  pll . .13 ==~ "~at q4..9 

A3 : ( (at  p n  A X v[q]) V at Pn,13) A q < p ~ -~at q4..13 

(2) 

The countdown for access to the critical section takes place at s tate Pn ;  the 
behaviour of array Xp is formalized in assertions (3). 

q > p ~ Xp[q] ,  (3) 
(q < p A Xp[q]) =r at p n  . 

Assume now that  I (p ,  q) denotes the conjunction of all assertions (1,2,3). As 
an invariant, the formula VpVq ~ p I ( p , q )  is a likely candidate. We observe it 
is true initially, when each process p is at Pl, with %, sp, wp being false, and 
Xp = Ip. Besides, assertion A3 expresses that  p and q cannot be both  at the 
same t ime in their critical section : at P12 ~ ~ a t  q12 is a logical consequence of 
this assertion. 
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3 A p r o p o s i t i o n a l  m o d e l  

3.1 Introduction 

In order to prove that  I is an invariant, we have to check that  every transition v 
respects formula I; this is written {I}r{I}.  We rely on the classical rule: the 
triple 

{A} r {B} 

holds if and only if the formula 

A wp[r; B] 

is valid. The operator wp (weakest precondition) takes two arguments, a tran- 
sition r and a set of states represented by a formula B. The associated value 
is the set of all states whose r-successor satisfies B. The operator wp is easily 
computable and many tools exist which automate this computation (in the se- 
quel, we use our tool CAVEAT [12]). This symbolic computation is based on the 
identity 

wp[x := f(x, y); B(x, y)] = B(f(x, y), y). (4) 

The assertion 1 ~ wp[r;/]  is the verification condition associated with r. It 
is easy to generate them in a fully automatic way, but less easy to check them for 
validity. In general, these assertions belong to first order logic, especially when 
the guards of the transitions are quantified formulas. 

3.2 Elimination of  explicit quantifiers 

Earlier verification of Szymanski's algorithm have been completed with the assis- 
tance of an interactive theorem prover for first order logic [22, 23]. Our purpose 
now is to do it again, but without interactive work. This is possible if we rewrite 
the problem in the framework of propositional logic. The first step of this rewri- 
ting is the elimination of quantifiers. To achieve this, we introduce six auxiliary 
variables (5); these variables are counters, whose role is to record the number of 
processes for which some boolean expression is true. 

~:(S) ~-'def f{J: 1 ~ j  ~ n A Sj}l; 
#(ll)) ~-def I{J : 1 < j _< n A sy}]; 

=dos I{J: 1 < j _< n ^ st ^ - wAI ; 
#(aw) ~'def I{J: 1 < j < n A aj A -~wj}[ ; (5) 
#(Xp) =del ]{J: 1 < j _< n A Xp[j]}[ ; 
#(10) -'def [{J : 1 < j < n A at jl0}]. 

The range of all these variables is the set {0 , . . . ,  n}; for instance, # ( s )  is the 
number of processes whose s-variable is true. With these notations, quantifiers 
can be eliminated, according to Figure 3. The quantifier-free version of the pro- 
gram is given in Figure 4. 
Comment. This translation is not difficult but should be completed with care. For 
instance, the statement Sp := false is adequately translated into the statement 
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3 j < n  :a  3 A--wjI #(a@) ~ 1 ] 
Vj < n : -~ws I #(w) = 0 

I #(10) _> 1 3q<n  :argo ] 

I sp := fatse [(sp, #(~)) := (]aZse, # (~ ) -  1) 

Fig. 3. Eliminating quantification 

(sv, #(s)) := (false, # ( s ) -  1) only if we already know that  sp is always true 
before the execution (which is a consequence of the invariant). 

The invariant is translated in a similar way (6) and the behaviour of the 
auxiliary variables is formalized in supplementary assertions (7), added to the 
invariant. 

at ps..13 ~ -.at q4 
atps ~ # ( 1 0 ) _  1 

at pll 13 =r -,at q4..9 
((at Pll A Xp[q]) V at P12,13) A q < p) ~ -~at q4..13. 

#(~) > o 
# ( ~ )  > o 

# ( ~ )  _> o 
# ( a ~ )  _> 0 
#(10)  _> 0 

atp3,4,10..13 ~ #(a~)  >_ 1 
atpyo..13 :* # (s~)  >_ 1 

#(xp)  _> ~ - p + l  
-"at pn  =~ #(Xp)  = n - p +  1 

at PlO ~ #(10)  > 1. 

(6) 

(7) 

3.3 Elimination of  implicit quantifiers 

We have to prove the triple {VpVq#pI(p,  q)}r{VpVq#pI(p,  q)} for each transi- 
tion r .  Due to symmetry, we can restrict to transitions executed by a single fixed 
station p, so 14 transitions have to be considered. The "countdown" transition 
also refers to some process q < p, so we also select a second station q < p. 

Besides, the assertions of the invariant refer to (at most) two distinct stations, 
say p' and q'. Instead of proving the original triple (in fact, 14 triples) we can 
prove the simpler triples 

{VpVq#pI(p,  q)} r {I(p', q')}. 

These stations can be distinct from p and q, or not. We need therefore to evoke 
at most four distinct stations, say p, q, r and s. As argued in [12], our proof task 
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pl, t r u e  

(P2 , true 

(p3, # ( s )  = o 

(P4, t r u e  -----+ 

(p~, # ( a ~ )  > 

(P,, # (*~)  > 
(Ps, true , 
(p~, # ( ~ )  = 

(pg, true 

skip, p2 ) 
(a,,, # ( a ~ ) ) : =  (true, # ( a ~ ) +  1),p3) 

skip, P4 ) 

(u,,,, s,,, #(u,), #(s) ,  # ( a ~ ) )  : =  

(true, true,#(w) or 1, #(s)  or 1, # (a~ )  -- 1), Ps) 

1 ----+ (Sp, #(s))  := (false, #(s)  -- 1), Pr) 

1 ---+ skip, Ps) 

(sp, # ( s ) ) : =  (true, #(s)  or 1),pg) 

0 ---+ skip, pg) 

(Wp, #(10), #(w), #(a@), #(s~))  := 
(false, #(10) + 1, #(w) -- 1, #(a@) + 1, # ( s~)  + 1), plo) 

(plo,#(w) = 0 ----+ #(10) := #(10) - 1,p11) 

(p11, q < p ^ -,x,,M ^ sq --+ (x,,M, #(x , , ) )  := (true, # ( x p )  + 1),p1~) 

(P11, #(Xp) = n ----+ (Xp, #(Xp)) := (Ip, n - p + 1), p12) 

(p12, true ~ skip, p13) 

(Pa3, t rue - -+  (ap, 8p, #(s), #(a~) ,  # (s~) )  := 
(false, false, #(s)  -- 1, # (a~ )  -- 1, # ( s~ )  -- 1),pl) �9 

Fig. 4. Quantifier-free version of Szymanski's algorithm 

can be reduced to checking the following triples : 

{ V p V q # p I ( p , q ) }  r {I(p,  q)}, 
{ V p V q # p I ( p , q ) }  r { I (q ,p)}  
{ V p V q # p I ( p , q ) }  r {I(p,  r)} 
{ V p V q # p I ( p ,  q)} r { I ( r ,p ) }  
{ V p V q # p I ( p , q ) }  r {I(s ,  q)} 
{ V p V q # p I ( p ,  q)} r {I(q,  s)} 
{ V p V q # p I ( p , q ) }  r {I(r ,  s)} 

However, we have assumed q < p, but know nothing about the positions of r 
and s. In the example outlined in [12], that  was irrelevant since neither the code 
nor the invariant involved comparison between these numbers. This is no longer 
true here, so we have to check every possibility. For instance, 

{ V p V q # p I ( p ,  q)} 7" {I(s, q)} 

splits into three subcases : s < q < p, q < s < p and q < p < s; for the last triple, 
there are 12 subcases. Last, it seems safe to assume that,  in the precondition 
VpVq ~t p I(p, q), only the seven instances I(p, q ) , . . . ,  I(r,  s) will be needed, so 
we replace the quantified precondition by the conjunction of these instances. 
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3.4 G e n e r a t i o n  o f  veri f icat ion cond i t ions  

Automating wp-calculus is easy, at least when all statements and assertions are 
quantifier-free. 2 The tool CAVEAT Was used to generate the verification condi- 
tions. These conditions still contain predicates, like q < p and # ( w )  = 0; these 
predicates will be viewed as atoms by the tautology checker. 

3.5 A d d i t i o n a l  h y p o t h e s e s  

A full reduction of first-order theories to propositional calculus is obviously im- 
possible. Information is lost if, for instance, the predicate {#(w)  = 0} is viewed 
as an atomic proposition ("pseudo-atoms" are surrounded by curly braces). As a 
consequence, specific axioms are needed to restore this information; they will be 
used as additional hypotheses in the verification conditions. The axioms main- 
tain the consistency between the original variables like wp, and the pseudo-atoms 
like {~(w)  = 0}, and also between the pseudo-atoms themselves. For instance, 
the axiom 

-~(wp A { # ( w ) =  0}) 

was used as an additional hypothesesis for verifying Szymanski's algorithm. 

4 Propositional verification techniques 

Supplementing the set of additional hypotheses seems a fair price to pay for 
reducing the first-order validity problem to tautology checking. However, the 
elimination of implicit quantifiers has strongly increased the size and the num- 
ber of verification conditions. In fact, even state-of-the-art tautology checkers 
can barely cope with really big formulas. Fortunately, propositional verification 
conditions have a very particular structure. If the invariant I is the conjunction 
al A . . .  A an, then the condition I ~ wp[v; I] can be written as 

(a 1 A . . .  A an) :=~ (Cl A . . .  A Cn), (8) 

where typically the members of the set of hypotheses H = { a l , . . . , a n }  are 
small, while the size n of this set is big. For the propositional model of the 
hybrid version of Szymanski's algorithm, the average value of n is 130, but it is 
much higher for the finer-grained, molecular version. 

It  is often convenient to consider conclusions c l , . . . ,  cn one at a time, i.e., to 
split the verification condition (8) into the (conjunctive) set of formulas (9). 

(al A .-- A an) =V c l ,  

(al A "'" A an) ::~ Cn. 

(9) 

2 One should be careful to deal with array assignments, though : the usual assignment 
rule (4) has to be adapted for arrays. However, this induces no trouble in the present 
framework. 
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The reason is as follows. When condition (8) happens to be valid, most of the 
hypotheses have a role in a validity proof, which is therefore lengthy and not 
easily constructed. However, experimentation shows that,  most of the time, each 
formula of the list (8) admits a short proof, using only a small subset Hj of the 
big set H = { a l , . . . ,  an} of hypotheses; it is more efficient to construct n small 
proofs than to construct a big one. 3 

In order to discover the relevant set Hj of hypotheses, needed to establish 
conclusion cj (in fact, as small a superset as possible), we use a three-phased 
approach. The first phase interleaves simplification and elimination of provably 
irrelevant hypotheses. A hypothesis h is provably irrelevant with respect to a 
conclusion c if formulas (hAT) :=~ c and T ~ c are equivalent for every formula ~. 
Syntactic criteria for simplification and irrelevance detection are developed in 
[13]. Second, the remaining hypotheses are sorted in a list hi ,  h2 , . . . ;  the idea is 
that  seemingly most relevant hypotheses appear before seemingly less relevant 
ones. This notion is investigated in [13] so only an elementary example is given 
here. If c is cl ~ c2, then a hypothesis like c3 :=~ c2 is potentially useful (say, 
if cl =~ c3 can be established from other hypotheses) and will therefore appear 
early in the list. On the contrary, a hypothesis like c~ ~ c4 is provably irrelevant, 
and therefore will not appear at all. (See [13] for more details.) 
Comment. The nth step of the sorting procedure select hn E H\{h l , . . . ,  h,,-l} 
as the most promising hypothesis with respect to the formula 

(hl A -. .  A hn-1) ~ c 

and not with respect to c alone. 
Last, a tautology checker is iteratively called. The first a t tempt  is to validate 

the conclusion c; if it fails, hi =~ c is tried, and so on either until a member of 
the sequence 

c, hi ~ c, h2 =~ (hi ::v c ) , . . .  

is recognized as valid, or until the set of hypotheses has been exhausted. In the 
former case, the verification condition is valid. 
Comment. The only cause of incompleteness in CAVEAT is the database of ad- 
ditional axioms. If the tautology checker does not provide a positive answer, 
either the program is not correct with respect to the invariant, or the database 
of additional axioms is too weak. 

5 A u t o m a t e d  veri f icat ion 

The proof of correctness of the hybrid version of Szymanski's algorithm with 
respect to its invariant has been completed with the tool CAVEAT (for Computer  
Aided VErification And Transformation). The first version of the tool has been 
presented in [12], but the version used here is rather different. 

a This is usually true for verification conditions, but not for arbitrary propositional 
formulas. 
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The first component of CAVEAT is a classical generator of verification condi- 
tions. The data file contains the code of the program and the invariant as stated 
in Section 2, with a slightly different syntax. For the example considered here, the 
program contains 14 transitions and the invariant, in the form I(p, q)A. . .AI(r ,  s), 
is the conjunction of 66 assertions (after removing repetitions, since some asser- 
tions appear both in I(p, q) and I(p, r), for instance). The output  file is the list 
of 14 verification conditions, obtained by weakest-precondition calculus. These 
are boolean formulas whose atomic propositions are true propositions (like wp), 
place predicates (like at q4) and pseudo-atoms, like {p < q} and {#(s )  - 1 > 0}. 

The second component of CAVEAT works with two data files, containing res- 
pectively one of the verification conditions (produced by the first component),  
and the list of additional hypotheses. The component simply inserts this list 
in the list of hypotheses of the verification condition, and then performs the 
splitting described in paragraph 4. This splitting allows for further elementary 
simplifications, so many of the 66 * 14 produced conditions reduce to true and 
vanish; CAVEAT has in fact produced 155 conditions; one of them, corresponding 
to transition 

(Ps,-~3j <_ n : aj A -~wj ----+ skip, P9) 

and to assertion 

is investigated further 
conclusion is 

at Ps..13 ~ ~at  q4 

in the appendix; it contains 145 hypotheses, and the 

{#(affJ) = 0} =~ (-,at q4). 

The list of additional hypotheses is the same for all verification conditions. 
For now, they are produced by the user, either from scratch, or by adapta- 
tion of some available databases of standard additional hypotheses. In our case, 
four databases have been used, for shared boolean arrays, identity, comparison 
operators (<, >, . . . )  and increment/decrement (properties of unary functions 
x ~ x + 1 and x ~ x - 1. For instance, the database for shared boolean arrays 
(like a, s and w in our example) is 

{#(b)  = n} bp, bp {#(b) > 1}, 

whereas 
{x _> 1} ~ - ~ { x  = O} 

can be found in another database. Further relevant facts are obtained by com- 
bining several databases, like 

{#(b) > 1} = 0}. 

The data  file used by CAVEAT in our example contains 84 facts; a sample is given 
in the appendix. 

The third component of CAVEAT applies simplification and elimination rules, 
in order to suppress as many hypotheses as possible. For the aforementioned 
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example, 90 hypotheses have been eliminated (out of 145); the remaining 55 
hypotheses are listed in the appendix. 

The fourth component consists in sorting the list of potentially relevant hy- 
potheses, and the last component is the tautology checking itself. Recall that 
the latter work iteratively. For our example, only two hypotheses (out of 55) 
were really needed to establish the conclusion; their rank in the sorted list were 
2 and 4, so five iterations were needed to validate the condition. (More details 
are given in the appendix.) 

6 Discussion, comparison and conclusion 

Szymanski's algorithm has been frequently used as benchmark for computer- 
aided verification tools. Two earlier successful attempts are [22] and [23]. We 
were puzzled by the fact that the critical problem in them was associated with 
the validation of the verification conditions. Clearly, those conditions are conse- 
quences of few elementary mathematical facts; the only difficulty is their huge 
size and number. 

In fact, state-of-the-art theorem provers like recent versions of NQTHM or 
OTTER have been successfully used to prove non trivial mathematical theorems, 
but such systems are not at their best with very long formulas (see e.g. [9,21, 
24, 27]). That is the reason why the first version of CAVEAT emphasized propo- 
sitional reasoning instead of first-order reasoning [12, 13]. However, good results 
were obtained only for "nearly propositional" concurrent systems. In particular, 
Szymanski's algorithm was outside the practical scope of CAVEAT. To overcome 
this worrying limitation, we have eliminated the need of true first-order reaso- 
ning from CAVEAT; the only link between first-order reasoning and CAVEAT is 
now the database of additional hypotheses. The database itself is purely propo- 
sitional; first-order reasoning is required only for its construction and, for now, 
little help is available to the user. The propositional part of CAVEAT works very 
efficiently, due to the simplification rules and the elimination rules based on the 
idea of relevance [13]; we have seen that the size of the formula effectively va- 
lidated by the tautology checker was far smaller than the verification condition 
itself, 4 hypotheses instead of 145 in our example. As a result, the validation 
time needed by CAVEAT is quite short. Naturally, some time has to be spent 
for the construction of the database of additional hypothesis, but there is an 
important difference : the user faces only very short formulas, whose validity is 
trivial, instead of lengthy verification conditions. Besides, using first-order ATP 
tools is not easy. For instance, the strength of OTTER relies noticeably on an 
appropriate choice of resolution strategies; if the user is not skilled in this do- 
main, the strength becomes weakness. In this respect, the main advantage of our 
proof of Szymanski's algorithm is that it relies only on wp-sp calculus, proposi- 
tional logic, and the (most elementary) mathematical facts used in Szymanski's 
algorithm itself. 

Validation is not the only difficult step with the assertional approach: the 
construction of the invariant can also be a problem. For coarse-grained versions 



435 

of concurrent algorithms, the construction of the invariant is simply a formal 
traduction of the main idea underlying the algorithm. However, as explicitly 
stated in [22], and also demonstrated e.g. in [11, 19], the invariant of a rea- 
sonably fine-grained version is a complex formula, whose construction can be 
challenging. Much work has been devoted to invariant construction, adaptation 
and approximation (see e.g. [2, 3, 5, 8, 10]). Most techniques rely on fixpoint cal- 
culus, implemented as weakest-precondition and strongest-postcondition calculi. 
These are already present in CAVEAT, and a module for invariant adaptation 
is planned; its purpose will not be the design of an invariant from scratch, but 
the incremental adaptation of a coarse-grained invariant into a finer-grained one 
(see [11] for a detailed presentation of this technique). 

Another approach for concurrent program verification is model checking. Its 
main advantage is that  little extra-work is required from the user, not even 
writing an inductive invariant. (See e.g. [4,6, 14, 17,25] for presentation and 
examples.) The problem is, model checking requires a finite, bounded model 
of programs and properties. Basically, a "parametric" system involving some 
unspecified integer constant n (the number of processes, for instance) can be in- 
vestigated fully automatically only if n has been given an explicit numeric value; 
besides, the verification time may grow exponentially with this value. In spite of 
several attempts to overcome this limitation, e.g. [16, 30], and the combinatorial 
explosion [15, 26, 29], we feel this will remain a serious drawback (see also [1]). 
On the other hand, if we request a formal verification only for some fixed small 
values of parameters like n, model checking is the most convenient approach. 

The approach presented here has also an educational advantage, especially 
if several versions of the same concurrent program are considered in sequence, 
coarser-grained version before finer-grained ones. The tool allows the user to 
understand more easily why some guard or some assertion is needed, for instance; 
it is also useful to the program designer, who is able to determine how fine- 
grained his/her algorithm can be implemented without destroying its properties. 

Several tools and methods have been proposed which combine the assertional 
method and model checking, for instance [17, 18, 22]. As far as tautology checking 
is an elementary kind of model checking, the new version of CAVEAT also belongs 
in this category. 
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A A worked-out example 

The verification condition considered here is ( I  A D)  ~ wp[v; a] were I is the 
invariant, D is the database of additional hypotheses, 7- is transition 

(PS, - .3j  ~ . : aj A -~Wj , skip,p9) 

and a is the assertion 

at ps..13 ~ -.at q4 . 

Comment .  The syntax used here is nearly the same as in [22]; it is more readable 
than CAVEAT syntax, where for instance 

becomes 

at Ps..10 

at8[p] or at9[p] or at lO[p]. 

In the sequel, everything has been translated back into the external syntax. 

A.1  T h e  d a t a b a s e  o f  a d d i t i o n a l  facts 

It  contains a set of 84 mathemat ica l  facts. All of them are obviously valid; the 
critical point is not to omit  any of them. Here is a small sample : 

{#(~) = o} ~ -~p, 
{#(a~) _> o} => {#(a~) + 1 _> 1}, 
{#(i0)>_0} => {#(10)-1_>0}, 
{#(X~) = .} ~ Xp[q]) 

A.2 Sorting hypotheses 

The simplification / elimination phase strongly reduces the number  of hypotheses 
in a verification condition. In our example, 55 hypotheses were maintained; here 
they are : 
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8p 

s~ :=~ atp5,9..13 
st  ==~ at r5, 9 
8 s ==~ ( a t  85,9,11,12,13 

at q3..13 ==~ aq 
a t  ==# a t  7"3,4,5,7, 9 
a s =:~ a t  83,4,5,7,9,11,12,13 
a t  q5..9 ~ Wq 

at r5,7,9 ==~ Wr 

at  85,7, 9 ~ w s 

at qa,4,:o..ta ~ {#(aft) > 1} 

((at s11,12,13 ::~ {#(sft) _> 1} 
a t  r 9 :r (-~at q4) 
-~at qs 
~ a t  q11,12,13 
{#(af t )  _> 1} =r (-~{#(aft) = 0}) 
Xq[q] 
xs[d 
{#(af t )  _> 1} => ((-~wp) V (-~wr)) 
{#(af t )  >_ 1} =~ ((-~w,) V (-~w,)) 
{#(af t )  >_ 1} =~ ((-~wq) V (-~ws)) 
{#(sf t )  _> 1} => (sp V st) 
{#(sf t )  > 1} ::> (st V Ss) 
{#(sf t )  > :} (8, v 88) 
{#(stY) _> 1} => ((-~wp) V (-=wr)) 
{#(sf t )  > 1} => ((-~Ws) V (-~wt)) 
{#(sf t )  > 1} =r ((-~Ws) V (-~wq)) 

The conclusion is 

at  P5,9..13 ~ 8q 

at  r5,9 :=~ 8r 

a t  85,9,11,12,13 ==~ 8 s 

ap 

at r3,4,5,7,9 ~ ar  

a t  83,4,5,7,9,11,12,13 :=~ as 
wp 
wq =r at q5..9 
wt  ==~ at r5,7,9 
Ws =:~ a t  85,7, 9 
at r3,4 =~ {#(aft) > 1} 
at qlo..13 =ez {#(sf t )  > I} 
at qs..ia ~ (-~at r4) 
at r9 ==~ (-~at 84) 
-~at qlo 
at q11,12,13 ==~ (- ,at r4,5,r,9) 
Xp ] 
Xt[r] 
{#(aft) >_ 1} ::r ((~wp) V (~wq)) 
{#(aft) >_ 1} ::~ ((-~wr) V (~wq)) 
{#(aft)) > 1} :=~ ((-~wp) V (-~ws)) 
{#(s@) > 1} =~ (sp V Sq) 
{#(sft) > :} (st v 80 
{#(s@) >_ 1} =ez (sp V s,) 
{#(sf t )  >__ I} =~ ((-~wp) V (-~wq)) 
{#(sf t )  > 1} v 
{#(sf t )  _> 1} =r ((-~ws) V (-~wp)) 

{#(aft) = O} =:~ -~atq4. 

The sorting procedure produces this 

hi : at q3..13 =:~ aq 
h2 :a t  q3,4,10..13 ::r {#(aft)  > 1} 
ha : at r9 ~ (-~at q4) 
h4 : {#(aft)) > 1} ::~ (--,{#(aft) = 0}) 
h5 : . . .  

Hypothesis hi seems promising: it could be used to establish aq, which in turn 
would refute the antecedent of the conclusion, and therefore validate the conclu- 
sion. Hypothesis h2 is interesting too, also as a helper for refuting the antecedent 
of the conclusion. Hypothesis ha could be used more directly, to establish the 
consequent of the conclusion. The next hypothesis h4 allows to conclude. In fact, 

(h2 A h4) :r c 

is propositionally valid. 


