
Formalizing Materialization Using
Metaclass Approach *

Mohamed Dahchour t

a

Abstract

Materialization is a powerful and ubiquitous abstraction pattern for
conceptual modeling. Intuitively, it relates a class of categories (e.g., mod-
els of cars) and a class of more concrete objects (e.g., individual cars). This
paper formalizes the semantics of materialization using the metaclass ap-
proach of the TELOS data model. Formulas can be uniformly attached to
classes, metaclasses, and meta-attributes to enforce integrity constraints
and deductive rules relevant to materialization semantics. The paper also
proposes some suggestions for extending TELOS to capture some ma-
terialization semantics which cannot be represented with the available
constructs.
Keywords: Object Orientation, Materialization Relationship, Metaclass,
TELOS.

1 Introduct ion

Conceptual modeling is the activity of formalizing some aspects of the physical
and social world around us for purposes of understanding and communication.
Generic relationships are powerful abstraction constructs that help narrow the
gap between concepts in the real world and their representation in conceptual
models. For full benefit, these relationships should be made available in object-
oriented languages and systems as primitives for developing conceptual models
of applications. However, before their implementation, we believe that generic
relationships should be first well formalized. This formalization will eliminate

*This work is part of the YEROOS (Yet another Evaluation and Research on
Object-Oriented Strategies) project, principally based at the University of Louvain. See
http://yeroos.qant.ucl.ac.be.

?University of Louvain, INGI (Department of Computer Science and Engineering), 2 Place
Sainte-Barbe, 1348 Louvain-la-Neuve, Belgium, e-maih dahchour~student.fsa.ucl.ac.be

402

the possible ambiguities between similar relationships and will play an inter-
mediate role between the informal description of a relationship and its factual
implementation.

This paper presents a formalization of materialization [PZMY94]. Mate-
rialization is a powerful and ubiquitous abstraction pattern. It is a semantic
relationship between a class of abstract categories (e.g., models of cars) and a
class of more concrete objects (e.g., individual cars). The semantics of mate-
rialization concern both classes and instances of these classes. Consequently,
the formal specification of materialization must include both the specification of
the class and the instance levels in a coordinated manner [KS95]. Furthermore,
constraints associated with generic relationships must be defined at the concep-
tual level, since they govern all instances of these relationships. We remove,
therefore, the burden from the designers who otherwise would have to define
these constraints for each realization of materialization.

We use the metaclass approach of TELOS, a language for representing
knowledge about information systems [MBJK90], to formalize materialization.
TELOS has already been used to partially formalize semantics of partOf IMP93]
and memberOf [MPK96] relationships.

The metaclass approach has been used successfully to implement some generic
relationships (see e.g., [HGPK94, KS95, GSR96]). Particularly, in our previ-
ous work [DPZ97], we have presented three metaclass approaches to implement
generic relationships and in [DPZ96], we have used one of these approaches to
implement materialization in an abstract target system. In this paper, we use
the metaclass approach of TELOS for the formalization purpose.

The paper is organized as follows. Section 2 gives an overview of mate-
rialization. Section 3 presents the main features of the TELOS data model,
relevant to our formalization. Sections 4 and 5 formalize in detail the semantics
of materialization at both the class and instance levels. Section 6 summarizes
and concludes the paper.

2 Mater ia l izat ion

This section gives an overview of the materialization relationship and of its spe-
cific attribute propagation mechanisms. More detail can be found in [PZMY94].

2 .1 I n t u i t i v e d e f i n i t i o n

Intuitively, materialization relates a class of categories to a class of more con-
crete objects. Figure l(a) shows a materialization relating two classes: class
CarModel has two monovalued attributes (name and sticker_price) and four mul-
tivalued attributes (#doors, eng..size, auto_sound, and special_equip); class Car
defines three monovalued attributes (manuf_date, serialS, and owner). CarModel
represents information typically displayed in the catalog of car dealers (namely,

403

(a)
CarModel

Car name. string
sticker_price: integer
#doors. {integer} ~ I maauf date. date

serial#, integer eng_slze: {integer }
auto-sound: {string} owner, smng
special-equip: {string}

(b)

f FiatRetro "~
name= Flat-rctm
suckar_price=l 0.000 I
#doors={3,5 }

I eng..size=[1200,1300}
auto_sound={ tape, radio}
specml_eqolp= { atrbag, alarm.

k cru,se} ,~

f Nico's Fiat

name = Fint-rctro
s.cker..pnce= 10,000
#doors= 3

I eng_s~e~ 1200
auto_sound~ {lape, radio}

aitbag=Acm.e
alarm=Burglar_lOng
chase= Fiat
manuf_date= 111195
serial#= 123
owncl~- Nlr j]

Figure 1: An example of materialization.

name and price of a car model, and lists of options for number of doors, en-
gine size, sound equipment, and special equipment). Car represents information
about individual cars (namely, manufacturing date, serial number, and owner
identification). As in [PZMY94], we draw a materialization link as a straight
line with a star �9 on the side of the more concrete class.

Figure l(b) shows an instance FiatRetro of CarModel and an instance Nico's
Fiat of Car, of model FiatRetro. CarModel is the more abstract 1 class and Car
is the more concrete class of materialization CarModel--*Car. Intuitively, this
means that every concrete car (e.g., Nico's Fiat) has exactly one model (e.g.,
FiatRetro), while there can be any number of cars of a given model. Further
intuition about abstractness/concreteness is that each car is a concrete realiza-
tion (or materialization) of a given car model, of which it "inherits" a number
of properties in several ways. Nico's Fiat thus directly inherits the name and
sticker_price of its model FiatRetro; this mechanism is called Type 1 at tr ibute
propagation. Nico's Fiat has attributes #doors, eng_size, and auto_sound whose
values are selections among the options offered by multivalued attributes with
the same name in FiatRetro; this is called Type 2 attribute propagation. For
example, the value {1200,1300} of eng_size for FiatRetro indicates that each Fi-
atRetro car comes with either eng_size = 1200 or eng_size = 1300 (e.g., 1200
for Nico's Fiat). The value {airbag, alarm, cruise_ctrl} of attribute special_equip
for FiatRetro means that each car of model FiatRetro comes with three pieces
of special equipment: an airbag, an alarm system, and a cruise control system.
Thus, Nico's Fiat has three new attributes named airbag, alarm, and cruise_ctrl,
whose suppliers are, respectively, Acrne, Burglar_King, and Fiat. Other FiatRetro
cars might have different suppliers for their special equipment. This mechanism
is called Type 3 at tr ibute propagation. In addition to those attributes propa-
gated from the instance FiatRetro of class CarModel, Nico's Fiat of course has a

1The notion of abstractness/concreteness of materialization is distinct from the notion of
abstract class of object models, where an abstract class is a class without instances, whose
complete definition is typically deferred to subclasses.

404

value for attributes manuf_date, serial#, and owner of class Car. The semantics
of attribute propagation is defined more precisely in Section 2.3.

Abstract classes can materialize into several concrete classes. For example,
data for a movie rental store could involve a class Movie, with attributes director,
prod.cer, and year, that materializes independently into classes VideoTape and
VideoDisc (i.e., VideoTape*--Movie--,VideoDisc). VideoTapes and VideoDiscs
could have attributes like inventory#, system (e.g., PAL or NTSC for VideoTape),
language, availability (i.e., in-store or rented), and so on.

Materializations can also be composed in hierarchies, where the concrete
class of one materialization is also the abstract class of another materialization,
and so on (e.g., Play--*Setting--*Pefformance). For the sake of space, this pa-
per considers only simple materialization hierarchies A--*C and abstract classes
materializing in more than one concrete class as in CI*---A--*C2. A complete
formalization of materialization, including composition of materializations, can
be found in [Dah97].

2 .2 S e m i - f o r m a l s e m a n t i c s

We now summarize the necessary elements for a semi-formal definition of mate-
rialization. Materialization is a binary relationship (A- *C) between two classes
A and C, where A is more abstract than C (or C is more concrete than A).

Most real-world examples of materializations have cardinality [1,1] on the
side of the more concrete class C and cardinality [0, N] on the side of the more
abstract class A. Application semantics can further constrain the cardinality of
the A-side to [Cmin, Cmax], with the meaning that at least Crn~n and at most
Cmax concrete objects are associated with each abstract object.

~bject I a c ~
| |

{al

~ f~'et ~ ~"~. cla$s|acet object facet clM. facet T~-f~ted ~ ~ Two-f~d
(b)

Figure 2: Semantics of materialization.

The semantics of materialization is conveniently defined as a combination
of usual is-a (generalization) and is-o/(classification), and of a class/metaclass
correspondence. Figure 2(a) shows how the semantics of materialization A--*fi is
expressed with a collection of two-/aceted constructs. Each two-faceted construct
is a composite structure comprising an object, called the object facet, and an
associated class, called the class]acet. The object facet is an instance of the
more abstract class A, while the class facet is a subclass of the more concrete

405

class C. The semantics of materialization induce a partition of C into a family
of subclasses {Ci}, such that each Ci is associated with exactly one instance
of A. Subclasses Ci inherit attributes from C through the classical inheritance
mechanism of the is-a link. They also "inherit" attributes from A, through the
mechanisms of attribute propagation described in the next section. Objects of C,
with attribute values "inherited" from an instance of A, are ordinary instances
of the class facet associated with that instance of A.

As in Figure 1, we draw classes as rectangular boxes and instances as rectan-
gular boxes with rounded corners. Classification links (is-of) appear as dashed
arrows, and generalization links (is-a) as solid arrows. To underline their double
role, we draw a two-faceted construct as an object box adjacent to a class box.

Figure 2(b) sketches the basic semantics of the materialization of Figure l(a).
The FiatRetro instance of CarModel is the object facet of a two-faceted construct,
whose class facet is the subclass FiatRetro_Cars of Car, describing all instances
of Car with model FiatRetro. For users, Nico's Fiat and John's Fiat are instances
of Car. Our semantics and its formalization describe them as ordinary instances
of FiatRetro_Cars. Wild_2CV is another instance of CarModel and Guy's 2CV is
an instance of class facet Wild_2CV_Cars.

2 . 3 Attribute propagation

Attribute propagation from the more abstract class to the more concrete class
of a materialization is precisely defined as a transfer of information from an
abstract object to its associated class facet in a two-faceted construct, as illus-
trated in Figure 3. The three mechanisms of attribute propagation are defined
precisely as follows:

CarModel
name (T1)
sticker_price (T 1)
#doors (T2, mono)
eng_size (T2. mono)
auto-sound (TLmul t i)
special-eqm~ (T3~Insf)

§
I
I

FiatRetro
name = Flat-retro
sticker_price = 10.000

#doors = 13,5}
eng..size = {1200. 1300}

autosound= { tape,radio }
special equip= { airbag,alarm,

cruise}

i
[r] I "---"-> : IsA

I - - > : instance of
_ _ g ~ : manuf..date I

senal# Nico's Fiat nvan~v
/

FiatRetro_Cars

name=Fiat-mtro

sticker..price = 10.000

#doors:{3.5 }

eng_size:{ 1200, 1300}

auto-sound:P({ tape,radio })

alarm:string
airbag:string

craise:string

name=Fiabreu'o

stiekar_price=10.000

#doors=3

eng_size= 1200
auto-sound={tape,radio }

airbag = Acme
alarm = Burglar King

eraise = Fiat
manuf_date= 1/1/95

sarial#=123
owner=NICO

Figure 3: Attribute propagation between CarModel and Car.

406

1. For users, Type 1 propagation characterizes the plain transfer of an at-
tribute value from an instance of the abstract class to instances of the
concrete class. In our semantics, the value of a (monovalued or multival-
ued) attribute is propagated from an object facet to its associated class
facet as a class attribute (i.e., an attribute whose value is the same for
all instances of the class facet). For example, monovalued attributes name
and sticker_price of CarModel are Type 1 in materialization CarModel--*Car
(see Figure 3). Their value in object facet FiatRetro (Fiat-retro and 10.000,
respectively) propagates as value of class attributes with the same name
in class facet FiatRetro_Cars.

2. For users, Type 2 propagation concerns multivalued attributes of the more
abstract class A. Their value for an instance of A determines the type,
or domain, of instance attributes with the same name, monovalued or
multivalued, in the associated class facet. Again, our semantics go through
abstract objects and associated class facets.

An example of the monovalued case is exhibited by attribute eng_size
of CarModel. Its value {1200,1300} for the FiatRetro object facet is the
domain of values for a monovalued instance attribute with the same name
eng_size of the associated class facet FiatRetro_Cars. Thus, each FiatRetro
car comes either with eng_size = 1200 or with eng_size = 1300.

An example of the multivalued case is exhibited by attribute auto_sound of
CarModel. Its value {tape, radio} indicates that each FiatRetro car comes
with either tape, or radio, or both, or nothing at all as auto_sound. The
associated class facet FiatRetro_Cars has a multivalued instance attribute
auto_sound with the powerset :P({tape, radio}) as its type.

3. Type 3 propagation is more elaborate. It also concerns multivalued at-
tributes of the more abstract class A, whose value is always a set of strings.
Each element in the value of an attribute for object facet a generates a
new instance attribute in the class facet associated with a. The type of
generated attributes must be specified in the definition of the materializa-
tion.

For example, attribute special_equip of CarModel propagates with Type 3
to Car. Its value {airbag, alarm, cruise_ctrl} for object FiatRetro generates
three new monovalued instance attributes of type string, named airbag,
alarm, and cruise_ctrl, for the associated class facet FiatRetro_Cars.

3 T h e T E L O S data model

This section gives a general view of the main features of the TELOS data model
relevant to our formalization. More details about TELOS can be found in
[MBJK90]. TELOS is actually supported by the ConceptBase system [JJS96].

407

TELOS is a language for representing knowledge about information systems.
TELOS knowledge bases are collections of propositions. Each proposition p is a
three-tuple <from, label, to> where from, label, and to denote the source, label,
and destination of the proposition, respectively. These elements can be accessed
through the functions From(p), Label(p), and To(p). TELOS propositions are
either individuals or attributes. Individuals represent what are called objects
(e.g., the individual book OOSC2ed) and classes (e.g., Book) in usual object
models. While attributes represent binary relationships between individuals
or other relationships. An example of an attribute is [OOSC2ed, author, "B.
Meyer"].

Propositions can be classified in an arbitrary number of classification levels
where each proposition is an instance of one or more generic propositions called
classes. Classes that are themselves propositions must be in their turn instances
of more generic classes, and so on. For example, OOSC2ed and [OOSC2ed,
author, 'B. Meyer'] are instances of Book and [Book, author, Person], respectively.

The so-called w-classes can have instances along more than one level of
classification. For example, Proposition has all propositions as instances and
Class has all generic propositions as instances.

The following example shows the use of the different features above. The
TELL operation is used to add a new proposition in the knowledge base (i.e.,
create new objects in the terminology of usual object models) or to add new
attributes to an already defined one.

TELL TOKEN MTo93-#I In BorrowedDocument WITH TELL CLASS Document IN Claus WITH
author attribute

firitAutho~': "C. Marcos", author Person,
secondAuthor: "M, Clha"; title: String,

title
�9 "A SDM approach for the Prototypmg of IS" END

borrowed
: Yes; TELL CLASS BorrowedDocument IsA Document,

borrower IN Class WITH
"John" attribute

outDate borrowed: String,
: "05/06/97.9H" borrower' Per=on;

inDate outDate Date;
: "05/06/97:18H" inDate. Date;

END END

Figure 4: TELOS definition of instances, classes, and attributes.

Figure 4 shows, on the left side, the individual document MT-93-#l that
is declared as an instance (via the IN clause) of the class BorrowedDocument
defined on the right side of the figure as an instance of the metaclass Class
and as a specialization of Document. The WITH clause introduces the list of
attributes. For example, the two first attributes of MT-93-#1, firstAuthor and
secondAuthor, are two instances of the attribute class author. The attribute [MT-
93-#I, firstAuthor, "C. Marcos"] is an instance of [Document, author, Person] in
exactly the same sense that MT-93-#l is an instance of Document. The third
attribute of MT-93-#1 has no external label and it is an instance of the title
class. Labels of such attributes are automatically generated by the system.

408

In Telos, a proposition may be an instance of more than one class (multi-
ple classification). For instance, MT-93-#1 can be an instance of both classes
MasterThesisDocument and RestrictedOocument which stands for a collection of
documents that are not allowed to go out the library.

M e t a - a t t r i b u t e s . The first-class status of attributes and the ability to define
attr ibutes and meta-attr ibutes are very important in T E L O S . Figure 5 shows
an example of meta-attr ibutes which are needed to define common properties of
the various resource classes. These meta-attributes are introduced through the
metaclass ResourceClass. In this example, source, what, available, who, from, and
until are meta-attr ibutes which may be instantiated for ResourceClass instances.
The class BorrowedOocument is declared now as an instance of ResourceClass
on the right side of Figure 5 and its at tr ibute borrower is an instance of the
meta-at t r ibute who.

TELL CLASS ResourceClass WITH TELL CLASS BorrowedDocument IN ResourceClass WITH
attribute source

source Class, author: person; who
what" Class, what borrower: Person;
avadable. Class, title. String; f~om
who Class; available outDate: Date;
from. Class, borrowed, String, untd
until Class; mDate: Date;

END END

Figure 5: Definition of meta-attributes.

As another example of use of meta-attributes, Figure 6 gives the definition of
the meta-at t r ibute single that restricts its instances to (at most) a single value
[MBJK90]. The right side of Figure 6 shows an example of use of the meta-
at tr ibute single: we restrict the borrower of a BorrowedDocument to a single value
by declaring it as an instance of single. The meta-at tr ibute single is defined
in the metaclass Class and it is inherited by BorrowedDocument by declaring
BorrowedDocument as instance of Class.

Note that by default a T E L O S attr ibute such as author: Person of Figure 5
can have several instances. If we want to restrict the at tr ibute value, we have
to use something like the meta-at tr ibute single. Therefore, the declaration of
attributes in T E L O S should not be confused with that of the usual object data
models.

TELL CLASS Class WITH TELL CLASS BorrowedDocument IN
attribute ResourceClass, Class WITH

single' Class ..
integrltyConstralnt who, single

smgle-Cnstr $ (V u/Classlsingle)(V p,q/Propositton) borrower Pecson;
(p ,n u) A (q ,n u) A From(p) = From(q) =;~ (p = q) $..

END END

Figure 6: Definition of the single meta-attribute and its use.

Cons t r a in t s~ rules~ a n d m e t a f o r m u l a s . T E L O S supports an assertion sub-

409

language to specify integrity constraints and deductive rules. Constraints and
rules are formulas that appear as at tr ibute values of propositions. They specify
the behavioral part of the objects to which they are attached. Constraints are
assertions that control the information supplied by users, while deductive rules
are assertions that enforce new facts. For example, the integrity constraint cl of
the definition of Figure 7 ensures that the out of date for a borrowed document
x must always be less than its return date. The constraint c2 ensures that a
given document x cannot be borrowed by two persons at overlapping dates 2.
The deductive rule states that once a person p borrows a certain document x,
the system automatically derives the fact (x.borrowed = Yes), indicating that
the document is actually borrowed. The "x/C" notation is read "x is an instance
of C".

TELL CLASS BorrowedDocument IN Class WITH
integrltyConstralnt

cl $ (V x/BorrowedDocument) (x outDate <~ x inDate)$;
c2. $ (V x/BoTrowecTDocument)(V p1, p2/Person)

(x,borrower=pl) [at t l] A (x,borrower=p2) [at t2] A (t l overlaps t2) => (p l = p2) $
deductiveRule

�9 $ (V x/SorrowedDocument)(V p/Person) (x borrower = p) :=~ (x borrowed = Yes) $
END

Figure 7: Definition of constraints and deductive rules.

In traditional modeling languages, a formula is defined for a given class
to constrain the behavior of only the instances of this class. In T E L O S , the
so-called metaformulas can be associated to a given metaclass to specify the
behavior of both the instances of this metaclass and the instances of its instances.
As an example, the constraint attached to the metaclass Oass on the left side
of Figure 6 is a metaformula that manipulates p and q that are instances of
instances of Class!single.

To manipulate attributes and their values in definitions of formulas, we need
the following functions where the time constraints are omitted [MBJK90]:

1. The dot function x.I evaluates to the set of values of the attributes of
proposition x which belong to the at tr ibute class labeled I.

2. The hat function x^l evaluates to the set of values of the attributes of
proposition x with label I.

3. The bar function x[I evaluates to the set of attr ibute propositions with
source x which are instances of the attribute class labeled I.

4. The exclamation function xJl evaluates to the set of at tr ibute propositions
with source x and label I.

2TELOS also supports an explicit representation of time which is not presented in this
paper (see [MBJK90]).

410

4 Formalizing the class level semantics of mate-
rialization

In this section we formalize the class level semantics of the materialization re-
lationship by means of two metaclasses AbstractClass and ConcreteClass that
represent, respectively, abstract and concrete classes in materialization hierar-
chies.

TELL CLASS AbstractClas= TELL CLASS ConcreteClau TELL CLASS AbstractClau WITH
In Class WITH In Class WITH deductiveRule

attribute attribute, single matetDedRule:
materializes: Conr materOf AbsttactClass $ (V A/AbstractClass)(V C/ConcreteClass)

END END (C E A.materlahze=) ==P (C materOf = A) $
END

Figure 8: Definition of AbstractClass and ConcreteClass metaclasses.

Figure 8 shows the definitions of the AbstractClass and ConcreteClass meta-
classes. We declare AbstractClass as instance of the predefined metaclass Class.
AbstractClass contains one meta-attribute whose label is materializes and des-
tination is ConcreteClass. In the middle of Figure 8, we declare the metaclass
ConcreteClass that plays the inverse role of AbstractClass. ConcreteClass contains
one meta-attribute whose label is rnaterOf and destination is AbstractClass. The
rnaterOf meta-attribute is constrained to be of a single value, meaning that a
given concrete class has only one associated abstract class.

On the right side of Figure 8, we add the deductive rule materDedRule to
the AbstractClass metaclass to specify that once a given class A is declared as an
abstract class which materializes in a given concrete class C, the system automat-
ically induces the fact (C.rnaterOf = A) which means that C is a materialization
of the abstract class A. A similar deductive rule can be associated with the
ConcreteClass metaclass to play the dual role.

4 .1 D e f i n i t i o n o f t h e m a t e r i a l i z a t i o n c h a r a c t e r i s t i c s

Materialization characteristics are formalized as attributes of the meta-attribute
materializes. To be able to attach properties to materializes, we have to declare
this later as a metaclass as shown in Figure 9.

In Figure 9, we apply the "!" symbol to AbstractClass to access the attribute
materializes itself. The figure shows the following characteristics: cardinality de-
notes the cardinality of an abstract class regarding a concrete class. The trivial
associated constraint minrnaxCard states that the minimal cardinality is always
less than the maximal one. The remaining attributes labeled inbAttrT1, inhAt-
trT2, and inhAttrT3 specify propagation modes for attributes of the abstract
class to the corresponding concrete class. Definitions of their destinations (i.e.,
domains) are given on the right side of the figure:

1. Attribute-lDef is the name of an attribute propagating with Type 1;

411

TELL CLASS AbstractClais!materlahzes In Class, TELL CLASS Attribute-lDef In String
Attnbute WITH END

attribute TELL CLASS Attribute-2Def In Class WITH
cardlnallty CardType, attribute
mhAttrTl: Attribute-lDef, attrName String,
InhAttrT2. Attribute-2Def, derivAttr: String { * mono or multi * }
inbAttrT3 Attribute-3Def END

TELL CLASS Attr*bute-3Def In Clan WITH
TELL CLASS CardType In Class WITH attribute

attribute attrName. String, genAttrType: TypeDef;
rain: Integer; max. Integer END

integntyConstramt TELL CLASS TypeDef In Class WITH END
minmaxCard. S(V c/CardType) (c min <. r max)$

END

Figure 9: Definition of the materialization characteristics.

2. Attribute-2Def gives, for an attribute propagating with Type 2, its name
and the kind derivedAttr (rnonovalued or rnultivalued) of the derived in-
stance attribute 3;

3. Attribute-3Def gives the name of an attribute propagating with Type 3 and
the value type genAttrType (TypeDef).

Note that the meta-attribute inhAttrT1 (resp., inhAttrT2 and inhAttrT3) can
be instantiated in application with as many Type 1 (resp., Type 2 and Type 3)
attributes as needed.

4 .2 E x a m p l e o f u s e o f g e n e r i c s e m a n t i c s

As an example, Figure 10 shows how the CarModel--*Car materialization is
formalized by invoking the generic semantics.

In Figure 10 (a), the classes CarMode] and Car are created as ordinary classes,
independently of the notion of materialization. To take into account the mate-
rialization relationship between fiarMode] and Car, we declare in Figure 10 (b)
fiarModel as an instance of Abstractfilass and Car as an instance of Concrete-
Class. During the creation of CarModel we instantiate the meta-attribute ma-
terializes of AbstractClass by rnaterializesCar. Note that there is no need to in-
stantiate the meta-attribute rnaterOf of ConcreteClass during the creation of
Car. This will be automatically achieved by the deductive rule rnaterDedRule
of Figure 8 (b). In the attribute CarModelknaterializesCar we specify that: the
cardinality of CarModel regarding Car is [0:N]; name and sticker.price propagate
with Type 1; #doors and eng_size both propagate with Type 2 and each pro-
duces a rnonovalued instance attribute, while auto_sound produces, also with
Type 2, a rnultivalued instance attribute; special_equip generates, with Type 3,
new instance attributes of type String.

Generic semantics of materialization given above also hold for abstract classes
that materialize in m o r e than one concrete class such as a hierarchy of mate-
rializations CI*--A--*C2. In such a case, we create A as an instance of Ab-

SThe {* ...*} notation denotes a TELOS comment.

412

TELL CLASS CarModel In Class WITH
attribute

name: String,
sticker.price Integer;
~doors: Integer;
eng-slze Integer;
auto.sound: String.
speclal.equlp" String

END

TELL CLASS Car In Class WITH
attribute

manuf ~late �9 Date;
serial# Integer,
owner Strlnlg

END

(a)
TELL CLASS CarModel In Ab~tractClass WITH TELL TOKEN name In Attribute-lDef WITH END

materlahze= TELL TOKEN sticker.price In Attribute-lDef WITH END
materiallzesCar Car TELL TOKEN T2Doors In Attnbute-2Def WITH

END attrName. "~doors",
TELL CLASS Car In ConcreteClass WITH derwAttr. "mono"
END END
TELL CLASS CarModel!materlalizesCar In Class WITH TELL TOKEN T2EngSize In Attnbute-2Def WITH

cardlnality. 0.N attrName. "eng.size";
mhAttr=bTl derlvAttr "mono"

T l l : name, END
T12" stlcker.prlce TELL TOKEN T2AutoSound In Attribute-2Def WITH

inhAttribT2 attrName' "auto-sound" ;
T21: T2Doors; derlvAttr: "multi"
T22 T2EngSize, END
T23. T2AutoSound TELL TOKEN T3Spec=alEquip In Attnbute*3Def WITH

inhAttrlbT3, attrName' %pecial.equip" ;
T31: T3SpeclalEqulp genAttrType: String,

END END
TELL CLASS String IN TypeDef END

TELL TOKEN 0.N In CardType WITH
mln 0;
max' 100
{ * 100 denotes here the ~ (N) symbol ~}

END

(b)

Figure 10: Materialization CarModel---*Car.

stractClass and instantiate the attribute materializes into two attributes mate-
rializesCl and materializesC2 with destinations C1 and C2, respectively. Then,
we declare A!materializesC1 and A!materializesC2 as instances of the metaclass
Class to capture different characteristics of materializations A---*C1 and A--*C2,
respectively.

4 . 3 C o n s t r a i n t s r e l a t e d t o i n h e r i t a n c e a t t r i b u t e s

This section defines two constraints related to inheritance attributes. The first
one expresses the membership of inheritance attributes to abstract classes and
the second states that Type 2 attributes must be multivalued.

Inheritance at tr ibutes are m e m b e r s of abstract classes. All inheri-
tance attributes appearing in the definition of the meta-attribute Abstract-
Class!materializes must be attributes of the more abstract class. For instance, the
Type 1 attributes (name, sticker_price), the Type 2 attributes (#doors, eng_size,
and auto_sound), and the Type 3 attribute (special_equip) of the Figure 10 (b)
must be attributes of the abstract class CarModel. Figure 11 shows, respectively,
the constraints T1Attr_Cnstr, T2Attr_Cnstr, and T3Attr_Cnstr that express the
membership of the inheritance attributes to the abstract class of a materializa-
tion relationship.

413

TELL CLASS AbstractClass!materializes TELL CLASS AbstractClass!materiahzes TELL CLASS AbstractClasslmateriallzes
WITH mtegrltyConstramt WITH mtegr=tyConstraint WITH integrltyConstramt

T1Att~.Cnstr T2Attr.Cnstr' T3Attr.Cnstr:
$ (V M/AbstractClasslmateriahzes) $ (V M/AbstractClass!materiahzes) $ (V M/AbstractClasslmatetlahzes)
(Y A/AbstractClass) From(M)=A =r (V A/AbstractClass) From(M)=A ~P (Y A/AbstractClass) From(M)=A =~
(V T1/Attribute-lDef)(V S1/Str,ng) (V T2/Attnbute-2Def)(V S2/Strmg) (V T$/Attrlbute-SDef)(V $3/Strlng)
(T1 E M.mhAttrT1 A To(T1)=S1 (T2 E M inbAttrT2) A (S2 = T2 attrName) (T3 E M inhAttrTS) A ($3 = T3 attrName)
=r (5 p/Proposition) ==~ (:1 p/Propositlon) :=~ (:1 p/Proposition) (p E A I attrlbu~)
(p E A I attr,bute) A Label(p)=S1 $ (p E A ~ attnbute) A Label(p)=S2 $ A Label(p)=S3 $

END END END

Figure 11: Membership metaconstraints of inheritance attributes.

T y p e 2 at tr ibutes are mult ivalued. Further the constraints related to mem-
bership of the inheritance attributes to the abstract classes, Type 2 attributes
(e.g., #doors, eng_size, and auto_sound of Figure 10 (b)) must be multivalued:
they must have more than one value at the instance level (e.g., in FiatRetro of
Figure 3, #doors has two values 1200 and 1300).

TELL CLASS AbstractClass WITH TELL CLASS Class WITH
integrltyConstralnt attribute
T2attr .are.multlvalued: multivalued Clals

$ (Y A/AbstractClass)(Y M/AbstractClass!materiahzes) integrltyConstramt
From(M)=A =~ muitlvalued.Cnst r.
(V T2/Attribute-2Def)(V S2/String) $ (V attm/Classlmultivalued)(=~ p,q/Proposltlon)
(T2 E M.inhAttrT2) A ($2 = T2.attrName) (p In attm) A (q in attm) A From(p) : From(q)
=r (3 p/Proposlt,on) (p E A I attribute) A Labei(p)=S2 =~ (p ~ q)
~> (p in Class!multNalued) $
$ END

END

Figure 12: Metaconstraint related to values of Type 2 inheritance attributes.

The left side of Figure 12 shows the definition of the constraint ensuring
the above requirements, The Type 2 attributes are declared as instances of
the meta-attribute Class!multivalued we define on the right side of Figure 12.
This figure shows that the source and the destination of the attribute labeled
multivalued are of type Class. The constraint associated with multivalued states
that for every instance attm of Class!multivalued, there are at least two distinct
instances p and q with common source 4.

According to the constraint of Figure 12, Figure 10(a) must be revised: the
Type 2 attributes (~doors, eng_size, and auto_sound) must have been declared
as instances of the meta-attribute multivalued.

4 . 4 C a r d i n a l i t y c o n s t r a i n t s

In this section we formalize the cardinality constraints of materialization.

Defini t ion of the [0:N] and [1:1] cardinalities. Figure 13 shows definitions
of two constraints card0_NCnstr and cardl_lCnstr which formalize, respectively,

4The meta-attribute multivalued is defined in the same spirit as the meta-attribute single
(see Figure 6).

414

the cardinalities [0:N] associated with abstract classes and [1:1] associated with
concrete classes. In Figure 13, we manipulate the abstract and concrete objects
(e.g., a and c) that are, respectively, instances of AbstractObject and Concrete0b-
ject classes we define in the next section. The last implication of the constraint
card0_NCnstr is always evaluated to TRUE, meaning that we tolerate both the
existence and the absence of a concrete instance c for a given abstract object a.
The cardl_lCnstr definition is composed of two parts: the existence part which
states that for each concrete object there is an associated abstract object and
the uniqueness part stating that there is one and only one associated abstract
object.

TELL CLASS A~tractClass!materlallze~ WiTH TELL CLASS ConcreteClasslmaterOf WITH
integtltyConstramt integtltyConst raint

card0J~fCnstr, cardl lCnstr '
$ (V M/AbstractClasslmaterlahze~) $ (V M/ConcreteClasslmaterO()(V A/AbstractClass)(V C/ConcreteClass)
(V A/AbstractClass)(V C/ConcreteClass) From(M)=C A To(M)=A A (M cardinality = 1.1) =~
From(M)=A A To(M)=C A (M,cardinality = 0.N) (V c/ConcreteObject) (e m C) :r
=~ (Y a/Ab~tractObject) (a in A) =~ (=1 a/AbstractObject) (a ll1 A) A (a E c materOf) { * existence * } A
(:~ c/ConcreteObject) (r In C) A (c E a,materlallzes) (V al, a2/AbstractObiect) (al m A) A (al E e materOf) A (a2 in A) A
=~ (TRUE) (a2 E r =~- (al = a2)) { * unlquenen * } $
$ END

END TELL TOKEN 1.1 In CardType WITH
TELL TOKEN 0.N In CardType WITH ram: 1.

mln: 0, max, 100 max: 1
{* 100 denotes here the oo (N) symbole * } ENO

END

Figure 13: Definition of the [0:N] and [1:1] cardinality constraints.

Defini t ion of the [Cmin, Cma~] cardinali ty. As for the [Cmin, C, na,] cardi-
nality (e.g., [3,6]), which may be associated at the side of abstract classes, there
is no way, in Telos, for its formalization. To deal with this category of cardi-
nality, we define a new predicate length(X, Class, Assertion, Integer) with the
following meaning: the last argument is the number of elements X, instances
of the second argument, satisfying the assertion given in the third argument.
Formally, we can write:

I Length(x, C, P, N) = # {x/C Holds(P(x))}= N]

The predicate Holds is true whenever its argument is an assertion that follows
from the knowledge base [MBJK90]. The "#" symbol is applied to a given set
and denotes the number of its elements.

As a result of this new predicate, the constraint related to the [Cmin, Crnax]
cardinality will be as shown in Figure 14.

TELL CLASS Ab~tractClas~!materlallzes WITH
integtityConstralnt

cardMm.MaxCnstr, $ (V M/Ab~tractClasslmaterlahzes) (V A/AbstractCla~.s)(V C/ConcreteClass)
From(M)=A A To(M)=C A 1 ~ M,cardlnallty, mm < M cardmahty, max A M.cardmalJty max > 2
=~> (Y a/AbstractObject) (a In A) A (a in AbstractOb.iect) =P
Length(c, ConcreteObject, (c ~n C) A (c E a matermlizes), K) A (Min.Max,min < K <Min.Max.max) $

END

Figure 14: Definition of the constraint related to the cardinality [Cmin, Cma=].

415

5 Formal iz ing the instance level semant ics of ma-
ter ia l izat ion

This section describes the instance level semantics of materialization by means
of two classes AbstractObject and ConcreteObject that represent, respectively,
abstract objects and concrete objects, instances of instances of the metaclasses
AbstractClass and ConcreteClass, respectively.

TELL CLASS AbstractObject TELL CLASS ConcreteObject TELL CLASS AbltractObject WITH
In Clau WITH In Class WITH deductiveRule

attribute attribute, s~ngle materDedRule:
r Class materOf AbstractObject $ (V a/AbstractObject)(V c/ConcreteObject)
matenahzes ConcreteObject END (c E a.matenahzes) =~ (c rnaterOf = a) $

END END

Figure 15: Definitions of AbstractObject and ConcreteObject classes.

The definitions of the classes AbstractObject and ConcreteObject are depicted
in Figure 15. On its left side, the figure shows that each abstract object has
an associated class facet, denoted classFacet. An abstract object has also an
attribute materializes whose domain is ConcreteObject and each concrete object
has an attribute rnaterOf whose domain is AbstractObject.

For reason of uniformity, the same names materializes and rnaterOf axe used
both for the description of the class level and the instance level of materialization
semantics.

The attribute rnaterOf is declared as an instance of single to assert that a
concrete object is materialization of only one abstract object. Finally, as in Fig-
ure 8, we give on the right side of Figure 15 a deductive rule that automatically
derives from the fact (c �9 a.materializes) another fact (c.rnaterOf = a) indicating
that c is a materialization of a.

5 .1 C o n s t r a i n t s r e l a t e d t o t h e a b s t r a c t o b j e c t s

Figure 16 shows two constraints concerning the abstract objects. On the left
side we define the abstractObj_Cnstr constraint which expresses that instances
of instances of AbstractClass must be instances of AbstractObject. On the right
side, the ObjClassFacet_Cnstr constraint means that each abstract object a has
one and only one (denoted by the "3!" symbole) associated class facet regarding
a given materialization. The constraint also shows that the class facet must be
a subclass of the concrete class C that is a materialization of the abstract class
A, the class of a.

The ObjClassFacet_Cnstr constraint implicitly means that, each time the user
creates an abstract instance a, he/she also must create explicitly its associated
class facet to ensure the constraint. We think that it would be more reasonable
and more natural to implicitly generate the class facet of a given abstract object.
For this, we propose to extend the definition of the deductive rule. The actual

416

TELL CLASS AbstractClass WiTH TELL CLASS AbstractClass WITH
integrltyConstraint integrityConstramt

ab=tractObjoCnltr. ObjClauFacet.Cnstr:
$ (V A/AbstractClass)(V a/Class) $ (V A/AbetractClass)(Y C/ConcreteClass) {V a/Ab~tractObjact)
(a in A) =~ (a in AbstractObject) (a m A) A (C E A.rnateriahzes) =~
$ (:11 Cf/Clar~) (Cf I$A C) A (Cf E a classFacet)

END $
END

Figure 16: Constraints associated with the abstract objects.

definition of a deductive rule allows only the possibility to derive facts that are
logical expressions. The extension we propose consists of the specification, on
the right side of a deductive rule, of some operations we wish to be executed
at run time as for the rule-based system MARVEL [KFP88]. Such an extended
rule will be of the pattern: < preconditions > ~ < usual facts > [and <
operations >] where < usual facts > is the ordinary part we find on the right
side of a usual deductive rule and < operations > stands for operations we wish
to be automatically executed by the system when the part < preconditions >
is satisfied.

The ObjClassFaceLCnstr constraint on the right side of Figure 16 becomes
the following extended deductive rule:

TELL CLASS AbstractClasi WITH
deductlveRule

Ob/ClassFacet Ext .Cnstr:
$ (V A/AbstractCl~ss)(V C/ConcreteClau) (V a/AbstractObject) (a in A) A (C E A.materlalizes) =~
TELL CLASS Cf in Class, isA C WITH END A (Cf E a.classFacet) $

END

This deductive rule means that for each abstract object a, instance of an
abstract class A which materializes in C, the system automatically generates a
class Cf as an instance of Class and as a subclass of C. The system induces then
the fact (Cf E a.classFacet) meaning that Cf is a potential class facet of a.

5 .2 C o n s t r a i n t s r e l a t e d t o t h e c o n c r e t e o b j e c t s

Figure 17 shows two constraints regarding the concrete objects. On the left side,
the concObj_Cnstr constraint expresses that instances of instances of Concrete-
Class must be instances of ConcreteObject. On the right side, the concObjClass-
Facet_Cnstr constraint expresses that all concrete objects c, instances of a given
concrete class C, and materializing a given abstract object a, must be instances
of the class facet associated with a. For example, Nico's Fiat that is instance of
Car and that materializes FiatRetro must be instance of FiatRetro_Cars, the class
facet associated with FiatRetro (see Figure 2).

417

TELL CLASS ConcreteClass WITH
integrityCon=traint

concObj.Cnst r
$ (Y C/ConcreteClass)(V c/Class)
(c in C) =~ (c in ConcreteObject)
$

END

TELL CLASS ConcreteClass WITH
integrltyConstraint
concObjClassFacet .Cnst r:

$ (V A/Al~tractClass)(V C/ConcreteClass) (C (~ A.materlalize=) =r
(V c/ConcreteObject) (V a/AbstractObject) (a in A) A
(Cf E a.classFacet) A (Cf isA C) A (c in C)
A (c E a materializes) ==~ (c In Cf)
$

END

Figure 17: Constraints associated with the concrete objects.

5 . 3 C o n s t r a i n t s r e l a t e d t o a t t r i b u t e p r o p a g a t i o n

P r o p a g a t i o n o f T y p e 1 at tr ibutes . Figure 18 shows, on its left side, the
constraint T1AttrlnClassFacet_Cnstr which imposes the Type 1 attributes of an
abstract class A to be attributes of each class facet associated with each instance
a of A. The right side of Figure 18 shows the constraint T1AttrAreClassAttr_Cnstr
which states that Type 1 attributes are class attributes 5 in class facets: for a
given Type 1 attribute T1, if the value of T1 in a given abstract object a is v
then all the instances of the class facet associated with a will come with the
same value v. Another alternative to deal with Type 1 attributes is the use
of delegation mechanism [Lie86] that would permit concrete instances to access
directly the Type 1 attribute values in the abstract instance a, without storing it
redundantly in class facets. Unfortunately, TELOS does not provide facilities
for using the delegation mechanism.

TELL CLASS AbstractClas= WITH
integrltyCon$t ralnt

TIAtt rlnClassFacet.Cnit r'
$ (V M/AbstractClasslmaterlallze$) (V A/AbstractClass)
(Y C/ConcreteClass)(V T1/Att~,bute-lDef) (Y S1/Strmg)
(V D/Domain)
(C E A.M) A (T1 E M.,nhAttrTt) A To(T1)=SI
=~ (3 p/Proposltmn) (p E A I attribute) A Label(p)=Sl
A To(p)=D =r (V a/AbstractObject) (V Cf/Class)
(a in A) A (Cf E a.classFacet) A (Cf ,sA C) ::~
(3 q/Propos,tlon) (q E Cf { attribute) A
Label(q)=S1 A To(q)=D
$

TELL CLASS AbstractClas$ WITH
integrltyConstralnt
T 1Att rAreClassAtt r .Cnstr:

$ (Y M/AbstractClasslmatenahzes) (V A/AbstractCla~)
(V C/ConcreteCla~)(V T1/Attribute-lDef) (Y S1/String)
(V D/Domaln) (C E A.M) A (T1 E M.inhAttrT1) A To(T1)=Sl
=r (3 p/Propo~,tion) (p E A I attribute) A Label(p)=S1
A To(p)=D ~> (Y a/AbitractObject) (Y Cf/Class)
(a in A) A (Cf E a classFacet) A (Cf isA C)
=~ (V q/Proposibon) (q E Cf I attribute) A
Label(q)=S1 A To(q)=D --->
(V u,v,c/Proposltlon) (c in Cf) A (U In q) A
From(u)=r A To(u)=v ==V (v = a.S1) $

END END

Figure 18: Constraints associated with Type 1 attribute propagation.

P r o p a g a t i o n of T y p e 2 at tr ibutes . The constraint T2AttrlnClassFacet_Cnstr
of the left side of Figure 19 imposes the Type 2 attributes of an abstract class
A to be also at t r ibutes of each class facet associated with each instance a of A.

The domain of the Type 2 attributes in class facets is the same as in the
abstract class, but it will be, next, restricted to only a set of f ixed values. The

5we mean here the usual sense of "class attributes" as opposed to "instance attributes".

418

TELL CLASS AbstractClass WITH
mtegrltyConstralnt

TELL CLASS AbstrattClass WITH
mtegntyConstraint

T2Attrln ClassFacet .Cnstr:
$ (Y M/AbstractClas$!materiahze=) (y A/Ab=tractClas$)
(Y C/ConcreteClass)(Y T2/Attrlbute-2Def)
(V S2/Strlng)(V D/Domain)
(C E A.M) A (T2 E M.inhAttrT2) ^ ($2 = T2.attrName)

(3 p/Proposition)
(P E A I attribute) A Label(p)=S2 A To(p)=D
==~ (Y a/AbstractObject)(V Cf/Cla~)
(a In A) A (Cf E a,classFatet) A (Cf i=A C)
=> (:1 q/Proposition) (q E C{ I attribute) A
Label(q)=S2 A To(q)=D $

END

T2ValuePropag.Cnstr:
$ (V M/AbstractClass=mate~=allzes)(V A/Al~tractClass)
(V C/ConcreteCiar~) (Y T2/Attribute-2Def)(Y S2/String)
(C E A M) A (T2 E M.mbAttrT2) A ($2 = T2.attrName) =~
(Y a/AbstractObject)(V Cf/Class)(V q/Proposltion)
(a in A) A (Cf E a classFacet) A (Cf I$A C) A
(q E CF J attribute) A Label(q)=S2 ==F
[(T2 derlvAttr = "mono") ==P (q in Classlsmgle} A
((Y u.v,c/Prop~lt,on) (c m Of) A (= ,. q) A From(u)=c A To(u)=v =~
(v E a.s2))] A
[(T2, derlvAttr = "multi") ==~
(Y u,v,r (r In Cf) A (u in q) A From(u}=r A To(u)=v ==>
(v E aS2)]$

END

Figure 19: Constraints associated with Type 2 attribute propagation.

constraint responsible of this restriction is T2ValuePropag_Cnstr as given on the
right side of Figure 19. This constraint expresses that for each concrete instance
c, instance of a class facet Cf, the value of its Type 2 attribute S2 must belong
to the set of values of $2 in the abstract object a that materializes in c. If $2
is monovalued, then $2 must have only one value in c, otherwise $2 can have
several values.

For instance, the Type 2 attribute "#doors:Integer" of CarModel must be also
an attribute of the class facet FiatRetro_Cars associated with FiatRetro, instance
of CarModel. The domain of #doors in FiatRetro_Cars is also Integer, but its
value in Nico's Fiat, instance of FiatRetro_Cars, must be restricted to either 3 or
5: the two possible values fixed by the abstract instance FiatRetro.

Propagat ion of Type 3 attributes. Figure 20 shows the T3ValuePropag_Cnstr
constraint that formalizes the propagation of Type 3 attributes. It shows that
each value V3 of a given Type 3 attribute in an abstract object a is a new at-
tribute of the class facet Cf associated with a. The domain of V3 in Cf is D which
a user can supply in advance by using the attribute genAttrType associated with
the definition of Type 3 attribute (Attribute-3Def).

TELL CLASS Al~t~actClass WITH
integntyConstraint

T3ValuePropag.Cnst r
$ (Y M/Ab~tractCla=slmaterlahzes)(Y A/AbstractClass)
(Y C/ConcreteClass)(Y T3/Attr, bute-3Def) (V S3/Strlng)(V D/TypeD#)
(C E A M) A (T3 • M mhAttrT3) A ($3 = T3.attrName) A (T3.genAttrType = D) =~

(3 p/Proposition) (p E A I attribute) A Label(p)=S3 ==-
(V a/AbstractObjec~)(V Cf/Class) (V V3/Class) (a ,n A) A (Cf E a.clactFacet) A (V3 E a $3)
=~ (=I q/Propositlon) (q E Cf I attribute) A Label(q)=V3 A To(q)=D
$

END

Figure 20: Constraints associated with Type 3 attribute propagation.

419

6 Conclus ion

This paper has presented a formalization of materialization, a new and ubiq-
uitous abstraction pattern relating a class of abstract categories and a class of
more concrete objects. Materialization allows the definition of new and power-
ful attribute propagation (or inheritance) mechanisms from the abstract class
to the concrete class.

Our formalization was carried out using the metaclass approach of TELOS.
Two metaclasses AbstractClass and ConcreteClass were built as templates to
capture the semantics of materialization at the class level and two additional
classes Abstract0bject and Concrete0bject were defined to capture the semantics
of materialization at the instance level.

The metaclasses AbstractClass and ConcreteClass define the meta-attributes
materializes and rnaterOf, respectively. Thanks to the class status of TELOS
attributes, the meta-attributes materializes and rnater0f are declared as ordinary
metaclasses to which we attached all characteristics of materialization relation-
ship.

Various constraints have been uniformly defined at the levels of classes, meta-
classes, and attributes to ensure the semantics of materialization at both the
class and the instance levels in a coordinated manner.

The metaclass approach allowed us to define the semantics of materialization
as a unit which is independent of any implementation consideration. Conse-
quently, our formalization can be used to implement materialization in various
systems.

Although our formalization is more suitable for implementation systems that
support metaclasses, it can be also used to assist an implementation in non
metaclass-based systems. Furthermore, our approach can be followed to for-
malize other new generic relationships.

This work had also demonstrated the power of the TELOS language to
express the requirements related to the materialization semantics. To fully
formalize materialization, we proposed two suggestions to extend TELOS. One
consisted of the definition of a new predicate required to formalize the cardinality
[Cmin, Cma=]. The second one consisted of the extension of the deductive rule
definition for specifying some operations we would wish to be automatically
executed by the system when given preconditions are satisfied.

Our work has several continuations. An interesting one deals with the for-
malization of the common semantics of a large repository of new generic relation-
ships (e.g., Member- Of [MPS95], Role- Of [WDJS94], Part- Of [KP97], Ownership
[HPYG95]). Another continuation will be to start from our formalization and
try to realize an effective implementation in a target system (e.g., ConceptBase)
in such manner that it will be possible to evaluate this system with regard to
its power in the implementation of materialization semantics.

Acknowledgements . I wish to thank all the colleagues in the YEROOS

420

project for their critical comments on an earlier draft of this article and partic-
ularly M. Guy Fokou. I am also grateful to Christoph Quix (RWTH Technical
University of Aachen) for many useful discussions about TELOS and Concept-
Base. Finally, I thank Professor Matthias Jarke (RWTH Technical University
of Aachen) for the permission to use the ConceptBase system.

References

[Dah97] M. Dahchour. Formalizing materialization in the TELOS data
model. Technical Report TR-97/28, IAG-QANT, Universit@
catholique de Louvain, Belgium, November 1997.

[DPZ96] M. Dahchour, A. Pirotte, and E. Zims Metaclass implementation
of materialization. Technical Report YEROOS TR-96/06, January
1996. Submitted for publication.

[DPZ97] M. Dahchour, A. Pirotte, and E. Zims Metaclass implementa-
tions of generic relationships. Technical Report YEROOS TR-97/25,
1997. Submitted for publication.

[GSR96] G. Gottlob, M. Schrefl, and B. RSck. Extending object-oriented
systems with roles. A CM Trans. on O~ce Information Systems,
14(3):268-296, 1996.

[HGPK94] M. Halper, J. Geller, Y. Pert, and W. Klas. Integrating a part
relationship into an open OODB system using metaclasses. In N.R.
Adam, B.K. Bhargava, and Y. Yesha, editors, Proc. of the 3rd Int.
Conf. on Information and Knowledge Management, CIKM'94, pages
10-17, Gaithersburg, Maryland, November 1994. ACM Press.

[HPYG95] M. Halper, Y. Perl, O. Yang, and J. Geller. Modeling business
applications with the OODB ownership Relationship. In Proc. of
the 3rd Int. Conf. on AI Applications on Wall St., pages 2-10, June
1995.

[JJS96] M. Jarke, M.A. Jeusfeld, and M. Staudt. ConceptBase V~.I User
Manual. 1996.

[KFP88] G. E. Kaiser, P. H. Feiler, and S. S. Popovich. Intelligent assistance
for software development and maintenance. IEEE Software, 5(3):40-
49, 1988.

[KP97] M. Kolp and A. Pirotte. An aggregation model and its C++ im-
plementation. In Proc. of the ~th Int. Conf. on Object-Oriented
Information Systems, Brisbane, Australia, 1997. To appear.

421

[KS95]

[Lie86]

[MBJK90]

IMP93]

[MPK96]

[MPS95]

[PZMY94]

[WDJS941

W. Klas and M. Schrefl. Metaclasses and their application. LNCS
943. Springer-Verlag, 1995.

H. Lieberman. Using prototypical objects to implement shared be-
havior in object oriented systems. In N.K. Meyrowitz, editor, Proc.
of the Conf. on Object-Oriented Programming Systems, Languages
and Applications, OOPSLA '86, pages 214-223, Portland, Oregon,
November 1986. ACM SIGPLAN Notices 21(11), 1986.

J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos:
representing knowledge about informations systems. ACM Trans.
on O~ce Information Systems, 8(4):325-362, 1990.

R. Motschnig-Pitrik. The semantics of parts versus aggregates in
data/knowledge modelling. In C. Rolland, F. Bodart, and C. Cauvet,
editors, Proc. of the 5th Int. Conf. on Advanced Information Systems
Engineering, CAiSE'93, LNCS 685, pages 352-373, Paris, France,
June 1993. Springer-Verlag.

R. Motschnig-Pitrik and J. KaasboU. Part-whole relationship cat-
egories and their application in object-oriented analysis. In Proc.
of the 5th Int. Conf. on Information System Development, ISD'96,
September 1996.

R. Motschnig-Pitrik and V.C. Storey. Modelling of set member-
ship: The notion and the issues. Data FJ Knowledge Engineering,
16(2):147-185, 1995.

A. Pirotte, E. Zims D. Massart, and T. Yakusheva. Materializa-
tion: a powerful and ubiquitous abstraction pattern. In J. Bocca,
M. Jarke, and C. Zaniolo, editors, Proc. of the 20th Int. Conf. on
Very Large Databases, VLDB'9~, pages 630-641, Santiago, Chile,
1994. Morgan Kaufmann.

R. Wieringa, W. De Jonge, and P. Spruit. Roles and dynamic sub-
classes: a modal logic approach. In M. Tokoro and R. Pareschi,
editors, Proc. of the 8th European Conf. on Object-Oriented Pro-
gramming, ECOOP'94, LNCS 821, pages 32-59, Bologna, Italy, July
1994. Springer-Verlag.

