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Abstract 

Materialization is a powerful and ubiquitous abstraction pattern for 
conceptual modeling. Intuitively, it relates a class of categories (e.g., mod- 
els of cars) and a class of more concrete objects (e.g., individual cars). This 
paper formalizes the semantics of materialization using the metaclass ap- 
proach of the TELOS data model. Formulas can be uniformly attached to 
classes, metaclasses, and meta-attributes to enforce integrity constraints 
and deductive rules relevant to materialization semantics. The paper also 
proposes some suggestions for extending TELOS to capture some ma- 
terialization semantics which cannot be represented with the available 
constructs. 
Keywords: Object Orientation, Materialization Relationship, Metaclass, 
TELOS. 

1 Introduct ion  

Conceptual modeling is the activity of formalizing some aspects of the physical 
and social world around us for purposes of understanding and communication. 
Generic relationships are powerful abstraction constructs that  help narrow the 
gap between concepts in the real world and their representation in conceptual 
models. For full benefit, these relationships should be made available in object- 
oriented languages and systems as primitives for developing conceptual models 
of applications. However, before their implementation, we believe that  generic 
relationships should be first well formalized. This formalization will eliminate 
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the possible ambiguities between similar relationships and will play an inter- 
mediate role between the informal description of a relationship and its factual 
implementation. 

This paper presents a formalization of materialization [PZMY94]. Mate- 
rialization is a powerful and ubiquitous abstraction pattern. It is a semantic 
relationship between a class of abstract categories (e.g., models of cars) and a 
class of more concrete objects (e.g., individual cars). The semantics of mate- 
rialization concern both classes and instances of these classes. Consequently, 
the formal specification of materialization must include both the specification of 
the class and the instance levels in a coordinated manner [KS95]. Furthermore, 
constraints associated with generic relationships must be defined at the concep- 
tual level, since they govern all instances of these relationships. We remove, 
therefore, the burden from the designers who otherwise would have to define 
these constraints for each realization of materialization. 

We use the metaclass approach of TELOS, a language for representing 
knowledge about information systems [MBJK90], to formalize materialization. 
TELOS has already been used to partially formalize semantics of partOf IMP93] 
and memberOf [MPK96] relationships. 

The metaclass approach has been used successfully to implement some generic 
relationships (see e.g., [HGPK94, KS95, GSR96]). Particularly, in our previ- 
ous work [DPZ97], we have presented three metaclass approaches to implement 
generic relationships and in [DPZ96], we have used one of these approaches to 
implement materialization in an abstract target system. In this paper, we use 
the metaclass approach of TELOS for the formalization purpose. 

The paper is organized as follows. Section 2 gives an overview of mate- 
rialization. Section 3 presents the main features of the TELOS data model, 
relevant to our formalization. Sections 4 and 5 formalize in detail the semantics 
of materialization at both the class and instance levels. Section 6 summarizes 
and concludes the paper. 

2 Mater ia l izat ion  

This section gives an overview of the materialization relationship and of its spe- 
cific attribute propagation mechanisms. More detail can be found in [PZMY94]. 

2 .1  I n t u i t i v e  d e f i n i t i o n  

Intuitively, materialization relates a class of categories to a class of more con- 
crete objects. Figure l(a) shows a materialization relating two classes: class 
CarModel has two monovalued attributes (name and sticker_price) and four mul- 
tivalued attributes (#doors, eng..size, auto_sound, and special_equip); class Car 
defines three monovalued attributes (manuf_date, serialS, and owner). CarModel 
represents information typically displayed in the catalog of car dealers (namely, 
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(a) 
CarModel 

Car name. string 
sticker_price: integer 
#doors. {integer} ~ I maauf date. date 

serial#, integer eng_slze: {integer } 
auto-sound: {string} owner, smng 
special-equip: {string} 

(b) 

f FiatRetro "~ 
name= Flat-rctm 
suckar_price=l 0.000 I 
#doors={3,5 } 

I eng..size=[ 1200,1300} 
auto_sound={ tape, radio} 
specml_eqolp= { atrbag, alarm. 

k cru,se} ,~ 

f Nico's Fiat 

name = Fint-rctro 
s.cker..pnce= 10,000 
#doors= 3 

I eng_s~e~ 1200 
auto_sound~ {lape, radio} 

aitbag=Acm.e 
alarm=Burglar_lOng 
chase= Fiat 
manuf_date= 111195 
serial#= 123 
owncl~- Nlr j ] 

Figure 1: An example of materialization. 

name and price of a car model, and lists of options for number of doors, en- 
gine size, sound equipment, and special equipment). Car represents information 
about  individual cars (namely, manufacturing date, serial number, and owner 
identification). As in [PZMY94], we draw a materialization link as a straight 
line with a star �9 on the side of the more concrete class. 

Figure l(b) shows an instance FiatRetro of CarModel and an instance Nico's 
Fiat of Car, of model FiatRetro. CarModel is the more abstract 1 class and Car 
is the more concrete class of materialization CarModel--*Car. Intuitively, this 
means that  every concrete car (e.g., Nico's Fiat) has exactly one model (e.g., 
FiatRetro), while there can be any number of cars of a given model. Further 
intuition about  abstractness/concreteness is that  each car is a concrete realiza- 
tion (or materialization) of a given car model, of which it "inherits" a number 
of properties in several ways. Nico's Fiat thus directly inherits the name and 
sticker_price of its model FiatRetro; this mechanism is called Type 1 at tr ibute 
propagation. Nico's Fiat has attributes #doors, eng_size, and auto_sound whose 
values are selections among the options offered by multivalued attributes with 
the same name in FiatRetro; this is called Type 2 attribute propagation. For 
example, the value {1200,1300} of eng_size for FiatRetro indicates that  each Fi- 
atRetro car comes with either eng_size = 1200 or eng_size = 1300 (e.g., 1200 
for Nico's Fiat). The value {airbag, alarm, cruise_ctrl} of attribute special_equip 
for FiatRetro means that each car of model FiatRetro comes with three pieces 
of special equipment: an airbag, an alarm system, and a cruise control system. 
Thus, Nico's Fiat has three new attributes named airbag, alarm, and cruise_ctrl, 
whose suppliers are, respectively, Acrne, Burglar_King, and Fiat. Other FiatRetro 
cars might have different suppliers for their special equipment. This mechanism 
is called Type 3 at tr ibute propagation. In addition to those attributes propa- 
gated from the instance FiatRetro of class CarModel, Nico's Fiat of course has a 

1The notion of abstractness/concreteness of materialization is distinct from the notion of 
abstract class of object models, where an abstract class is a class without instances, whose 
complete definition is typically deferred to subclasses. 
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value for attributes manuf_date, serial#, and owner of class Car. The semantics 
of attribute propagation is defined more precisely in Section 2.3. 

Abstract classes can materialize into several concrete classes. For example, 
data for a movie rental store could involve a class Movie, with attributes director, 
prod.cer, and year, that materializes independently into classes VideoTape and 
VideoDisc (i.e., VideoTape*--Movie--,VideoDisc). VideoTapes and VideoDiscs 
could have attributes like inventory#, system (e.g., PAL or NTSC for VideoTape), 
language, availability (i.e., in-store or rented), and so on. 

Materializations can also be composed in hierarchies, where the concrete 
class of one materialization is also the abstract class of another materialization, 
and so on (e.g., Play--*Setting--*Pefformance). For the sake of space, this pa- 
per considers only simple materialization hierarchies A--*C and abstract classes 
materializing in more than one concrete class as in CI*---A--*C2. A complete 
formalization of materialization, including composition of materializations, can 
be found in [Dah97]. 

2 .2  S e m i - f o r m a l  s e m a n t i c s  

We now summarize the necessary elements for a semi-formal definition of mate- 
rialization. Materialization is a binary relationship (A- *C) between two classes 
A and C, where A is more abstract than C (or C is more concrete than A). 

Most real-world examples of materializations have cardinality [1,1] on the 
side of the more concrete class C and cardinality [0, N] on the side of the more 
abstract class A. Application semantics can further constrain the cardinality of 
the A-side to [Cmin, Cmax], with the meaning that at least Crn~n and at most 
Cmax concrete objects are associated with each abstract object. 

~bject I a c ~  
| | 

{al 

~ f~'et ~ ~"~. cla$s|acet object facet clM. facet T~-f~ted ~ ~ Two-f~d .... 
(b) 

Figure 2: Semantics of materialization. 

The semantics of materialization is conveniently defined as a combination 
of usual is-a (generalization) and is-o/(classification), and of a class/metaclass 
correspondence. Figure 2(a) shows how the semantics of materialization A--*fi is 
expressed with a collection of two-/aceted constructs. Each two-faceted construct 
is a composite structure comprising an object, called the object facet, and an 
associated class, called the class ]acet. The object facet is an instance of the 
more abstract class A, while the class facet is a subclass of the more concrete 



405 

class C. The semantics of materialization induce a partition of C into a family 
of subclasses {Ci}, such that each Ci is associated with exactly one instance 
of A. Subclasses Ci inherit attributes from C through the classical inheritance 
mechanism of the is-a link. They also "inherit" attributes from A, through the 
mechanisms of attribute propagation described in the next section. Objects of C, 
with attribute values "inherited" from an instance of A, are ordinary instances 
of the class facet associated with that instance of A. 

As in Figure 1, we draw classes as rectangular boxes and instances as rectan- 
gular boxes with rounded corners. Classification links (is-of) appear as dashed 
arrows, and generalization links (is-a) as solid arrows. To underline their double 
role, we draw a two-faceted construct as an object box adjacent to a class box. 

Figure 2(b) sketches the basic semantics of the materialization of Figure l(a). 
The FiatRetro instance of CarModel is the object facet of a two-faceted construct, 
whose class facet is the subclass FiatRetro_Cars of Car, describing all instances 
of Car with model FiatRetro. For users, Nico's Fiat and John's Fiat are instances 
of Car. Our semantics and its formalization describe them as ordinary instances 
of FiatRetro_Cars. Wild_2CV is another instance of CarModel and Guy's 2CV is 
an instance of class facet Wild_2CV_Cars. 

2 . 3  Attribute propagation 

Attribute propagation from the more abstract class to the more concrete class 
of a materialization is precisely defined as a transfer of information from an 
abstract object to its associated class facet in a two-faceted construct, as illus- 
trated in Figure 3. The three mechanisms of attribute propagation are defined 
precisely as follows: 

CarModel  
name (T1) 
sticker_price (T 1 ) 
#doors (T2, mono) 
eng_size (T2. mono) 
auto-sound (TLmul t i )  
special-eqm~ (T3~Insf) 

§ 
I 
I 

FiatRetro 
name = Flat-retro 
sticker_price = 10.000 

#doors = 13,5} 
eng..size = {1200. 1300} 

autosound= { tape,radio } 
special equip= { airbag,alarm, 

cruise} 

i 
[ r ] I "---"-> : IsA 

I - - > : instance of 
_ _ g ~ :  manuf..date I 

senal# Nico's Fiat nvan~v 
/ 

FiatRetro_Cars 

name=Fiat-mtro 

sticker..price = 10.000 

#doors:{3.5 } 

eng_size:{ 1200, 1300} 

auto-sound:P( { tape,radio } ) 

alarm:string 
airbag:string 

craise:string 

name=Fiabreu'o 

stiekar_price=10.000 

#doors=3 

eng_size= 1200 
auto-sound={tape,radio } 

airbag = Acme 
alarm = Burglar King 

eraise = Fiat 
manuf_date= 1/1/95 

sarial#=123 
owner=NICO 

Figure 3: Attribute propagation between CarModel and Car. 
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1. For users, Type 1 propagation characterizes the plain transfer of an at- 
tribute value from an instance of the abstract class to instances of the 
concrete class. In our semantics, the value of a (monovalued or multival- 
ued) attribute is propagated from an object facet to its associated class 
facet as a class attribute (i.e., an attribute whose value is the same for 
all instances of the class facet). For example, monovalued attributes name 
and sticker_price of CarModel are Type 1 in materialization CarModel--*Car 
(see Figure 3). Their value in object facet FiatRetro (Fiat-retro and 10.000, 
respectively) propagates as value of class attributes with the same name 
in class facet FiatRetro_Cars. 

2. For users, Type 2 propagation concerns multivalued attributes of the more 
abstract class A. Their value for an instance of A determines the type, 
or domain, of instance attributes with the same name, monovalued or 
multivalued, in the associated class facet. Again, our semantics go through 
abstract objects and associated class facets. 

An example of the monovalued case is exhibited by attribute eng_size 
of CarModel. Its value {1200,1300} for the FiatRetro object facet is the 
domain of values for a monovalued instance attribute with the same name 
eng_size of the associated class facet FiatRetro_Cars. Thus, each FiatRetro 
car comes either with eng_size = 1200 or with eng_size = 1300. 

An example of the multivalued case is exhibited by attribute auto_sound of 
CarModel. Its value {tape, radio} indicates that each FiatRetro car comes 
with either tape, or radio, or both, or nothing at all as auto_sound. The 
associated class facet FiatRetro_Cars has a multivalued instance attribute 
auto_sound with the powerset :P({tape, radio}) as its type. 

3. Type 3 propagation is more elaborate. It also concerns multivalued at- 
tributes of the more abstract class A, whose value is always a set of strings. 
Each element in the value of an attribute for object facet a generates a 
new instance attribute in the class facet associated with a. The type of 
generated attributes must be specified in the definition of the materializa- 
tion. 

For example, attribute special_equip of CarModel propagates with Type 3 
to Car. Its value {airbag, alarm, cruise_ctrl} for object FiatRetro generates 
three new monovalued instance attributes of type string, named airbag, 
alarm, and cruise_ctrl, for the associated class facet FiatRetro_Cars. 

3 T h e  T E L O S  data  model  

This section gives a general view of the main features of the TELOS data model 
relevant to our formalization. More details about TELOS can be found in 
[MBJK90]. TELOS is actually supported by the ConceptBase system [JJS96]. 
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TELOS is a language for representing knowledge about information systems. 
TELOS knowledge bases are collections of propositions. Each proposition p is a 
three-tuple <from, label, to> where from, label, and to denote the source, label, 
and destination of the proposition, respectively. These elements can be accessed 
through the functions From(p), Label(p), and To(p). TELOS propositions are 
either individuals or attributes. Individuals represent what are called objects 
(e.g., the individual book OOSC2ed) and classes (e.g., Book) in usual object 
models. While attributes represent binary relationships between individuals 
or other relationships. An example of an attribute is [OOSC2ed, author, "B. 
Meyer"]. 

Propositions can be classified in an arbitrary number of classification levels 
where each proposition is an instance of one or more generic propositions called 
classes. Classes that are themselves propositions must be in their turn instances 
of more generic classes, and so on. For example, OOSC2ed and [OOSC2ed, 
author, 'B. Meyer'] are instances of Book and [Book, author, Person], respectively. 

The so-called w-classes can have instances along more than one level of 
classification. For example, Proposition has all propositions as instances and 
Class has all generic propositions as instances. 

The following example shows the use of the different features above. The 
TELL operation is used to add a new proposition in the knowledge base (i.e., 
create new objects in the terminology of usual object models) or to add new 
attributes to an already defined one. 

TELL TOKEN MTo93-#I In BorrowedDocument WITH TELL CLASS Document IN Claus WITH 
author attribute 

firitAutho~': "C. Marcos", author Person, 
secondAuthor: "M, Clha"; title: String, 

title 
�9 "A SDM approach for the Prototypmg of IS" END 

borrowed 
: Yes; TELL CLASS BorrowedDocument IsA Document, 

borrower IN Class WITH 
"John" attribute 

outDate borrowed: String, 
: "05/06/97.9H" borrower' Per=on; 

inDate outDate Date; 
: "05/06/97:18H" inDate. Date; 

END END 

Figure 4: TELOS definition of instances, classes, and attributes. 

Figure 4 shows, on the left side, the individual document MT-93-#l that 
is declared as an instance (via the IN clause) of the class BorrowedDocument 
defined on the right side of the figure as an instance of the metaclass Class 
and as a specialization of Document. The WITH clause introduces the list of 
attributes. For example, the two first attributes of MT-93-#1, firstAuthor and 
secondAuthor, are two instances of the attribute class author. The attribute [MT- 
93-#I, firstAuthor, "C. Marcos"] is an instance of [Document, author, Person] in 
exactly the same sense that MT-93-#l is an instance of Document. The third 
attribute of MT-93-#1 has no external label and it is an instance of the title 
class. Labels of such attributes are automatically generated by the system. 
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In Telos, a proposition may be an instance of more than one class (multi- 
ple classification). For instance, MT-93-#1 can be an instance of both classes 
MasterThesisDocument and RestrictedOocument which stands for a collection of 
documents that  are not allowed to go out the library. 

M e t a - a t t r i b u t e s .  The first-class status of attributes and the ability to define 
attr ibutes and meta-attr ibutes are very important in T E L O S .  Figure 5 shows 
an example of meta-attr ibutes which are needed to define common properties of 
the various resource classes. These meta-attributes are introduced through the 
metaclass ResourceClass. In this example, source, what, available, who, from, and 
until are meta-attr ibutes which may be instantiated for ResourceClass instances. 
The class BorrowedOocument is declared now as an instance of ResourceClass 
on the right side of Figure 5 and its at tr ibute borrower is an instance of the 
meta-at t r ibute who. 

TELL CLASS ResourceClass WITH TELL CLASS BorrowedDocument IN ResourceClass WITH 
attribute source 

source Class, author: person; who 
what" Class, what borrower: Person; 
avadable. Class, title. String; f~om 
who Class; available outDate: Date; 
from. Class, borrowed, String, untd 
until Class; mDate: Date; 

END END 

Figure 5: Definition of meta-attributes. 

As another example of use of meta-attributes, Figure 6 gives the definition of 
the meta-at t r ibute single that  restricts its instances to (at most) a single value 
[MBJK90]. The right side of Figure 6 shows an example of use of the meta- 
at tr ibute single: we restrict the borrower of a BorrowedDocument to a single value 
by declaring it as an instance of single. The meta-at tr ibute single is defined 
in the metaclass Class and it is inherited by BorrowedDocument by declaring 
BorrowedDocument as instance of Class. 

Note that  by default a T E L O S  attr ibute such as author: Person of Figure 5 
can have several instances. If we want to restrict the at tr ibute value, we have 
to use something like the meta-at tr ibute single. Therefore, the declaration of 
attributes in T E L O S  should not be confused with that  of the usual object data  
models. 

TELL CLASS Class WITH TELL CLASS BorrowedDocument IN 
attribute ResourceClass, Class WITH 

single' Class .. 
integrltyConstralnt who, single 

smgle-Cnstr $ (V u/Classlsingle)(V p,q/Propositton) borrower Pecson; 
(p ,n u) A (q ,n u) A From(p) = From(q) =;~ (p = q) $ .. 

END END 

Figure 6: Definition of the single meta-attribute and its use. 

Cons t r a in t s~  rules~ a n d  m e t a f o r m u l a s .  T E L O S  supports an assertion sub- 
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language to specify integrity constraints and deductive rules. Constraints and 
rules are formulas that  appear as at tr ibute values of propositions. They specify 
the behavioral part  of the objects to which they are attached. Constraints are 
assertions that  control the information supplied by users, while deductive rules 
are assertions that  enforce new facts. For example, the integrity constraint cl  of 
the definition of Figure 7 ensures that  the out of date for a borrowed document 
x must always be less than its return date. The constraint c2 ensures that  a 
given document x cannot be borrowed by two persons at overlapping dates 2. 
The deductive rule states that  once a person p borrows a certain document x, 
the system automatically derives the fact (x.borrowed = Yes), indicating that  
the document is actually borrowed. The "x/C" notation is read "x is an instance 
of C". 

TELL CLASS BorrowedDocument IN Class WITH 
integrltyConstralnt 

cl  $ (V x/BorrowedDocument) (x outDate <~ x inDate)$; 
c2. $ (V x/BoTrowecTDocument)(V p1, p2/Person) 

(x,borrower=pl) [at t l ]  A (x,borrower=p2) [at t2] A (t l  overlaps t2) => (p l  = p2) $ 
deductiveRule 

�9 $ (V x/SorrowedDocument)(V p/Person) (x borrower = p) :=~ (x borrowed = Yes) $ 
END 

Figure 7: Definition of constraints and deductive rules. 

In traditional modeling languages, a formula is defined for a given class 
to constrain the behavior of only the instances of this class. In T E L O S ,  the 
so-called metaformulas can be associated to a given metaclass to specify the 
behavior of both the instances of this metaclass and the instances of its instances. 
As an example, the constraint attached to the metaclass Oass on the left side 
of Figure 6 is a metaformula that  manipulates p and q that  are instances of 
instances of Class!single. 

To manipulate attributes and their values in definitions of formulas, we need 
the following functions where the time constraints are omitted [MBJK90]: 

1. The dot function x.I evaluates to the set of values of the attributes of 
proposition x which belong to the at tr ibute class labeled I. 

2. The hat function x^l  evaluates to the set of values of the attributes of 
proposition x with label I. 

3. The bar function x[I evaluates to the set of attr ibute propositions with 
source x which are instances of the attribute class labeled I. 

4. The exclamation function xJl evaluates to the set of at tr ibute propositions 
with source x and label I. 

2TELOS also supports an explicit representation of time which is not presented in this 
paper (see [MBJK90]). 
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4 Formalizing the class level semantics of mate- 
rialization 

In this section we formalize the class level semantics of the materialization re- 
lationship by means of two metaclasses AbstractClass and ConcreteClass that 
represent, respectively, abstract and concrete classes in materialization hierar- 
chies. 

TELL CLASS AbstractClas= TELL CLASS ConcreteClau TELL CLASS AbstractClau WITH 
In Class WITH In Class WITH deductiveRule 

attribute attribute, single matetDedRule: 
materializes: Conr materOf AbsttactClass $ (V A/AbstractClass)(V C/ConcreteClass) 

END END (C E A.materlahze=) ==P (C materOf = A) $ 
END 

Figure 8: Definition of AbstractClass and ConcreteClass metaclasses. 

Figure 8 shows the definitions of the AbstractClass and ConcreteClass meta- 
classes. We declare AbstractClass as instance of the predefined metaclass Class. 
AbstractClass contains one meta-attribute whose label is materializes and des- 
tination is ConcreteClass. In the middle of Figure 8, we declare the metaclass 
ConcreteClass that plays the inverse role of AbstractClass. ConcreteClass contains 
one meta-attribute whose label is rnaterOf and destination is AbstractClass. The 
rnaterOf meta-attribute is constrained to be of a single value, meaning that a 
given concrete class has only one associated abstract class. 

On the right side of Figure 8, we add the deductive rule materDedRule to 
the AbstractClass metaclass to specify that once a given class A is declared as an 
abstract class which materializes in a given concrete class C, the system automat- 
ically induces the fact (C.rnaterOf = A) which means that C is a materialization 
of the abstract class A. A similar deductive rule can be associated with the 
ConcreteClass metaclass to play the dual role. 

4 .1  D e f i n i t i o n  o f  t h e  m a t e r i a l i z a t i o n  c h a r a c t e r i s t i c s  

Materialization characteristics are formalized as attributes of the meta-attribute 
materializes. To be able to attach properties to materializes, we have to declare 
this later as a metaclass as shown in Figure 9. 

In Figure 9, we apply the "!" symbol to AbstractClass to access the attribute 
materializes itself. The figure shows the following characteristics: cardinality de- 
notes the cardinality of an abstract class regarding a concrete class. The trivial 
associated constraint minrnaxCard states that the minimal cardinality is always 
less than the maximal one. The remaining attributes labeled inbAttrT1, inhAt- 
trT2, and inhAttrT3 specify propagation modes for attributes of the abstract 
class to the corresponding concrete class. Definitions of their destinations (i.e., 
domains) are given on the right side of the figure: 

1. Attribute-lDef is the name of an attribute propagating with Type 1; 
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TELL CLASS AbstractClais!materlahzes In Class, TELL CLASS Attribute-lDef In String 
Attnbute WITH END 

attribute TELL CLASS Attribute-2Def In Class WITH 
cardlnallty CardType, attribute 
mhAttrTl: Attribute-lDef, attrName String, 
InhAttrT2. Attribute-2Def, derivAttr: String { *  mono or multi * }  
inbAttrT3 Attribute-3Def END 

TELL CLASS Attr*bute-3Def In Clan WITH 
TELL CLASS CardType In Class WITH attribute 

attribute attrName. String, genAttrType: TypeDef; 
rain: Integer; max. Integer END 

integntyConstramt TELL CLASS TypeDef In Class WITH END 
minmaxCard. S(V c/CardType) (c min <. r max)$ 

END 

Figure 9: Definition of the materialization characteristics. 

2. Attribute-2Def gives, for an attribute propagating with Type 2, its name 
and the kind derivedAttr (rnonovalued or rnultivalued) of the derived in- 
stance attribute 3; 

3. Attribute-3Def gives the name of an attribute propagating with Type 3 and 
the value type genAttrType (TypeDef). 

Note that the meta-attribute inhAttrT1 (resp., inhAttrT2 and inhAttrT3) can 
be instantiated in application with as many Type 1 (resp., Type 2 and Type 3) 
attributes as needed. 

4 .2  E x a m p l e  o f  u s e  o f  g e n e r i c  s e m a n t i c s  

As an example, Figure 10 shows how the CarModel--*Car materialization is 
formalized by invoking the generic semantics. 

In Figure 10 (a), the classes CarMode] and Car are created as ordinary classes, 
independently of the notion of materialization. To take into account the mate- 
rialization relationship between fiarMode] and Car, we declare in Figure 10 (b) 
fiarModel as an instance of Abstractfilass and Car as an instance of Concrete- 
Class. During the creation of CarModel we instantiate the meta-attribute ma- 
terializes of AbstractClass by rnaterializesCar. Note that there is no need to in- 
stantiate the meta-attribute rnaterOf of ConcreteClass during the creation of 
Car. This will be automatically achieved by the deductive rule rnaterDedRule 
of Figure 8 (b). In the attribute CarModelknaterializesCar we specify that: the 
cardinality of CarModel regarding Car is [0:N]; name and sticker.price propagate 
with Type 1; #doors and eng_size both propagate with Type 2 and each pro- 
duces a rnonovalued instance attribute, while auto_sound produces, also with 
Type 2, a rnultivalued instance attribute; special_equip generates, with Type 3, 
new instance attributes of type String. 

Generic semantics of materialization given above also hold for abstract classes 
that materialize in m o r e  than one concrete class such as a hierarchy of mate- 
rializations CI*--A--*C2. In such a case, we create A as an instance of Ab- 

SThe {* ...*} notation denotes a TELOS comment. 
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TELL CLASS CarModel In Class WITH 
attribute 

name: String, 
sticker.price Integer; 
~doors: Integer; 
eng-slze Integer; 
auto.sound: String. 
speclal.equlp" String 

END 

TELL CLASS Car In Class WITH 
attribute 

manuf ~late �9 Date; 
serial# Integer, 
owner Strlnlg 

END 

(a) 
TELL CLASS CarModel In Ab~tractClass WITH TELL TOKEN name In Attribute-lDef WITH END 

materlahze= TELL TOKEN sticker.price In Attribute-lDef WITH END 
materiallzesCar Car TELL TOKEN T2Doors In Attnbute-2Def WITH 

END attrName. "~doors", 
TELL CLASS Car In ConcreteClass WITH derwAttr. "mono" 
END END 
TELL CLASS CarModel!materlalizesCar In Class WITH TELL TOKEN T2EngSize In Attnbute-2Def WITH 

cardlnality. 0.N attrName. "eng.size"; 
mhAttr=bTl derlvAttr "mono" 

T l l :  name, END 
T12" stlcker.prlce TELL TOKEN T2AutoSound In Attribute-2Def WITH 

inhAttribT2 attrName' "auto-sound" ; 
T21: T2Doors; derlvAttr: "multi" 
T22 T2EngSize, END 
T23. T2AutoSound TELL TOKEN T3Spec=alEquip In Attnbute*3Def WITH 

inhAttrlbT3, attrName' %pecial.equip" ; 
T31: T3SpeclalEqulp genAttrType: String, 

END END 
TELL CLASS String IN TypeDef END 

TELL TOKEN 0.N In CardType WITH 
mln 0; 
max' 100 
{ *  100 denotes here the ~ (N) symbol ~} 

END 

(b) 

Figure 10: Materialization CarModel---*Car. 

stractClass and instantiate the attribute materializes into two attributes mate- 
rializesCl and materializesC2 with destinations C1 and C2, respectively. Then, 
we declare A!materializesC1 and A!materializesC2 as instances of the metaclass 
Class to capture different characteristics of materializations A---*C1 and A--*C2, 
respectively. 

4 . 3  C o n s t r a i n t s  r e l a t e d  t o  i n h e r i t a n c e  a t t r i b u t e s  

This section defines two constraints related to inheritance attributes. The first 
one expresses the membership of inheritance attributes to abstract classes and 
the second states that Type 2 attributes must be multivalued. 

Inheritance at tr ibutes  are m e m b e r s  of  abstract  classes. All inheri- 
tance attributes appearing in the definition of the meta-attribute Abstract- 
Class!materializes must be attributes of the more abstract class. For instance, the 
Type 1 attributes (name, sticker_price), the Type 2 attributes (#doors, eng_size, 
and auto_sound), and the Type 3 attribute (special_equip) of the Figure 10 (b) 
must be attributes of the abstract class CarModel. Figure 11 shows, respectively, 
the constraints T1Attr_Cnstr, T2Attr_Cnstr, and T3Attr_Cnstr that express the 
membership of the inheritance attributes to the abstract class of a materializa- 
tion relationship. 
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TELL CLASS AbstractClass!materializes TELL CLASS AbstractClass!materiahzes TELL CLASS AbstractClasslmateriallzes 
WITH mtegrltyConstramt WITH mtegr=tyConstraint WITH integrltyConstramt 

T1Att~.Cnstr T2Attr.Cnstr' T3Attr.Cnstr: 
$ (V M/AbstractClasslmateriahzes) $ (V M/AbstractClass!materiahzes) $ (V M/AbstractClasslmatetlahzes) 
(Y A/AbstractClass) From(M)=A =r (V A/AbstractClass) From(M)=A ~P (Y A/AbstractClass) From(M)=A =~ 
(V T1/Attribute-lDef)(V S1/Str,ng) (V T2/Attnbute-2Def)(V S2/Strmg) (V T$/Attrlbute-SDef)(V $3/Strlng) 
(T1 E M.mhAttrT1 A To(T1)=S1 (T2 E M inbAttrT2) A (S2 = T2 attrName) (T3 E M inhAttrTS) A ($3 = T3 attrName) 
=r (5 p/Proposition) ==~ (:1 p/Propositlon) :=~ (:1 p/Proposition) (p E A I attrlbu~) 
(p E A I attr,bute) A Label(p)=S1 $ (p E A ~ attnbute) A Label(p)=S2 $ A Label(p)=S3 $ 

END END END 

Figure 11: Membership metaconstraints of inheritance attributes. 

T y p e  2 at tr ibutes  are mult ivalued.  Further the constraints related to mem- 
bership of the inheritance attributes to the abstract classes, Type 2 attributes 
(e.g., #doors, eng_size, and auto_sound of Figure 10 (b)) must be multivalued: 
they must have more than one value at the instance level (e.g., in FiatRetro of 
Figure 3, #doors has two values 1200 and 1300). 

TELL CLASS AbstractClass WITH TELL CLASS Class WITH 
integrltyConstralnt attribute 
T2attr .are.multlvalued: multivalued Clals 

$ (Y A/AbstractClass)(Y M/AbstractClass!materiahzes) integrltyConstramt 
From(M)=A =~ muitlvalued.Cnst r. 
(V T2/Attribute-2Def)(V S2/String) $ (V attm/Classlmultivalued)( =~ p,q/Proposltlon) 
(T2 E M.inhAttrT2) A ($2 = T2.attrName) (p In attm) A (q in attm) A From(p) : From(q) 
=r (3 p/Proposlt,on) (p E A I attribute) A Labei(p)=S2 =~ (p ~ q) 
~> (p in Class!multNalued) $ 
$ END 

END 

Figure 12: Metaconstraint related to values of Type 2 inheritance attributes. 

The left side of Figure 12 shows the definition of the constraint ensuring 
the above requirements, The Type 2 attributes are declared as instances of 
the meta-attribute Class!multivalued we define on the right side of Figure 12. 
This figure shows that the source and the destination of the attribute labeled 
multivalued are of type Class. The constraint associated with multivalued states 
that for every instance attm of Class!multivalued, there are at least two distinct 
instances p and q with common source 4. 

According to the constraint of Figure 12, Figure 10(a) must be revised: the 
Type 2 attributes (~doors, eng_size, and auto_sound) must have been declared 
as instances of the meta-attribute multivalued. 

4 . 4  C a r d i n a l i t y  c o n s t r a i n t s  

In this section we formalize the cardinality constraints of materialization. 

Defini t ion of  the [0:N] and [1:1] cardinalities.  Figure 13 shows definitions 
of two constraints card0_NCnstr and cardl_lCnstr which formalize, respectively, 

4The meta-attribute multivalued is defined in the same spirit as the meta-attribute single 
(see Figure 6). 
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the cardinalities [0:N] associated with abstract classes and [1:1] associated with 
concrete classes. In Figure 13, we manipulate the abstract and concrete objects 
(e.g., a and c) that are, respectively, instances of AbstractObject and Concrete0b- 
ject classes we define in the next section. The last implication of the constraint 
card0_NCnstr is always evaluated to TRUE, meaning that we tolerate both the 
existence and the absence of a concrete instance c for a given abstract object a. 
The cardl_lCnstr definition is composed of two parts: the existence part which 
states that for each concrete object there is an associated abstract object and 
the uniqueness part stating that there is one and only one associated abstract 
object. 

TELL CLASS A~tractClass!materlallze~ WiTH TELL CLASS ConcreteClasslmaterOf WITH 
integtltyConstramt integtltyConst raint 

card0J~fCnstr, cardl lCnstr ' 
$ (V M/AbstractClasslmaterlahze~) $ (V M/ConcreteClasslmaterO()(V A/AbstractClass)(V C/ConcreteClass) 
(V A/AbstractClass)(V C/ConcreteClass) From(M)=C A To(M)=A A (M cardinality = 1.1) =~ 
From(M)=A A To(M)=C A (M,cardinality = 0.N) (V c/ConcreteObject) (e m C) :r 
=~ (Y a/Ab~tractObject) (a in A) =~ (=1 a/AbstractObject) (a ll1 A) A (a E c materOf) { *  existence * }  A 
(:~ c/ConcreteObject) (r In C) A (c E a,materlallzes) (V al, a2/AbstractObiect) (al m A) A (al E e materOf) A (a2 in A) A 
=~ (TRUE) (a2 E r =~- (al = a2)) { *  unlquenen * }  $ 
$ END 

END TELL TOKEN 1.1 In CardType WITH 
TELL TOKEN 0.N In CardType WITH ram: 1. 

mln: 0, max, 100 max: 1 
{* 100 denotes here the oo (N) symbole * }  ENO 

END 

Figure 13: Definition of the [0:N] and [1:1] cardinality constraints. 

Defini t ion of  the  [Cmin, Cma~] cardinali ty.  As for the [Cmin, C, na,] cardi- 
nality (e.g., [3,6]), which may be associated at the side of abstract classes, there 
is no way, in Telos, for its formalization. To deal with this category of cardi- 
nality, we define a new predicate length(X, Class, Assertion, Integer) with the 
following meaning: the last argument is the number of elements X, instances 
of the second argument, satisfying the assertion given in the third argument. 
Formally, we can write: 

I Length(x, C, P, N) = # {x/C Holds(P(x))}= N] 

The predicate Holds is true whenever its argument is an assertion that follows 
from the knowledge base [MBJK90]. The "#" symbol is applied to a given set 
and denotes the number of its elements. 

As a result of this new predicate, the constraint related to the [Cmin, Crnax] 
cardinality will be as shown in Figure 14. 

TELL CLASS Ab~tractClas~!materlallzes WITH 
integtityConstralnt 

cardMm.MaxCnstr, $ (V M/Ab~tractClasslmaterlahzes) (V A/AbstractCla~.s)(V C/ConcreteClass) 
From( M)=A A To( M)=C A 1 ~ M,cardlnallty, mm < M cardmahty, max A M.cardmalJty max > 2 
=~> (Y a/AbstractObject) (a In A) A (a in AbstractOb.iect) =P 
Length(c, ConcreteObject, (c ~n C) A (c E a matermlizes), K) A (Min.Max,min < K <Min.Max.max) $ 

END 

Figure 14: Definition of the constraint related to the cardinality [Cmin, Cma=]. 
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5 Formal iz ing the  instance  level semant ics  of ma- 
ter ia l izat ion 

This section describes the instance level semantics of materialization by means 
of two classes AbstractObject and ConcreteObject that represent, respectively, 
abstract objects and concrete objects, instances of instances of the metaclasses 
AbstractClass and ConcreteClass, respectively. 

TELL CLASS AbstractObject TELL CLASS ConcreteObject TELL CLASS AbltractObject WITH 
In Clau WITH In Class WITH deductiveRule 

attribute attribute, s~ngle materDedRule: 
r Class materOf AbstractObject $ (V a/AbstractObject)(V c/ConcreteObject) 
matenahzes ConcreteObject END (c E a.matenahzes) =~ (c rnaterOf = a) $ 

END END 

Figure 15: Definitions of AbstractObject and ConcreteObject classes. 

The definitions of the classes AbstractObject and ConcreteObject are depicted 
in Figure 15. On its left side, the figure shows that each abstract object has 
an associated class facet, denoted classFacet. An abstract object has also an 
attribute materializes whose domain is ConcreteObject and each concrete object 
has an attribute rnaterOf whose domain is AbstractObject. 

For reason of uniformity, the same names materializes and rnaterOf axe used 
both for the description of the class level and the instance level of materialization 
semantics. 

The attribute rnaterOf is declared as an instance of single to assert that a 
concrete object is materialization of only one abstract object. Finally, as in Fig- 
ure 8, we give on the right side of Figure 15 a deductive rule that automatically 
derives from the fact (c �9 a.materializes) another fact (c.rnaterOf = a) indicating 
that c is a materialization of a. 

5 .1 C o n s t r a i n t s  r e l a t e d  t o  t h e  a b s t r a c t  o b j e c t s  

Figure 16 shows two constraints concerning the abstract objects. On the left 
side we define the abstractObj_Cnstr constraint which expresses that instances 
of instances of AbstractClass must be instances of AbstractObject. On the right 
side, the ObjClassFacet_Cnstr constraint means that each abstract object a has 
one and only one (denoted by the "3!" symbole) associated class facet regarding 
a given materialization. The constraint also shows that the class facet must be 
a subclass of the concrete class C that is a materialization of the abstract class 
A, the class of a. 

The ObjClassFacet_Cnstr constraint implicitly means that, each time the user 
creates an abstract instance a, he/she also must create explicitly its associated 
class facet to ensure the constraint. We think that it would be more reasonable 
and more natural to implicitly generate the class facet of a given abstract object. 
For this, we propose to extend the definition of the deductive rule. The actual 
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TELL CLASS AbstractClass WiTH TELL CLASS AbstractClass WITH 
integrltyConstraint integrityConstramt 

ab=tractObjoCnltr. ObjClauFacet.Cnstr: 
$ (V A/AbstractClass)(V a/Class) $ (V A/AbetractClass)(Y C/ConcreteClass) {V a/Ab~tractObjact) 
(a in A) =~ (a in AbstractObject) (a m A) A (C E A.rnateriahzes) =~ 
$ (:11 Cf/Clar~) (Cf I$A C) A (Cf E a classFacet) 

END $ 
END 

Figure 16: Constraints associated with the abstract objects. 

definition of a deductive rule allows only the possibility to derive facts that are 
logical expressions. The extension we propose consists of the specification, on 
the right side of a deductive rule, of some operations we wish to be executed 
at run time as for the rule-based system MARVEL [KFP88]. Such an extended 
rule will be of the pattern: < preconditions > ~ < usual facts  > [and < 
operations >] where < usual facts > is the ordinary part we find on the right 
side of a usual deductive rule and < operations > stands for operations we wish 
to be automatically executed by the system when the part < preconditions > 
is satisfied. 

The ObjClassFaceLCnstr constraint on the right side of Figure 16 becomes 
the following extended deductive rule: 

TELL CLASS AbstractClasi WITH 
deductlveRule 

Ob/ClassFacet Ext .Cnstr: 
$ (V A/AbstractCl~ss)(V C/ConcreteClau) (V a/AbstractObject) (a in A) A (C E A.materlalizes) =~ 
TELL CLASS Cf in Class, isA C WITH END A (Cf E a.classFacet) $ 

END 

This deductive rule means that for each abstract object a, instance of an 
abstract class A which materializes in C, the system automatically generates a 
class Cf as an instance of Class and as a subclass of C. The system induces then 
the fact (Cf E a.classFacet) meaning that Cf is a potential class facet of a. 

5 .2  C o n s t r a i n t s  r e l a t e d  t o  t h e  c o n c r e t e  o b j e c t s  

Figure 17 shows two constraints regarding the concrete objects. On the left side, 
the concObj_Cnstr constraint expresses that instances of instances of Concrete- 
Class must be instances of ConcreteObject. On the right side, the concObjClass- 
Facet_Cnstr constraint expresses that all concrete objects c, instances of a given 
concrete class C, and materializing a given abstract object a, must be instances 
of the class facet associated with a. For example, Nico's Fiat that is instance of 
Car and that materializes FiatRetro must be instance of FiatRetro_Cars, the class 
facet associated with FiatRetro (see Figure 2). 
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TELL CLASS ConcreteClass WITH 
integrityCon=traint 

concObj.Cnst r 
$ (Y C/ConcreteClass)(V c/Class) 
(c in C) =~ (c in ConcreteObject) 
$ 

END 

TELL CLASS ConcreteClass WITH 
integrltyConstraint 
concObjClassFacet .Cnst r: 

$ (V A/Al~tractClass)(V C/ConcreteClass) (C (~ A.materlalize=) =r 
(V c/ConcreteObject) (V a/AbstractObject) (a in A) A 
(Cf E a.classFacet) A (Cf isA C) A (c in C) 
A (c E a materializes) ==~ (c In Cf) 
$ 

END 

Figure 17: Constraints associated with the concrete objects. 

5 . 3  C o n s t r a i n t s  r e l a t e d  t o  a t t r i b u t e  p r o p a g a t i o n  

P r o p a g a t i o n  o f  T y p e  1 at tr ibutes .  Figure 18 shows, on its left side, the 
constraint T1AttrlnClassFacet_Cnstr which imposes the Type 1 attributes of an 
abstract class A to be attributes of each class facet associated with each instance 
a of A. The right side of Figure 18 shows the constraint T1AttrAreClassAttr_Cnstr 
which states that Type 1 attributes are class attributes 5 in class facets: for a 
given Type 1 attribute T1, if the value of T1 in a given abstract object a is v 
then all the instances of the class facet associated with a will come with the 
same value v. Another alternative to deal with Type 1 attributes is the use 
of delegation mechanism [Lie86] that would permit concrete instances to access 
directly the Type 1 attribute values in the abstract instance a, without storing it 
redundantly in class facets. Unfortunately, TELOS does not provide facilities 
for using the delegation mechanism. 

TELL CLASS AbstractClas= WITH 
integrltyCon$t ralnt 

TIAtt  rlnClassFacet.Cnit r' 
$ (V M/AbstractClasslmaterlallze$) (V A/AbstractClass) 
(Y C/ConcreteClass)(V T1/Att~,bute-lDef) (Y S1/Strmg) 
(V D/Domain) 
(C E A.M) A (T1 E M.,nhAttrTt) A To(T1)=SI 
=~ (3 p/Proposltmn) (p E A I attribute) A Label(p)=Sl 
A To(p)=D =r (V a/AbstractObject) (V Cf/Class) 
(a in A) A (Cf E a.classFacet) A (Cf ,sA C) ::~ 
(3 q/Propos,tlon) (q E Cf { attribute) A 
Label(q)=S1 A To(q)=D 
$ 

TELL CLASS AbstractClas$ WITH 
integrltyConstralnt 
T 1Att rAreClassAtt r .Cnstr: 

$ (Y M/AbstractClasslmatenahzes) (V A/AbstractCla~) 
(V C/ConcreteCla~)(V T1/Attribute-lDef) (Y S1/String) 
(V D/Domaln) (C E A.M) A (T1 E M.inhAttrT1) A To(T1)=Sl 
=r (3 p/Propo~,tion) (p E A I attribute) A Label(p)=S1 
A To(p)=D ~> (Y a/AbitractObject) (Y Cf/Class) 
(a in A) A (Cf E a classFacet) A (Cf isA C) 
=~ (V q/Proposibon) (q E Cf I attribute) A 
Label(q)=S1 A To(q)=D ---> 
(V u,v,c/Proposltlon) (c in Cf) A (U In q) A 
From(u)=r A To(u)=v ==V (v = a.S1) $ 

END END 

Figure 18: Constraints associated with Type 1 attribute propagation. 

P r o p a g a t i o n  of  T y p e  2 at tr ibutes .  The constraint T2AttrlnClassFacet_Cnstr 
of the left side of Figure 19 imposes the Type 2 attributes of an abstract  class 
A to be also at t r ibutes  of each class facet associated with each instance a of A. 

The domain of the Type 2 attributes in class facets is the same as in the 
abstract  class, but it will be, next, restricted to only a set of f ixed values. The 

5we mean here the usual sense of "class attributes" as opposed to "instance attributes". 
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TELL CLASS AbstractClass WITH 
mtegrltyConstralnt 

TELL CLASS AbstrattClass WITH 
mtegntyConstraint 

T2Attrln ClassFacet .Cnstr: 
$ (Y M/AbstractClas$!materiahze=) (y  A/Ab=tractClas$) 
(Y C/ConcreteClass)(Y T2/Attrlbute-2Def) 
(V S2/Strlng)(V D/Domain) 
(C E A.M) A (T2 E M.inhAttrT2) ^ ($2 = T2.attrName) 

(3 p/Proposition) 
(P E A I attribute) A Label(p)=S2 A To(p)=D 
==~ (Y a/AbstractObject)(V Cf/Cla~) 
(a In A) A (Cf E a,classFatet) A (Cf i=A C) 
=> (:1 q/Proposition) (q E C{ I attribute) A 
Label(q)=S2 A To(q)=D $ 

END 

T2ValuePropag.Cnstr: 
$ (V M/AbstractClass=mate~=allzes)(V A/Al~tractClass) 
(V C/ConcreteCiar~) (Y T2/Attribute-2Def)(Y S2/String) 
(C E A M) A (T2 E M.mbAttrT2) A ($2 = T2.attrName) =~ 
(Y a/AbstractObject)(V Cf/Class)(V q/Proposltion) 
(a in A) A (Cf E a classFacet) A (Cf I$A C) A 
(q E CF J attribute) A Label(q)=S2 ==F 
[ (T2 derlvAttr = "mono") ==P (q in Classlsmgle} A 
((Y u.v,c/Prop~lt,on) (c m Of) A (= ,. q) A From(u)=c A To(u)=v =~ 
(v E a.s2) ) ] A 
[ (T2, derlvAttr = "multi") ==~ 
(Y u,v,r (r In Cf) A (u in q) A From(u}=r A To(u)=v ==> 
( v E  aS2) ]$  

END 

Figure 19: Constraints associated with Type 2 attribute propagation. 

constraint responsible of this restriction is T2ValuePropag_Cnstr as given on the 
right side of Figure 19. This constraint expresses that for each concrete instance 
c, instance of a class facet Cf, the value of its Type 2 attribute S2 must belong 
to the set of values of $2 in the abstract object a that materializes in c. If $2 
is monovalued, then $2 must have only one value in c, otherwise $2 can have 
several values. 

For instance, the Type 2 attribute "#doors:Integer" of CarModel must be also 
an attribute of the class facet FiatRetro_Cars associated with FiatRetro, instance 
of CarModel. The domain of #doors in FiatRetro_Cars is also Integer, but its 
value in Nico's Fiat, instance of FiatRetro_Cars, must be restricted to either 3 or 
5: the two possible values fixed by the abstract instance FiatRetro. 

Propagat ion of  Type  3 attributes.  Figure 20 shows the T3ValuePropag_Cnstr 
constraint that formalizes the propagation of Type 3 attributes. It shows that 
each value V3 of a given Type 3 attribute in an abstract object a is a new at- 
tribute of the class facet Cf associated with a. The domain of V3 in Cf is D which 
a user can supply in advance by using the attribute genAttrType associated with 
the definition of Type 3 attribute (Attribute-3Def). 

TELL CLASS Al~t~actClass WITH 
integntyConstraint 

T3ValuePropag.Cnst r 
$ (Y M/Ab~tractCla=slmaterlahzes)(Y A/AbstractClass) 
(Y C/ConcreteClass)(Y T3/Attr, bute-3Def) (V S3/Strlng)(V D/TypeD#) 
(C E A M) A (T3 • M mhAttrT3) A ($3 = T3.attrName) A (T3.genAttrType = D) =~ 

(3 p/Proposition) (p E A I attribute) A Label(p)=S3 ==- 
(V a/AbstractObjec~)(V Cf/Class) (V V3/Class) (a ,n A) A (Cf E a.clactFacet) A (V3 E a $3) 
=~ (=I q/Propositlon) (q E Cf I attribute) A Label(q)=V3 A To(q)=D 
$ 

END 

Figure 20: Constraints associated with Type 3 attribute propagation. 
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6 Conclus ion 

This paper has presented a formalization of materialization, a new and ubiq- 
uitous abstraction pattern relating a class of abstract categories and a class of 
more concrete objects. Materialization allows the definition of new and power- 
ful attribute propagation (or inheritance) mechanisms from the abstract class 
to the concrete class. 

Our formalization was carried out using the metaclass approach of TELOS.  
Two metaclasses AbstractClass and ConcreteClass were built as templates to 
capture the semantics of materialization at the class level and two additional 
classes Abstract0bject and Concrete0bject were defined to capture the semantics 
of materialization at the instance level. 

The metaclasses AbstractClass and ConcreteClass define the meta-attributes 
materializes and rnaterOf, respectively. Thanks to the class status of TELOS 
attributes, the meta-attributes materializes and rnater0f are declared as ordinary 
metaclasses to which we attached all characteristics of materialization relation- 
ship. 

Various constraints have been uniformly defined at the levels of classes, meta- 
classes, and attributes to ensure the semantics of materialization at both the 
class and the instance levels in a coordinated manner. 

The metaclass approach allowed us to define the semantics of materialization 
as a unit which is independent of any implementation consideration. Conse- 
quently, our formalization can be used to implement materialization in various 
systems. 

Although our formalization is more suitable for implementation systems that 
support metaclasses, it can be also used to assist an implementation in non 
metaclass-based systems. Furthermore, our approach can be followed to for- 
malize other new generic relationships. 

This work had also demonstrated the power of the TELOS language to 
express the requirements related to the materialization semantics. To fully 
formalize materialization, we proposed two suggestions to extend TELOS.  One 
consisted of the definition of a new predicate required to formalize the cardinality 
[Cmin, Cma=]. The second one consisted of the extension of the deductive rule 
definition for specifying some operations we would wish to be automatically 
executed by the system when given preconditions are satisfied. 

Our work has several continuations. An interesting one deals with the for- 
malization of the common semantics of a large repository of new generic relation- 
ships (e.g., Member- Of [MPS95], Role- Of [WDJS94], Part- Of [KP97], Ownership 
[HPYG95]). Another continuation will be to start from our formalization and 
try to realize an effective implementation in a target system (e.g., ConceptBase) 
in such manner that it will be possible to evaluate this system with regard to 
its power in the implementation of materialization semantics. 
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