

Edinburgh Research Explorer

System Description: an Interface Between CLAM and HOL

Citation for published version:
Slind, K, Gordon, M, Boulton, R & Bundy, A 1998, System Description: an Interface Between CLAM and
HOL. in Automated Deduction — CADE-15: 15th International Conference on Automated Deduction Lindau,
Germany, July 5–10, 1998 Proceedings. Lecture Notes in Computer Science, vol. 1421, Springer-Verlag
GmbH, pp. 134-138. https://doi.org/10.1007/BFb0054255

Digital Object Identifier (DOI):
10.1007/BFb0054255

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Automated Deduction — CADE-15

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1007/BFb0054255
https://doi.org/10.1007/BFb0054255
https://www.research.ed.ac.uk/en/publications/8d3638f7-6c50-47ec-a851-e0ed701b72db

System Description:An Interface between CLaM and HOL?Konrad Slind1, Mike Gordon1, Richard Boulton2, Alan Bundy21 University of Cambridge Computer Laboratory2 Department of Arti�cial Intelligence, University of EdinburghAbstract. The CLaM proof planner has been interfaced to the HOLinteractive theorem prover to provide the power of proof planning topeople using HOL for formal veri�cation, etc. The interface sends HOLgoals to CLaM for planning and translates plans back into HOL tac-tics that solve the initial goals. The project homepage can be found athttp://www.cl.cam.ac.uk/Research/HVG/Clam.HOL/intro.html.1 IntroductionCLaM [2] is a proof planning system for Oyster, a tactic-based implementationof the constructive type theory of Martin-L�of. CLaM works by using formalizedpre- and post-conditions of Oyster tactics as the basis of plan search. Thesespeci�cations of tactics are called methods. When a plan for a goal is found, theexpectation is that the resulting tactic will solve the goal. Experience shows thatthe search space for plans is often tractable: CLaM has been able to automatic-ally plan many proofs. A particular emphasis of research with CLaM has beenthe automation of inductive proofs.HOL [5] is a general-purpose proof system for classical, higher-order predic-ate calculus; it has been used to formalize many areas of interest to computerscientists and mathematicians. The HOL system has been criticized on the basisthat it does not provide a high level of proof automation. Such remarks areoften based on ignorance, since the HOL system now provides powerful sim-pli�ers, automatic �rst order provers (both tableaux and model elimination), asemi-decision procedure for a useful fragment of arithmetic, and a co-operatingdecision procedure mechanism. However, HOL lacks automation for many im-portant areas, and moreover, there is always more that can be done to automatethe proof process. A good case in point is induction. Induction is certainly acentral proof method, but in HOL, as in many other systems, the user mustinteractively control the application of induction.These two systems have been linked to make the inductive proof methodsof CLaM available to users of HOL, and also to give CLaM users access tothe large libraries of tactics and theories available for HOL. CLaM is currentlyimplemented in Prolog and HOL in Standard ML.? Research supported by the Engineering and Physical Sciences Research Council ofGreat Britain under grants GR/L03071 and GR/L14381.

2 The InterfaceThe CLaM and HOL processes communicate over sockets. These may be eitherlocal �le-system sockets or socket connections over the Internet. In the currentset-up, the HOL process is in control, using CLaM as an intelligent remote tactic.The sequence of operations is illustrated in Figure 1.
tactic
plantacticASTconcretesyntax
goalHOL

plan
problemCLAM6 -
?�66�����3solves searchppeval

Fig. 1. System StructureFirst, the HOL formula (goal) to be proved is translated into the abstractsyntax of Oyster's logic. This is then written to the socket (in concrete syntax)as a Prolog goal. The CLaM process waits for a message from HOL and, onreceiving one it recognizes, executes it and either returns the result back downthe socket or sends a handshaking message. Supporting de�nitions, inductionschemes, and lemmas are passed from HOL to CLaM in a similar way, prior toany proof attempts.For successful proof attempts HOL receives a proof plan (again in concretesyntax) back from CLaM. HOL then parses the plan and attempts to translateit into a corresponding tactic. If this is successful (which it normally is) thetactic is applied to the original HOL goal. Since CLaM uses heuristics the tacticapplication may be unsuccessful but in practice it is very rare for CLaM toreturn an inappropriate plan. Most importantly, an inappropriate plan can notlead to a non-theorem being `proved' in HOL because HOL invokes its own tactics(guided by the plan) in checking the proof.Tactic generation takes place in two stages. First, an abstract syntax rep-resentation of the tactic is generated. This is where most of the work is. Theabstract syntax is then used to generate either a tactic function (an ML func-tion) for direct application to the goal or a textual representation of the tactic forinclusion in a �le. Translation into a tactic function (i.e., the internal represent-ation) allows the plan to be applied to the goal without parsing and evaluatingML code. The generation of concrete syntax (by pretty-printing) allows the tacticto be inserted in ML tactic scripts and used in other HOL sessions. The abstractsyntax for tactics carries both a pretty-printer and a tactic at each leaf node, sothat compound concrete syntax and tactics can be generated easily.

3 Translation of the Object LanguageThe CLaM process used has been modi�ed to provide some independence fromOyster and the built-in types and induction schemes of the CLaM library. Modi-�cation of CLaM to suit the classical higher-order logic used by the HOL systemhas largely been avoided by exploiting correspondences between syntactic fea-tures of HOL's logic and the constructive type theory of Oyster/CLaM.The HOL logic is translated to the syntax used by CLaM as follows. Falseis translated to the empty type and true to the special type used to representtrue in CLaM. Conjunction is translated to a product type, disjunction to a dis-joint union type, implication to a function type, and negation to a function typebetween the argument of the negation and the empty type. Universal quanti�c-ation becomes a dependent function and existential quanti�cation a dependentproduct. Equality between booleans is translated to if-and-only-if and other HOLequalities to equalities in CLaM. Decidability issues for the latter create someproblems in planning. Other HOL terms are translated almost directly into thecorresponding type-theoretic constructs. Types in HOL are distinct from formu-las/terms and so are translated separately (in a straightforward manner).Di�erences in the lexical conventions of the HOL logic and those of CLaM(which are essentially those of Prolog) require some translation of constant andvariable names. The translation table is retained for use in reverse translatingthe proof plan to a HOL tactic.In HOL, type variables are implicitly universally quanti�ed. In CLaM theyhave to be bound. So, at the top level, the variables introduced for HOL typevariables are quanti�ed by assuming that they inhabit the �rst type universe,u(1). As Felty and Howe [3] point out, the domain should really be restrictedto the inhabited types of u(1) since HOL types have to be non-empty. However,for the kinds of proof under consideration this will be of no consequence and aspointed out earlier can not lead to inconsistency in HOL.4 Translation of Plans to TacticsTactics are a well-known method for backward proof. The original conception ofMilner [4], which is still that of tactics in HOL, is that a tactic can be representedby the type goal �! goal list � justification, i.e., a tactic decomposes a goalinto subgoals plus a justi�cation function. The justi�cation function takes thetheorems resulting from the solved subgoals and performs inference with themto return a new theorem that achieves the original goal. Thus the justi�cationhas type thm list �! thm. Currently the interface with CLaM assumes thatthe list of subgoals is empty, i.e., the plan completes the proof.New HOL tactics have been implemented that correspond to the low-levelmethods used by CLaM. One of the challenges in maintaining the correspondencebetween tactics and methods is tracking in HOL the variable names used byCLaM. This is because of generalization: when CLaM generalizes a goal | astep that the translation must track | it does so with an explicit term, which

can have occurrences of variables from induction templates. For HOL to makethe same step, its goal must have corresponding occurrences of the term. Thisinformation must be extractable from the proof plan for the translation to work.5 Examples PerformedExamples that have been planned by CLaM and proved in HOL using the in-terface include the commutativity of multiplication (over natural numbers) anda number of theorems about lists including some known to be di�cult to auto-mate. The interest in many of these examples is not primarily the theorem, whichis usually fairly simple, but rather in how CLaM found the proof, by makingmultiple and nested inductions and generalizations. Here are a few concrete ex-amples:8x y: REVERSE (APPEND x y) = APPEND (REVERSE y) (REVERSE x)8x m n: APPEND (REPLICATE x m) (REPLICATE x n) = REPLICATE x (m+ n)8x m n: FLAT (REPLICATE (REPLICATE x n) m) = REPLICATE x (m � n)The functions here are curried. APPEND concatenates two lists, REVERSE reversesa list, FLAT
attens a list of lists into one list (by iterated concatenation), andREPLICATE x n generates a list of n copies of x.6 ConclusionsTwo mechanized reasoning systems, one interactive with a large library of the-ories and many signi�cant examples (HOL), and the other a largely automaticprover (CLaM), have been connected to provide a useful tool for formal veri�ca-tion. The inductive methods of CLaM complement existing proof tools in HOL,e.g., Boulton's co-operating decision procedure package [1]. Although the systemis still very much a prototype, early results are promising. Future goals includeextending the range of formulas handled, more extended interaction between thetwo systems (e.g., recursive dialogues), and testing on medium to large examples.References1. R. J. Boulton. Combining decision procedures in the HOL system. In Proceedingsof the 8th International Workshop on Higher Order Logic Theorem Proving and ItsApplications, volume 971 of Lecture Notes in Computer Science. Springer, 1995.2. A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Experiments with proofplans for induction. Journal of Automated Reasoning, 7(3):303{324, 1991.3. A. P. Felty and D. J. Howe. Hybrid interactive theorem proving using Nuprl andHOL. In Proceedings of the 14th International Conference on Automated Deduction(CADE-14), volume 1249 of Lecture Notes in Arti�cial Intelligence. Springer, 1997.4. M. J. Gordon, A. J. Milner, and C. P. Wadsworth. Edinburgh LCF: A MechanisedLogic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-Verlag, 1979.5. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A theoremproving environment for higher order logic. Cambridge University Press, 1993.

