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Abstract. In this paper we approach the problem of computing the characteristic polynomial
of a matrix from the combinatorial viewpoint. We present several combinatorial characterizations of
the coefficients of the characteristic polynomial in terms of walks and closed walks of different kinds
in the underlying graph. We develop algorithms based on these characterizations and show that they
tally with well-known algorithms arrived at independently from considerations in linear algebra.
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1. Introduction. Computing the determinant, or the characteristic polynomial,
of a matrix is a problem which has been studied several years ago from the numerical
analysis viewpoint. In the mid 1940’s, a series of algorithms which employed sequential
iterative methods to compute the polynomial were proposed, the most prominent one
due to Samuelson, Krylov, and Leverier [19]; see, for instance, the presentation in [10].
Then, in the 1980’s, a series of parallel algorithms for the determinant were proposed
by Csanky, Chistov, and Berkowitz [6, 5, 1]. This culminated in the result, shown
independently by several complexity theorists including Vinay, Damm, Toda, and
Valiant [26, 7, 24, 25], that computing the determinant of an integer matrix is complete
for the complexity class GapL and hence computationally equivalent in a precise
complexity-theoretic sense to iterated matrix multiplication or matrix powering.

In an attempt to unravel the ideas that went into designing efficient parallel al-
gorithms for the determinant, Valiant studied Samuelson’s algorithm and interpreted
the computation combinatorially [25]. He presented a combinatorial theorem con-
cerning closed walks (clows) in graphs, the correctness of which followed from that
of Samuelson’s algorithm. This was the first attempt to view determinant computa-
tions as graph-theoretic rather than linear algebraic manipulations. Inspired by this,
and by the purely combinatorial and extremely elegant proof of the Cayley–Hamilton
theorem due to Rutherford [18] (and independently discovered by Straubing [21]; see
[2, 27] for nice expositions and see [3] for related material), Mahajan and Vinay [15]
described a combinatorial algorithm for computing the characteristic polynomial. The
proof of correctness of this algorithm is also purely combinatorial and does not rely
on any linear algebra or polynomial arithmetic.

In this paper, we follow up on the work presented in [25, 21, 15] and present
a unifying combinatorial framework in which to interpret and analyse a host of al-
gorithms for computing the determinant and the characteristic polynomial. We first
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describe what the coefficients of the characteristic polynomial of a matrix M represent
as combinatorial entities in the graph GM whose adjacency matrix is M . We then
consider various algorithms for evaluating the coefficients, and in each case we relate
the intermediate steps of the computation to manipulation of similar combinatorial
entities, giving combinatorial proofs of correctness of these algorithms.

In particular, in the graph-theoretic setting, computing the determinant amounts
to evaluating the signed weighted sum of cycle covers. This sum involves far too
many terms to allow evaluation of each, and we show how the algorithms of [19, 5, 6]
essentially expand this sum to include more terms, i.e., generalizations of cycle covers,
which eventually cancel out but which allow easy evaluation. The algorithm in [15]
uses clow sequences explicitly; Samuelson’s method [19] implicitly uses prefix clow
sequences; Chistov’s method [5] implicitly uses tables of tour sequences; and Csanky’s
algorithm [6] hinges around Leverier’s lemma (see, for instance, [10]), which can be
interpreted using loops and partial cycle covers. In each of these cases, we explicitly
demonstrate the underlying combinatorial structures, and give proofs of correctness
which are entirely combinatorial in nature.

In a sense, this paper parallels the work done by a host of combinatorialists in
proving the correctness of matrix identities using the graph-theoretic setting. Foata [8]
used tours and cycle covers in graphs to prove the MacMohan master theorem; Ruther-
ford and Straubing [18, 21] reproved the Cayley–Hamilton theorem using counting
over walks and cycle covers; Garsia [11], Orlin [17], and Tempereley [23] indepen-
dently found combinatorial proofs of the matrix-tree theorem and Chaiken [4] gener-
alized the proof to the all-minor matrix-tree theorem; Foata [9] and then Zeilberger
[27] gave new combinatorial proofs of the Jacobi identity; Gessel [12] used transitive
tournaments in graphs to prove Vandermonde’s determinant identity. More recently,
Minoux [16] showed an extension of the matrix-tree theorem to semirings, again using
counting arguments over arborescences in graphs. For beautiful surveys of some of
these results, see Zeilberger’s paper [27] and chapter 4 of Stanton and White’s book on
constructive combinatorics [22]. Zeilberger ends with a host of “exercises” in proving
many more matrix identities combinatorially.

Thus, using combinatorial interpretations and arguments to prove matrix identi-
ties has been around for a while. To our knowledge, however, a similar application
of combinatorial ideas to interpret, or prove correctness of, or even develop new algo-
rithms computing matrix functions, has been attempted only twice before: by Valiant
[25] in 1992 and by the present authors in our earlier paper in 1997 [15]. We build on
our earlier work and pursue a new thread of ideas here.

This paper is thus a collection of new interpretations and proofs of known results.
The paper is by and large self-contained.

2. Matrices, determinants, and graphs. Let A be a square matrix of di-
mension n. For convenience, we state our results for matrices over integers, but they
apply to matrices over any commutative ring.

We associate matrices of dimension n with complete directed graphs on n vertices,
with weights on the edges. Let GA denote the complete directed graph associated with
the matrix A. If the vertices of GA are numbered {1, 2, . . . , n}, then the weight of the
edge 〈i, j〉 is aij . We use the notation [n] to denote the set {1, 2, . . . , n}.

The determinant of the matrix A, det(A), is defined as the signed sum of all
weighted permutations of Sn as follows:

det(A) =
∑
σ∈Sn

sgn(σ)
∏
i

aiσ(i),
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where sgn(σ) = (−1)k, k being the number (modulo 2) of inversions in σ, i.e., the
cardinality of the set {〈i, j〉 | i < j, σ(i) > σ(j)} modulo 2.

Each σ ∈ Sn has a cycle decomposition, and it corresponds to a set of cycles in
GA. For instance, with n = 5, the permutation (1

4
2
2

3
3

4
5

5
1 ) has a cycle decomposition

(145)(2)(3) which corresponds to 3 cycles in GA. Such cycles of GA have an important
property: they are all simple (nonintersecting), disjoint cycles; when put together,
they touch each vertex exactly once. Such sets of cycles are called cycle covers. Note
that cycle covers of GA and permutations of Sn are in bijection with each other.

We define weights of cycle covers to correspond to weights of permutations. The
weight of a cycle is the product of the weights of all edges in the cycle. The weight of
a cycle cover is the product of the weights of all the cycles in it. Thus, viewing the
cycle cover C as a set of edges, w(C) =

∏
e∈C w(e). Since the weights of the edges are

dictated by the matrix A, we can write w(C) =
∏
〈i,j〉∈C aij .

We can also define the sign of a cycle cover consistent with the sign of the corre-
sponding permutation. A cycle cover is even (resp., odd) if it contains an even number
(resp., odd) of even length cycles. Equivalently, the cycle cover is even (resp., odd) if
the number of cycles plus the number of edges is even (resp., odd). Define the sign of
a cycle cover C to be +1 if C is even, and −1 if C is odd. Cauchy showed that with
this definition, the sign of a permutation (based on inversions) and the sign of the
associated cycle cover is the same. For our use, this definition of sign based on cycle
covers will be more convenient.

Let C(GA) denote the set of all cycle covers in the graph GA. Then we have

det(A) =
∑

C∈C(GA)

sgn(C)w(C) =
∑

C∈C(GA)

sgn(C)
∏
〈i,j〉∈C

aij .

Consider the characteristic polynomial of A,

χA(λ) = det(λIn −A) = c0λ
n + c1λ

n−1 + · · ·+ cn−1λ+ cn.

To interpret these coefficients, consider the graph GA(λ) whose edges are labeled
according to the matrix λIn − A. The coefficient cl collects part of the contribution
to det(λIn − A) from cycle covers having at least (n − l) self-loops. (A self-loop at
vertex k now carries weight λ−akk.) This is because a cycle cover with i self-loops has
weight which is a polynomial of degree i in λ. For instance, with n = 4, consider the
cycle cover 〈1, 4〉, 〈2, 2〉, 〈3, 3〉, 〈4, 1〉 in GA(λ). This has weight (−a14)(λ − a22)(λ −
a33)(−a41), contributing a14a22a33a41 to c4, −a14a41(a22 + a33) to c3, a14a41 to c2,
and 0 to c1.

Following notation from [21], we consider partial permutations, corresponding to
partial cycle covers. A partial permutation σ is a permutation on a subset S ⊆ [n].
The set S is called the domain of σ, denoted dom(σ). The completion of σ, denoted
σ̂, is the permutation in Sn obtained by letting all elements outside dom(σ) be fixed
points. This permutation σ̂ corresponds to a cycle cover C in GA, and σ corresponds
to a subset of the cycles in C. We call such a subset a partial cycle cover PC, and
we call C the completion of PC. A partial cycle cover is defined to have the same
parity and sign as its completion. It is easy to see that the completion need not be
explicitly accounted for in the parity; a partial cycle cover PC is even (resp., odd) iff
the number of cycles in it, plus the number of edges in it, is even (resp., odd).

Getting back to the characteristic polynomial, observe that to collect the contri-
butions to cl, we must look at all partial cycle covers with l edges. The n− l vertices
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left uncovered by such a partial cycle cover PC are the self-loops, from whose weight
the λ term has been picked up. Of the l vertices covered, self-loops, if any, contribute
the −akk term from their weight, not the λ term. And other edges, say 〈i, j〉 for
i 6= j, contribute weights −aij . Thus the weights for PC evidently come from the
graph G−A. If we interpret weights over the graph GA, a factor of (−1)l must be
accounted for independently.

Formally, we have the following definition.
Definition 2.1. A cycle is an ordered sequence of m edges C = 〈e1, e2, . . . , em〉,

where ei = 〈ui, ui+1〉 for i ∈ [m − 1] and em = 〈um, u1〉 and u1 ≤ ui for i ∈ [m] and
all the ui’s are distinct. u1 is called the head of the cycle, denoted h(C). The length
of the cycle is |C| = m, and the weight of the cycle is w(C) =

∏m
i=1 w(ei). The vertex

set of the cycle is V (C) = {u1, . . . , um}.
An l-cycle cover C is an ordered sequence of cycles C = 〈C1, . . . , Ck〉 such that

V (Ci) ∩ V (Cj) = φ for i 6= j, h(C1) < · · · < h(Ck) and |C1|+ · · ·+ |Ck| = l.

The weight of the l-cycle cover is wt(C) =
∏k
j=1 w(Cj), and the sign is sgn(C) =

(−1)l+k.
As a matter of convention, we call n-cycle covers simply cycle covers.
Proposition 2.2. The coefficients of χA(λ) are given by

cl = (−1)l
∑

C is an l-cycle cover in GA

sgn(C)wt(C).

3. Summing over permutations efficiently. As noted in Proposition 2.2,
evaluating the determinant (or for that matter, any coefficient of the characteristic
polynomial) amounts to evaluating the signed weighted sum over cycle covers (partial
cycle covers of appropriate length). We consider four efficient algorithms for comput-
ing this sum. Each expands this sum to include more terms which mutually cancel
out. The differences between the algorithms is essentially in the extent to which the
sum is expanded.

3.1. From cycle covers to clow sequences. Generalize the notion of a cycle
and a cycle cover as follows:

A clow is a cycle in GA (not necessarily simple) with the property that the mini-
mum vertex in the cycle – called the head – is visited only once. An l-clow sequence is
a sequence of clows where the heads of the clows are in strictly increasing order and
the total number of edges (counting each edge as many times as it is used) is l.

Formally, we have the following definition.
Definition 3.1. A clow is an ordered sequence of edges C = 〈e1, e2, . . . , em〉

such that ei = 〈ui, ui+1〉 for i ∈ [m − 1] and em = 〈um, u1〉 and u1 6= uj for j ∈
{2, . . . ,m} and u1 = min{u1, . . . , um}. The vertex u1 is called the head of the clow
and denoted h(C). The length of the clow is |C| = m, and the weight of the clow is
w(C) =

∏m
i=1 w(ei).

An l-clow sequence C is an ordered sequence of clows C = 〈C1, . . . , Ck〉 such that
h(C1) < · · · < h(Ck) and |C1|+ · · ·+ |Ck| = l.

The weight of the l-clow sequence C is wt(C) =
∏k
j=1 w(Cj), and the sign of C is

sgn(C) = (−1)l+k.
Note that the set of l-clow sequences properly includes the set of l-cycle covers

on a graph. And the sign and weight of a cycle cover are consistent with its sign and
weight when viewed as a clow sequence.
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CASE 1 CASE 2

head

v

v

head

v

Fig. 3.1. Pairing clow sequences of opposing signs.

Theorem 3.2 (see [15, Theorem 1]).

cl = (−1)l
∑

C is an l-clow sequence

sgn(C)wt(C).

Proof. We construct an involution ϕ on the set of l-clow sequences. The involution
has the property that ϕ2 is the identity, ϕ maps an l-cycle cover to itself, and otherwise
C and ϕ(C) have the same weight but opposing signs. This shows that the contribution
of l-clow sequences that are not l-cycle covers is zero. Consequently, only l-cycle covers
contribute to the summation, yielding exactly cl.

Let C = 〈C1, . . . , Ck〉 be an l-clow sequence. Choose the smallest i such that Ci+1

to Ck is a p-cycle cover for some p. If i = 0, the involution maps C to itself. Otherwise,
having chosen i, traverse Ci starting from h(Ci) until one of two things happen.

1. We hit a vertex that touches one of Ci+1 to Ck.
2. We hit a vertex that completes a cycle within Ci.

Let us call the vertex v. Given the way we chose i, such a v must exist. Vertex v
cannot satisfy both of the above conditions.

Case 1. Suppose v touches Cj . Map C to a clow sequence

C′ = 〈C1, . . . , Ci−1, C
′
i, Ci+1, . . . , Cj−1, Cj+1, . . . Ck〉.

The modified clow, C ′i is obtained from Ci by inserting the cycle Cj into it at the first
occurence of v.

Case 2. Suppose v completes a simple cycle C in Ci. Cycle C must be disjoint
from all the later cycles. We now modify the sequence C by deleting C from Ci and
introducing C as a new clow in an appropriate position, depending on the minimum
labeled vertex in C, which we make the head of C.

Figure 3.1 illustrates the mapping.

In both of the above cases, the new sequence constructed maps back to the original
sequence in the opposite case. Furthermore, the number of clows in the two sequences
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differ by one, and hence the signs are opposing, whereas the weight is unchanged. This
is the desired involution.

Furthermore, the above mapping does not change the head of the first clow in the
sequence. So if the goal is to compute the determinant which sums up the n-cycle
covers, then the head of the first cycle must be the vertex 1. So it suffices to consider
clow sequences where the first clow has head 1.

Algorithm using clow sequences. Both sequential and parallel algorithms based
on the clow sequences characterization are described in [15]. We briefly describe the
implementation idea below, for the case cn.

The goal is to sum up the contribution of all clow sequences. The clow sequences
can be partitioned into n groups based on the number of clows. Let Ck be the sum
of the weights of all clow sequences with exactly k clows, and let Dk = (−1)n+kCk.
Then cn =

∑n
k=1Dk.

To compute Ck, we use a divide-and-conquer approach on the number of clows:
any clow sequence contributing to Ck can be suitably split into two partial clow
sequences, with the left sequence having dk/2e clows. The heads of all clows in the
left part must be less than the head of the first clow in the rightmost part. And the
lengths of the left and the right partial clow sequences must add up to n. Let variable
g[p, l, u, v] sum up the weights of all partial clow sequences with p clows, l edges, head
of first clow u, and heads of all clows at most v. (We need not consider variables
where l < p or u > v.) Then Ck = g[k, n, 1, n], and such variables can be evaluated
by the formula

g[p, l, u, v] =


∑

q ≤ r ≤ q + (l− p)
u < w ≤ v

g[q, r, u, w − 1] · g[p− q, l − r, w, v] if p > 1,

g[l, u] if p = 1,

where q = dp/2e. The variable g[l, u] sums up the weights of all clows of length l with
head u, and is also evaluated in a divide-and-conquer fashion. A clow with head u is
either a self-loop if l = 1, or it must first visit some vertex v > u, find a path of length
l− 2 to some vertex w > u through vertices all greater than u, and then return to u.
So

g[l, u] =


auu if l = 1,∑

v>u auv · avu if l = 2,∑
v,w>u auv · c[l − 2, u, v, w] · awu otherwise.

The variable c[l, u, v, w] sums the weights of all length l paths from v to w going
through vertices greater than u. These variables can be evaluated as follows:

c[1, u, v, w] = avw
c[l, u, v, w] =

∑
x>u c[p, u, v, x] · c[l − p, u, x, w] if l > 1, where p = dl/2e.

3.2. Clow sequences with the prefix property: Getting to Samuelson’s
method. The generalization from cycle covers to clow sequences has a certain ex-
travagance. The reason for going to clow sequences is that evaluating their weighted
sum is easy, and this sum equals the sum over cycle covers. However, there are sev-
eral clow sequences which we can drop from consideration without sacrificing ease of
computation. One such set arises from the following consideration:

In a cycle cover, all vertices are covered exactly once. Suppose we enumerate the
vertices in the order in which they are visited in the cycle cover (following the order



480 MEENA MAHAJAN AND V. VINAY

imposed by the cycle heads). If vertex h becomes the head of a cycle, then all vertices
in this and subsequent cycles are larger than h. So all the lower numbered vertices
must have been already visited. So at least h − 1 vertices, and hence h − 1 edges,
must have been covered.

We can require our clow sequences also to satisfy this property. We formalize
the prefix property: a clow sequence C = 〈C1, . . . , Ck〉 has the prefix property if for
1 ≤ r ≤ k, the total lengths of the clows C1, . . . , Cr−1 is at least h(Cr)− 1. A similar
prefix property can be formalized for partial cycle covers. Formally, we have the
following definition.

Definition 3.3. An l-clow sequence C = 〈C1, . . . , Ck〉 is said to have the prefix
property if it satisfies the following condition:

∀r ∈ [k],

r−1∑
t=1

|Ct| ≥ h(Cr)− 1− (n− l).

The interesting fact is that the involution constructed in the previous subsection
for clow sequences works even over this restricted set!

Theorem 3.4 (see [25, Theorem 2]).

cl = (−1)l
∑

C is an l-clow sequence

with the prefix property

sgn(C)wt(C).

A new proof of the above theorem. In [25], Valiant observes that prefix clow se-
quences are the terms computed by Samuelson’s method for evaluating χλ(A). Hence
the correctness of the theorem follows from the correctness of Samuelson’s method.
And the correctness of Samuelson’s method is traditionally shown using linear algebra.

Here is a simple alternative combinatorial proof of this theorem. Observe that
the involution defined in the proof of Theorem 3.2 maps clow sequences with prefix
property to clow sequences with prefix property. Why? Let C be an l-clow sequence
with the prefix property satisfying case 1 in the proof. Since the length of clow
Ci only increases in the process, the prefix property continues to hold. Now let C
be an l-clow sequence with the prefix property satisfying case 2. The involution
constructs a new l-clow sequence C′ by detaching cycle C from clow Ci and inserting
it later in the sequence, say between Cj−1 and Cj . This does not change h(Ci).
Let C′ = D = 〈D1, . . . , Dk+1〉; here Dt = Ct for t ∈ [i − 1] or for t = i + 1 to
j − 1, Di = Ci\C, Dj = C and Dt+1 = Ct for t = j to k. We must show that
D has the prefix property. For r ∈ [i], and for r = j + 1 to k + 1, the condition∑r−1
t=1 |Dt| ≥ h(Dr) − 1 − (n − l) holds because C has the prefix property. Now let

i + 1 ≤ r ≤ j. Since Ci was chosen from C for modification, and since i + 1 ≤ r,
we know that Dr, . . . , Dk+1 form a partial cycle cover, i.e., they form simple disjoint
cycles. And the heads of these cycles are arranged in increasing order. So the vertices
covered in Dr, . . . , Dk+1 must all be at least as large as h(Dr) and all distinct. But
there are only n− h(Dr) + 1 such vertices. Hence∑k+1

t=r |Dt| ≤ n− h(Dr) + 1

l −∑r−1
t=1 |Dt| ≤ n− h(Dr) + 1∑r−1

t=1 |Dt| ≥ h(Dr)− 1− (n− l)
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and D satisfies the prefix property.
Thus in summing over all l-clow sequences with the prefix property, the only

l-clow sequences that do not cancel out are the l-cycle covers, giving the claimed
result.

Algorithm using prefix clow sequences. To compute cl using this characterization,
we must sum up the contribution of all l-clow sequences with the prefix property. One
way is to modify the dynamic programming approach used in the previous subsection
for clow sequences. This can be done easily. Let us instead do things differently; the
reason will become clear later.

Adopt the convention that there can be clows of length 0. Then each l-clow
sequence C has exactly one clow Ci with head i, for i = 1 to n. So we write C =
〈C1, . . . , Cn〉.

Define the signed weight of a clow C as sw(C) = −w(C) if C has nonzero length,
and sw(C) = 1 otherwise. And define the signed weight of an l-clow sequence as
sw(C) =

∏n
i=1 sw(Ci). Then sgn(C)w(C) = (−1)lsw(C). So from the preceding

theorem,

cl =
∑

C is an l-clow sequence

with the prefix property

sw(C).

We say that a sequence of nonnegative integers l1, . . . , ln satisfies the property
prefix(l) if

1.
∑n
t=1 lt = l, and

2. For r ∈ [n],
∑r−1
t=1 lt ≥ r − 1− (n− l). Alternatively

∑n
t=r lt ≤ n− r + 1.

Such sequences are “allowed” as lengths of clows in the clow sequences we construct;
no other sequences are allowed.

We group the clow sequences with prefix property based on the lengths of the
individual clows. In a clow sequence with prefix property C, if the length of clow Ci
(the possibly empty clow with head i) is li, then any clow with head i and length li
can replace Ci in C and still give a clow sequence satisfying the prefix property. Thus,
if z(i, p) denotes the total signed weight of all clows that have vertex i as head and
length p, then

cl =
∑

l1,...,ln:prefix(l)

n∏
i=1

z(i, li).

To compute cl efficiently, we place the values z(i, p) appropriately in a series of matri-
ces B1, . . . , Bn. The matrix Bk has entries z(k, p). Since we only consider sequences
satisfying prefix(l), it suffices to consider z(k, p) for p ≤ n − k + 1. Matrix Bk is of
dimension (n−k+ 2)× (n−k+ 1) and has z(k, p) on the pth lower diagonal as shown
below.

Bk =



z(k, 0) 0 0 · · · 0 0
z(k, 1) z(k, 0) 0 · · · 0 0
z(k, 2) z(k, 1) z(k, 0) · · · 0 0

...
...

...
... 0

z(k, n− k) z(k, n− k − 1) z(k, n− k − 2) · · · z(k, 1) z(k, 0)
z(k, n− k + 1) z(k, n− k) z(k, n− k − 1) · · · z(k, 2) z(k, 1)


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Now from the equation for cl, it is clear that

cl =
∑

l + 1 = j0 ≥ j1 ≥ j2 ≥ · · · ≥ jn = 1 :
j0 − j1, j1 − j2, . . . , jn−1 − jn : prefix(l)

(
n∏
i=1

Bi[ji−1, ji] =

) (
n∏
i=1

Bi

)
[l + 1, 1],

or more succinctly,

[ c0 c1 c2 c3 · · · · · · cn ]T =
n∏
k=1

Bk.

It remains now to compute z(i, p), the entries in the B matrices. We know that
z(i, 0) = 1 and z(i, 1) = −aii. For p ≥ 2, a clow of length p with head i must first
visit a vertex u > i, then perform a walk of length p − 2 via vertices greater than i
to some vertex v > i, and then return to i. To construct the path, we exploit the
fact that the (j, k)th entry in a matrix Ap gives the sum of the weights of all paths in
GA of length exactly p from j to k. So we must consider the induced subgraph with
vertices i + 1, . . . , n. This has an adjacency matrix Ai+1 obtained by removing the
first i rows and the first i columns of A. So A1 = A. Consider the submatrices of Ai
as shown below.

Ai =



aii
(

Ri
) Si



 Ai+1




Then the clows contributing to z(i, p) must use an edge in Ri, perform a walk

corresponding to Ap−2
i+1 , and then return to i via an edge in Si. In other words,

z(i, p) = −Ri Ap−2
i+1 Si.

So the matrices Bk look like this:

Bk =



1 0 0 · · · 0 0
−akk 1 0 · · · 0 0
−RkSk −akk 1 · · · 0 0

...
...

...
... 0

...
...

...
... 0

−RkAn−k−2
k+1 Sk −RkAn−k−3

k+1 Sk −RkAn−k−4
k+1 Sk · · · −akk 1

−RkAn−k−1
k+1 Sk −RkAn−k−2

k+1 Sk −RkAn−k−3
k+1 S1 · · · −RkSk −akk


This method of computing χA(λ) is precisely Samuelson’s method [19, 10, 1,

25]. Samuelson arrived at this formulation using Laplace’s theorem on the matrix
λI − A, whereas we have arrived at it via clow sequences with the prefix property.
This interpretation of the Samuelson–Berkowitz algorithm is due to Valiant [25]; the
combinatorial proof of correctness (proof of Theorem 3.4) is new. (It is mentioned,
without details, in [15].)
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3.3. From clows to tour sequences tables: Getting to Chistov’s al-
gorithm. We now move in the other direction—generalize further beyond clow se-
quences. First, we relax the condition that the head of a clow may be visited only
once. This gives us more generalized closed walks which we call tours. To fix a canon-
ical representation, we do require the edges of the tour to be listed beginning from
an occurrence of the head. Since there could be multiple such occurrences, we get
different tours with the same multiset of edges. For instance, the tour corresponding
to the vertex sequence 253246 is different from the tour corresponding to the vertex
sequence 246253. Second, we deal with not just sequences but ordered lists, or tables,
of sequences. Within a sequence, the tours are ordered by their heads (and all heads
are distinct). However, there is no restriction on how the sequences must be ordered
in the table. In fact, for the same multiset of sequences, different orderings of the
sequences will give different tables that we treat as distinct. Third, the parity of a
tour sequence table depends on the number of sequences in it, not the number of tours
in it. A clow sequence is thus a tour sequence table where (i) each sequence contains
a single tour which is a clow and (ii) within the table the sequences are ordered by
their tour heads. Formally, we have the following definition.

Definition 3.5. A tour is an ordered sequence of edges C = 〈e1, e2, . . . , ep〉 such
that ei = 〈ui, ui+1〉 for i ∈ [p− 1] and ep = 〈up, u1〉 and ui = min{u1, . . . , um}. The
vertex u1 is called the head of the tour and denoted h(C). The length of the tour is
|T | = p, and the weight of the tour is wt(T ) =

∏m
i=1 w(ei).

A j-tour sequence T is an ordered sequence of tours T = 〈T1, . . . , Tk〉 such that
h(T1) < · · · < h(Tk) and |T1| + · · · + |Tk| = j. The weight of the tour sequence is

wt(T ) =
∏k
j=1 wt(Tj), and the length is |T | = j.

An l-tour sequence table TST is an ordered sequence of tour sequences F =
〈T1, . . . , Tr〉 such that |T1| + · · · + |Tr| = l. The weight of the TST is wt(F) =∏r
j=1 wt(Tj), and the sign is (−1)l+r.

The following theorem shows that even TSTs can be used to compute the char-
acteristic polynomial.

Theorem 3.6.

cl = (−1)l
∑

F is an l-TST

sgn(F)wt(F).

Proof. We present an involution on the set of l-TSTs with all l-clow sequences
being fixed points, and all other l-TSTs being mapped to TSTs of the same weight
but opposing sign. Since l-clow sequences which are not cycle covers also yield a net
contribution of zero (see Theorem 3.2), the sum over all l-TSTs is precisely cl.

Given an l-TST F = 〈T1, . . . , Tr〉, let H be the set of all vertices which occur as
heads of some tour in the table. For S ⊆ H, we say that S has the clow sequence
property if the following holds: There is an i ≤ r such that:

1. The tour sequences Ti+1, . . . , Tr are all single-tour sequences (say tour se-
quence Tj is the tour Tj).

2. No tour in any of the tour sequences T1, . . . , Ti has a head vertex in S.
3. Each vertex in S is the head of a tour Tj for some i + 1 ≤ j ≤ r., i.e.,

{h(Tj) | j = i+ 1, . . . , r} = S.
4. The tour sequence table 〈Ti+1, . . . , Tr〉 actually forms a clow sequence, i.e.,

the tours Tj for i+ 1 ≤ j ≤ r are clows, and h(Ti+1) < · · · < h(Tr).
In other words, all tours in F whose heads are in S are actually clows which occur
in a contiguous block of single-tour sequences, arranged in strictly increasing order of
heads, and this block is not followed by any other tour sequences in F .
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Note that the empty set vacuously has the clow sequence property.

Example. In the TST 〈 〈1, 2, 5〉, 〈3〉, 〈4〉, 〈6〉 〉, where only tour heads have been
represented and where all tours are clows, {3, 4, 6} has this property but {3, 4}, {3, 6},
{5, 6} do not.

Now, in H, find the smallest vertex v such that H>v = {h ∈ H | h > v} has the
clow sequence property but H≥v = {h ∈ H | h ≥ v} does not.

If no such v exists, then H satisfies the clow sequence property, and hence F is
an l-clow sequence. In this case, map F to itself.

If such a v exists, then locate the first tour sequence Ti = 〈T1, . . . , Tk〉 where v
appears (as a head). Then v is the head of the last tour Tk, because all tours with
larger heads occur in a contiguous block of single-tour sequences at the end. The tour
Tk can be uniquely decomposed as TC, where T is a tour and C a clow, both with
head v.

Case 1. T 6= φ. Map this l-TST to an l-TST where Ti is replaced, at the same
position, by the following two tour sequences: 〈C〉, 〈T1, . . . , Tk−1, T 〉. This preserves
weight but inverts the sign. In the modified l-TST, the newly introduced sequence
containing only C will be chosen for modification as in Case 3.

Case 2. T = φ, and k > 1. Map this l-TST to an l-TST where Ti is replaced, at
the same position, by the following two tour sequences: 〈C〉, 〈T1, . . . , Tk−1〉. This too
preserves weight but inverts the sign. In the modified l-TST, the newly introduced
sequence containing only C will be chosen for modification as in Case 3.

Case 3(a). T = φ and k = 1. Then a tour sequence Ti+1 must exist, since
otherwise H≥v would satisfy the clow sequence property. Now, if Ti+1 has a tour with
head greater than v, then, since H>v satisfies the clow sequence property, the TST
Ti+1, . . . , Tr must be a clow sequence. But recall that T has the first occurrence of v
as a head and is itself a clow, so then Ti, . . . , Tr must also be a clow sequence, and
H≥v also satisfies the clow sequence property, contradicting our choice of v. Thus
Ti+1 must have all tours with heads at most v. Let Ti+1 = 〈P1, . . . , Ps〉. Now there
are two subcases depending on the head of the last tour Ps.

Case 3(b). h(Ps) = v. Form the tour P ′s = PsC. Map this l-TST to a new
l-TST where the tour sequences Ti and Ti+1 are replaced, at the same position, by a
single tour sequence 〈P1, . . . , Ps−1, P

′
s〉. The weight is preserved and the sign inverted,

and in the modified l-TST, the tour P ′s in this new tour sequence will be chosen for
modification as in Case 1.

Case 3(c). h(Ps) 6= v. Map this l-TST to a new l-TST where the tour sequences Ti
and Ti+1 are replaced, at the same position, by a single tour sequence 〈P1, . . . , Ps, C〉.
The weight is preserved and the sign inverted, and in the modified l-TST, the tour C
in this new tour sequence will be chosen for modification as in Case 2.

Thus l-TSTs which are not l-clow sequences yield a net contribution
of zero.

The involution may be simpler to follow if we modify the notation as follows:
decompose each tour uniquely into one or more clows with the same head and represent
these clows in the same order in which they occur in the tour. Now a TST is a table of
sequences of clows where, within a sequence, clows are ordered in nondecreasing order
of head. It is easy to see that we are still talking of the same set of objects, but only
representing them differently. Now, the involution picks the vertex v as above, picks
the first tour sequence where v occurs as a head, picks the last clow in this sequence,
and either moves this clow to a new sequence if it is not alone in its sequence, as in
Cases 1 and 2, or appends it to the following sequence, as in Case 3.



DETERMINANT: OLD ALGORITHMS, NEW INSIGHTS 485

Example. For a TST F represented using clows, let the clow heads be as shown
below:

〈 〈1, 2, 2, 5, 5〉, 〈3〉, 〈4〉, 〈6〉 〉
Vertex 5 is chosen as v, the first tour sequence is chosen, and as dictated by Case 1,
this TST is mapped to a new TST F ′ with the tours rearranged as shown below:

〈 〈5〉〈1, 2, 2, 5〉, 〈3〉, 〈4〉, 〈6〉 〉
In F ′ again vertex 5 is chosen, and the first tour sequence is merged with the second
as dictated by Case 3(a), to get back F .

If the first tour sequence of F were 〈1, 2, 2, 5〉 instead, then by Case 2, F would
be mapped to

〈 〈5〉〈1, 2, 2〉, 〈3〉, 〈4〉, 〈6〉 〉,
from which F would be recovered by Case 3(b).)

Algorithm using tour sequence tables. We show how grouping the l-TSTs in a
carefully chosen fashion gives a formulation which is easy to compute.

Define el = (−1)lcl; then

el =
∑

F is an l-TST

sgn(F)wt(F).

To compute cl and hence el using this characterization, we need to compute the
contributions of all l-TSTs. This is more easily achieved if we partition these con-
tributions into l groups depending on how many edges are used up in the first tour
sequence of the table. Group j contains l-TSTs of the form F = 〈T1, . . . , Tr〉 where
|T1| = j. Then F ′ = 〈T2, . . . , Tr〉 forms an (l − j)-TST, and sgn(F) = −sgn(F ′) and
wt(F) = wt(T1)wt(F ′). So the net contribution to el from this group, say el(j), can
be factorized as

el(j) =
∑

T : j-tour sequence

F ′: (l− j)-TST

−sgn(F ′)wt(F ′)wt(T )

= −
(∑

T : j-tour sequence wt(T )
)(∑

F ′: (l− j)-TST sgn(F ′)wt(F ′)
)
,

= −djel−j
where dj is the sum of the weights of all j-tour sequences.

Now we need to compute dj .
It is easy to see that Al[1, 1] gives the sum of the weights of all tours of length

l with head 1. To find a similar sum over tours with head k, we must consider the
induced subgraph with vertices k, k + 1, . . . , n. This has an adjacency matrix Ak,
obtained by removing the first k− 1 rows and the first k− 1 columns of A. (We have
already exploited these properties in section 3.2.) Let y(l, k) denote the sum of the
weights of all l-tours with head k. Then y(l, k) = Alk[1, 1].

The weight of a j-tour sequence T can be split into n factors: the kth factor is 1
if T has no tour with head k, and is the weight of this (unique) tour otherwise. Thus

dj =
∑

0≤li≤j: l1+···+ln=j

∏n
i=1 y(li, i)

=
∑

0≤li≤j: l1+···+ln=j

∏n
i=1A

li
i [1, 1].
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Let us define a power series D(x) =
∑∞
j=0 djx

j . Then, using the above expression
for dj , we can write

D(x) =

( ∞∑
l=0

xlAl1[1, 1]

)( ∞∑
l=0

xlAl2[1, 1]

)
. . .

( ∞∑
l=0

xlAln[1, 1]

)
.

Since we are interested in dj only for j ≤ n, we can ignore monomials of degree
greater than n. This allows us to evaluate the first n + 1 coefficients of D(x) using
matrix powering and polynomial arithmetic. And now el can be computed inductively
using the following expression:

el =
l∑

j=1

el(j) =
l∑

j=1

−djel−j .

But this closely matches Chistov’s algorithm [5]! The only difference is that
Chistov started off with various algebraic entities, manipulated them using polynomial
arithmetic, and derived the above formulation, whereas we started off with TSTs
which are combinatorial entities, grouped them suitably, and arrived at the same
formulation. And at the end, Chistov uses polynomial arithmetic to combine the
computation of D(x) and el. For completeness, we sketch below how Chistov arrived
at this formulation.

Chistov’s algorithm adopts the following technique (see, for example, [13]): Let
Ci be the submatrix obtained by deleting the first n− i rows and first n− i columns
of A. (In our earlier notation, Ci is the matrix An−i+1. We use Ci here to keep
subscripts shorter.) Let ∆i(x) be the determinant of Ei = Ii − xCi, where Ii is the
i× i identity matrix. Then χA(λ) = λn∆n(1/λ). First, express 1/∆n(x) as a formal
power series as follows: Let ∆0(x) ≡ 1, then

1

∆n(x)
=

∆n−1(x)

∆n(x)
· ∆n−2(x)

∆n−1(x)
· · · ∆0(x)

∆1(x)
.

But ∆i−1(x) and ∆i(x) are easily related using matrix inverses:

∆i−1(x)

∆i(x)
=

det(Ei−1)

det(Ei)
= (E−1

i )[1, 1].

Furthermore, it is easy to verify that E−1
i = (Ii − xCi)−1 =

∑∞
j=0 x

jCji . Thus,

1

∆n(x)
=

 ∞∑
j=0

xj(Cjn)[1, 1]

 ∞∑
j=0

xj(Cjn−1)[1, 1]

 . . .

 ∞∑
j=0

xj(Cj1)[1, 1]

 .

Let fj be the coefficient of xj in 1/∆n(x).
Now, since ∆n(x)× 1/∆n(x) ≡ 1, all coefficients other than that of the constant

term must be 0. This gives us equations relating the coefficients of ∆n(x), and hence
of χA(λ), to those of 1/∆n(x). Let 1/∆n(x) = 1 − xH(x), where H(x) = −(f1 +
f2x+ f3x

2 + · · ·). Then

∆n(x) =
∑
i≥0

xi [H(x)]
i

= c0x
n + c1x

n−1 + · · ·+ cn−1x+ cn.
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So cn−m, the coefficient of xm in ∆n(x), is given by

cn−m =
∑
i≥0 coefficient of xm in xi [H(x)]

i

=
∑m
i=0 coefficient of xm−i in [H(x)]

i
.

Since only the coefficients up to xn of any power of H(x) are used, the entire compu-
tation (of 1/∆n(x) and ∆n(x)) may be done mod xn+1, giving an NC algorithm.

Note that the expression for 1/∆n(x) obtained above is precisely the power series
D(x) we defined to compute the contributions of j-tour sequences.

3.4. Relating tours and cycle covers: Getting to Csanky’s algorithm.
We now consider the most unstructured generalization of a cycle: we relax the con-
dition that a tour must begin from an occurrence of the minimum vertex. All we are
interested in is a closed path, and we call such paths loops. Formally, we have the
following definition.

Definition 3.7. A loop at vertex v is a walk from v to v; i.e., a loop L is an
ordered sequence of edges L = 〈e1, e2, . . . , ep〉 such that ei = 〈ui, ui+1〉 for i ∈ [p− 1]
and up+1 = u1. The loop has length p and weight

∏p
i=1 w(ei).

Having relaxed the structure of a loop, we now severely limit the way in which
loops can be combined in sequences. A loop may be combined only with a partial
cycle cover. Similar in spirit to Theorems 3.2, 3.4, and 3.6, we now show cancellations
among such combinations.

Theorem 3.8. For k ∈ {1, . . . , n},

kck +
k∑
j=1

ck−j

 ∑
L is a loop of length j in GA

w(L)

 = 0.

It is easy to see that Aj [i, i] sums the weights of all paths of length j from i to i in
GA. Such paths are loops; thus,

∑n
i=1A

j [i, i] sums the weights of all loops of length
j in GA. But

∑n
i=1A

j [i, i] = sj , the trace of the matrix Aj . Thus the above theorem
is merely Leverier’s lemma, usually stated as follows.

Lemma 3.9 (Leverier’s lemma [10, 13]). The coefficients of the characteristic
polynomial of a matrix A satisfy the following equalities:

1 0 0 · · · 0 0
s1 2 0 · · · 0 0
s2 s1 3 · · · 0 0
...

...
...

... 0
sn−2 sn−3 sn−4 · · · n− 1 0
sn−1 sn−2 sn−3 · · · s1 n





c1
c2
c3
...
...
cn


= −



s1

s2

s3

...

...
sn


,

where sj is the trace of the matrix Aj.
A combinatorial proof of the above lemma. Consider the kth claimed equality,

kck +
k∑
j=1

sjck−j = 0,

where c0 = 1. The terms contributing to
∑k
j=1 sjck−j consist of loops of length j

and partial cycle covers of length k − j. The loops carry only a weight but no sign,
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whereas the partial cycle covers are weighted and signed. We show how to achieve
cancellations within this set.

Let S be a loop of length j, and let C be a (k − j)-cycle cover.

Case 1. S forms a simple cycle, disjoint from all the cycles in C. In this case, S
can be merged into C to form a k-cycle cover C′, with weight wt(S)wt(C) and sign
−sgn(C). This will cancel against one copy of C′ coming from the kck part. What
about the k − 1 remaining copies? Note that if C′ = 〈C1, . . . , Cl〉, then each Ci can
be pulled out to give a partition into a loop S and a cycle cover C, cancelling against
the corresponding term from slick−li . Furthermore, each Ci can be written as a loop

in li different ways, depending on the starting point. So C′ gives rise to
∑l
i=1 |li| = k

pairs of the form (loop, partial cycle cover); hence the term kck is accounted for.

Case 2. S and C cannot be merged into a k-cycle cover. Start traversing the loop
S until one of the following things happen:

1. S hits a vertex v in C.
2. S revisits a vertex v.

Only one of the two can happen first. Suppose S touches cycle C of C. Let |C| = l.
Consider the new pair S′, C′, where cycle C is removed from C and inserted in S at
the first possible position v. This pair contributes the same weight with opposite sign
to the term sj+lck−j−l, and these two terms cancel out. Now suppose S completes
a simple cycle C of length l within itself without touching C. Consider the new pair
S′, C′, where cycle C is removed from S and inserted in C at the appropriate position.
This pair contributes the same weight with opposite sign to the term sj−lck−j+l,
where |C| = l, and these two terms cancel out.

Algorithm using loops. Any algorithm for computing χA(λ) that uses Leverier’s
lemma implicitly exploits cancellations among loops and partial cycle covers in com-
puting a sum which evaluates to precisely l-cycle covers. A straightforward sequential
algorithm is to first compute for each j, the sum sj , of the weights of all loops of
length j in GA using either matrix powering or dynamic programming, and then to
compute c1, c2, . . . , cn in order using the recurrence. Csanky’s implementation [6]
directly uses matrix inversion to compute the cj ’s in parallel from the values of si’s.

Note that l-loops are closed paths of length l with no restriction on the ordering
of the edges. As sequences of edges, they thus subsume tours, clows, and cycles. In
this sense, Csanky’s algorithm is more extravagant than the others described above.
On the other hand, it is the most frugal in allowing combinations; a loop may only
be combined with a partial cycle cover and not with other loops.

4. Discussion. Starting with the definition of the coefficients of the charac-
teristic polynomial as the signed weighted sum of all partial cycle covers, we have
considered several ways of expanding the summation while keeping the net contribu-
tion the same. In a sense, the expansion corresponding to clow sequences with the
prefix property, as generated by Samuelson’s method, is the most conservative. All
the other expansions we have considered include these sequences and more. (A clow
is a tour is a loop, but not vice versa.) There are smaller expansions that still cancel
out nicely (for instance, consider clow sequences where Ci ∩ Cj 6= φ for at most one
pair i, j). However, these smaller expansions do not seem to yield efficient computa-
tional methods. Can this observation be formally proved, i.e., can one show that any
efficient method for computing cl must include at least the l-clow sequences with the
prefix property?

One of the oldest methods for computing the determinant is Gaussian elimination.
Strassen ([20] or see the textbook presentation in [14]) shows how to obtain a division-
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free code corresponding to Gaussian elimination. Can this method also be interpreted
combinatorially?

If we assume that addition, subtraction, multiplication, and division are unit-
cost operations, then Gaussian elimination remains one of the most efficent methods
for computing the determinant. Can this efficiency be explained combinatorially?
Strassen’s interpretation uses formal power series expansions and shows how Gaussian
elimination uses the entire power series rather than a truncated polynomial. So high
degree monomials are generated, corresponding to sequences of clows or tours or loops
of arbitrary length, not just restricted to n. Is this where the computational advantage
lies — do higher degrees help?
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binatorial interpretations and construction in the clow sequences approach extend to
Chistov’s algorithm as well. We thank an anonymous referee for bringing the refer-
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