An Architecture for Nested Transaction Support
on Standard Database Systems+

Erik M. Boertjes, Paul W.P.J. Grefen, Jochem Vonk, Peter M.G. Apers

Center for Telematics and Information Technology
University of Twente
{boertjes,grefen,vonk,apers } @cs.utwente.nl

Abstract. Many applications dealing with complex processes require database support for
nested transactions. Current commercial database systems lack this kind of support, offering
flat, non-nested transactions only. This paper presents a three-layer architecture for implement-
ing nested transaction support on a commercial multi-database environment. The architecture is
directed at high portability and flexibility. The modular approach and the simple, event driven
interfaces between the layers of the architecture enable the nested transaction support to be
adapted to various applications, nested transaction models and database management systems.
The architecture has been implemented to support a prototype of a commercial next-generation
workflow management system.

1 Introduction

There is an increasing use of database management systems (DBMS’s) in advanced
applications that deal with complex processes. In the WIDE Esprit project [Cas96a,
Cas96b, Cer97, Gre97], a multi-level process model is adopted, allowing hierarchical
decomposition of such complex processes (e.g. workflow processes). The process se-
mantics of the higher levels of the process hierarchy are usually different from those in
the lower levels of the hierarchy. To comply with these process semantics, extended
transaction support is needed that goes beyond the standard transaction support offered
by standard, commercial DBMS’s.

Higher level processes are in general long running processes with cooperative char-
acteristics. These characteristics demand that these processes should not be executed
in strict isolation. Strict isolation would prevent cooperation between processes as they
would not be able to share information. Strict atomicity of long running processes is
not desirable either. A process failure (e.g. a system crash) would cause the loss of all
work done so far by the process. Processes lower in the hierarchy are relatively short
living processes requiring strict transactional semantics. The separation between the
higher and lower levels is formed by the notion of business transaction in the
workflow application, being a subprocess that is composed of subprocesses that to-
gether form an atomic unit of work from an application point of view. This atomicity
is not completely strict however, because of the notion of critical and non-critical
subprocesses. In general there will be subprocesses whose successful completion is not
a necessary condition for the successful completion of their parent. We call such sub-

* The work presented in this paper is supported by the European Commission in the WIDE Project (ES-
PRIT No. 20280). Partners in WIDE are Sema Group sae and Hospital General de Manresa in Spain,
Politectnico di Milano in Italy, ING Bank and University of Twente in the Netherlands.

G. Quirchmayr et al. (Eds.): DEXA’98, LNCS 1460, pp. 448-459, 1998.
© Springer-Verlag Berlin Heidelberg 1998

An Architecture for Nested Transaction Support on Standard Database Systems 449

processes non-critical. Critical subprocesses are processes that have to be completed
successfully in order to let their parent complete successfully. Business transactions
need to be strictly isolated from each other as intermediate results of business transac-
tions have no semantics. Since subprocesses within business transactions in general
share data, isolation within business transactions is relaxed.

Traditional flat transaction models fail to model the process semantics of both lev-
els described above because they do not allow transactions to be nested neither do they
support relaxed atomicity nor relaxed isolation. Therefore, extended transaction sup-
port is desired. As current applied research shows [Cosa, Reu95, Sar96], there is a
commercial and scientific interest in extended transaction support. Meanwhile,
[Alo96, Bar95, Chr94] state that actual implementations of such support are hard to
find. In WIDE, a combination of modified existing transaction models is used to cope
with the transactional requirements posed by complex processes [Gre97]. The higher
level processes are mapped onto a Saga-like transaction model providing relaxed
transactional semantics [Gre98]. The lower level processes, i.e. business transactions
and the processes below them, are mapped onto the nested transaction model, provid-
ing atomicity of business transactions, full isolation between business transactions and
relaxed isolation within them.

This paper focuses on transaction support for the lower level processes. We propose
to build nested transaction support on top of existing standard commercial DBMS’s.
Taking commercial DBMS’s as a basis will facilitate introduction of the nested trans-
action support in business environments. Main focus of this paper is a highly portable
and flexible architecture for the implementation of a nested transaction support server.
To obtain portability and flexibility, the architecture is composed of three independent
layers. The upper layer of the architecture translates process events from the client
application to nested transaction primitives. The middle layer maps these nested trans-
action primitives to abstract, DBMS-independent flat transaction primitives. The
lower layer maps the abstract flat transaction primitives on DBMS-specific transaction
primitives in a multi-DBMS environment. Because of the simple event based commu-
nication between the layers a highly modular architecture is obtained resulting in high
portability and flexibility. The lower layer, for instance, can be adapted individually to
various DBMS’s. Various nested transaction models can be handled by adapting the
middle layer. The architecture has been realized in a next generation workflow sys-
tem, as part of the WIDE Esprit project.

In section 2 we give an overview of related work in the area of nested transaction
support. Section 3 describes the adopted nested transaction model as well as the map-
ping process from nested transactions to flat transactions. Section 4 gives an architec-
ture for nested transaction support, an implementation of which is discussed in
section 5. Conclusions and directions for further work are given in section 6.

2 Related Work

A model for nested transactions is first introduced in [Mos85]. It is proposed to over-
come the limitations of the traditional flat transaction model in dealing with complex
processes. Different variations on the model can be found in [EIm92]. We aim at the
implementation of nested transaction support rather than introducing another nested

450 Erik M. Boertjes et al.

transaction model. The work in [Chr94] describes how ACTA is used as a tool for the
synthesis of extended transaction models. Although the framework could be used to
show the correctness of a particular implementation, it does not discuss the imple-
mentation itself nor does it give an architecture for it. In the approach given in
[Kan95], each leaf transaction of a nested transaction tree is mapped on a separate flat
transaction. All changes made by a subtransaction become visible to the parent trans-
action and its children upon the subtransaction’s commit. Not before then, the updates
are made durable. One sibling can use the results of the other sibling only after the
latter has committed. This approach prevents data sharing between concurrent sub-
transactions. In our view however, data sharing between concurrent subtransactions
within a business transaction is required, as stated in the previous section. [Day92]
gives another approach to map long running activities onto transactions. They also
break down the process in transactions, comparable to business transactions. Main
difference is their use of rules and triggers to express and manage control flows. An
extended nested transaction model is used to govern the execution of these rules rather
than giving nested transaction support to complex processes, as we do.

In [Alo96] it is shown how several transaction models can be implemented using a
Workflow Management System (WFMS). They propose to implement extended trans-
action support as part of the workflow application. In WIDE however, we aim at ex-
tended transaction support orthogonal to workflow management functionality by
building a separate module that provides extended transaction support. An example of
a commercial WEMS is COSA [Cosa]. In COSA the concept of transaction is in-
cluded, but contrary to our approach, only flat traditional transactions are supported.
Thus COSA does not offer extended transaction semantics.

In the Reflexive Transaction Framework [Bar95] transaction support is built on top
of a Transaction Processing (TP) monitor. In our approach, the transaction support is
built directly on top of a commercial DBMS. This seems to be more attractive for
practical use because it does not require a TP monitor to be configured. Furthermore,
only a small part of our architecture is DBMS-specific. This makes it more easily
portable to other DBMS environments than architectures conforming to the Reflexive
Transaction Framework.

3 Nested Transaction Support

In section 1 we have given the requirements posed on transaction management to cope
with nesting in complex processes. This section specifies the nested transaction sup-
port that fulfills the requirements of section 1. Section 3.1 gives a description of our
nested transaction model. Section 3.2 describes how complex processes are mapped
onto nested transactions. Section 3.3 discusses the mapping from nested transactions
to flat, DBMS-independent transactions. Section 3.4 presents the last mapping step,
describing the mapping from DBMS-independent flat transactions to DBMS-specific
flat transactions.

3.1 Nested Transaction Model

The nested transaction model has been proposed in [Mos85] to overcome the limita-
tions of the flat transaction model in dealing with complex processes. Nested transac-

An Architecture for Nested Transaction Support on Standard Database Systems 451

tions allow for safe concurrency within transactions and offer a modular approach to

realize both intra-transaction and inter-transaction parallelism. Furthermore, nested

transactions allow for a finer grained recovery mechanism than flat transactions, lo-
calizing the effects of failures and faults (see [EIm92]).

Our nested transaction model is based on

begr(r;l rr],?:m the nested transaction model given in [Mos85]

and allows for hierarchical decomposition of

transactions, flexible notion of atomicity and

order flexible notion of isolation. We use the con-

meal cepts of critical and non-critical transactions

/ (called vital and non-vital in [Elm92]) to lo-
reserve confirm

bed ed calize the effect of failures. Nested transac-
order order . . .

main dish dessert tions are strictly isolated from each other. The

Figure 1: Example nested isolation mechanisms we adopt in our model to

transaction provide safe concurrency within a nested trans-

action are simpler than those proposed in
[Mos85]. We allow all subtransactions within a nested transaction to share data con-
currently, while models described in [Mos85, ElIm92, Kan95] allow datasharing be-
tween siblings only. For reasons of brevity, we will not discuss details of the isolation
aspects of our model.

Figure 1|gives an example of a nested transaction that is part of a real-life workflow
application in a hospital. The top level transaction ‘arrange bed & meal’ is decom-
posed into subtransactions ‘order meal’, ‘reserve bed’ and ‘confirm bed’. Subtransac-
tion ‘order meal’ is in turn decomposed into subtransactions ‘order main dish’ and
‘order dessert’. The leaves of the tree (e.g. ‘order main dish’) represent transactions
that are no further decomposed. Leaf transactions are strictly atomic.

When a subtransaction completes successfully, it is said to have committed, even
though it is not a top-level transaction. Such commitment is relative: any updates be-
come permanent only if all subtransactions containing the committed subtransaction
also commit, and the enclosing top-level transaction completes. Thus, top-level trans-
actions are special: they are the only irrevocable transactions.

Flexible atomicity is acquired by allowing a transaction to commit although not all
its subtransactions have completed successfully. This flexible atomicity is specified by
labeling each subtransaction as being either critical or non-critical. A subtransaction is
labeled critical when its successful ending is a necessary (but not sufficient) condition
for the successful ending of its parent transaction. A subtransaction is labeled non-
critical when its success does not affect the success of its parent. A transaction may
commit even when its non-critical children have not ended successfully. Thus, the
atomicity of the transaction is relaxed.

In Figure 1, all subtransactions are critical except those marked ‘NC’ (non-critical).
The subtransaction ‘order meal’ cannot commit when its subtransaction ‘order main
dish’, which is critical, has not ended successfully. But ‘order meal’ can commit even
when its subtransaction ‘order dessert’, which is non-critical, has ended unsuccess-
fully. This makes ‘order meal’ non-atomic.

452 Erik M. Boertjes et al.

3.2 Mapping Processes onto Nested Transactions

The mapping step from processes onto nested transactions is rather straightforward.
Because of their process characteristics, business transactions are mapped onto top
level nested transactions. This yields the required strict isolation between business
transactions. Processes below the business transaction level are mapped onto subtrans-
actions. This gives the required relaxed isolation between subprocesses of the same
business transaction. Critical subprocesses are mapped onto critical subtransactions
and non-critical subprocesses are mapped onto non-critical subtransactions.

Each time a new business transaction is started, a new top level transaction is cre-
ated. Likewise, each time a subprocess of a business transaction starts, a new sub-
transaction is started. This subtransaction is part of the top level transaction on which
the business transaction is mapped. The nested transaction (i.e. the top level transac-
tion and all subtransactions) is committed only when the complete business transaction
ends successfully.

3.3 Mapping from Nested Transaction Model to Flat Transaction Model

As stated in section 3.1, we adopt strict inter-nested transaction isolation while having
relaxed intra-nested transaction isolation. The mapping from nested transactions to flat
transactions has to preserve these isolation characteristics. To preserve inter-nested
transaction isolation, different nested transactions are mapped onto different flat trans-
actions. Accesses in different top-level nested transactions are mapped onto different
flat ACID transactions. To preserve intra-nested transaction isolation, an entire nested
transaction is mapped onto the same flat transaction. This means that each database
access of a nested transaction is done within the same flat ACID transaction, allowing
data sharing. A result of this is that accesses in concurrent subtransactions within the
same nested transaction are executed in an interleaved fashion in the corresponding
flat transaction. The flat transaction is committed if and only if the corresponding top
level nested transaction is committed.

Relaxed atomicity is realized by using savepoints in the flat transaction model.
Rolling back a subtransaction in the nested transaction model corresponds to rolling
back to a savepoint in the flat transaction model. Because of the above mentioned in-
terleaving of accesses in the flat transaction, rolling back one subtransaction in the
nested transaction model might require other subtransactions to be rolled back as well.
An algorithm has been developed that determines the minimum amount of subtransac-
tions to be rolled back.

Any time a non-critical subtransaction starts, a savepoint in the flat transaction is
set. When a failure occurs in a non-critical subtransaction, the flat transaction is at
least rolled back to that savepoint. The flat transaction has to be rolled back even fur-
ther when other subtransactions performed accesses concurrently with the failed sub-
transaction. When a failure occurs in a critical subtransaction, its parent should be
rolled back. If the parent is critical as well, the parent’s parent should be rolled back in
turn. As a result of the failure, either a non-critical ancestor of the failing transaction is
rolled back or the whole nested transaction is rolled back. In the flat transaction model
this corresponds with either aborting the whole flat transaction or rolling back to the

An Architecture for Nested Transaction Support on Standard Database Systems 453

savepoint coinciding with the start arrange bed and meal

of the non-critical ancestor. Again,

nested , order meal

concurrency aspects have to be !

. reserve order order
taken into account. (bed , main dlSh} } dessert

Figure 2 shows the progress in _confirm bed

time of the nested transaction of ‘
Figure 1|up to the point where sub- \ Ly L
transaction ‘order dessert’ fails. flat 1 ‘ SIL ‘
Figure 2 also shows the mapping of
the nested transaction onto a flat . database access in "confirm bed" t

transaction. Subtransactions ‘re- \L database access in 'order dessert' SP=savepoint
serve bed’ and ‘order main dish’
have ended. Subtransaction ‘con-
firm bed’ is still active and is con-
current with ‘order dessert’. Because ‘order dessert’ is non-critical, a savepoint has
been set at its start. At failure of ‘order dessert’ the flat transaction is rolled back to
this savepoint. Subtransaction ‘confirm bed’ however, has done database accesses that
are interleaved with those of ‘order dessert’. Therefore ‘confirm bed’ should be
aborted as well. Because ‘confirm bed’ is critical, its parent ‘order meal’ is aborted as
well. Subtransaction ‘order meal’ is a critical child of the top level transaction ‘ar-
range bed & meal’. Thus, the whole nested transaction is canceled and the flat trans-

action is aborted.

Figure 2: Example of mapping a nested
transaction onto a flat transaction

3.4 Mapping from Flat Transaction Model to Database Specific Transactions

The final step in the mapping

process involves mapping of ab-
stract, database independent trans-
action operations to database
specific operations. Operations like
starting a new flat transaction, set-
ting savepoints, and rolling back to

Abstract operations

Oracle OCI functions

start transaction OOPEN
commit OCOM, OCLOSE
abort OROL

rollback to savepoint

OPARSE, OEXEC

set savepoint

OPARSE, OEXEC

savepoints are mapped onto the
functions that the DBMS offers.
Table 1| gives examples of DBMS-
specific operations, in this case those of the Oracle DBMS. The left column contains
abstract flat transaction operations that are mapped on the operations of the Oracle
OCI library [Ora96] listed in the right column. Note that this mapping is not a one-to-
one mapping. There are no OCI primitives for setting savepoints or for rolling back to
savepoints. In those cases SQL-statements are used, parsed and executed by the OCI
primitives OPARSE and OEXEC.

Table 1: Abstract and Oracle specific
flat transaction operations

454 Erik M. Boertjes et al.

4 Architecture

This section describes the architecture of a software component that offers the nested
transaction support as specified in section 3. It maps nested processes via a nested
transaction model onto DBMS-specific flat transactions. The Nested Transaction Sup-
port component acts like a server and can handle multiple clients simultaneously, and
per client multiple transactions. [Figure 3| shows the communication between the
Nested Transaction Support (NTS) server and its client, a Process Engine (PE). The
PE notifies the NTS of process events like the start of a business transaction or the
canceling of a subprocess. The NTS provides the PE with status information on the
nested transaction (e.g. the list of subtransactions that have been rolled back due to the
canceling of a subprocess). In case a new business transaction or subprocess is started,
the NTS returns the identifier of the transaction on which it has mapped the new busi-

ness transaction or subprocess. This

. . . process events

identifier is used by the PE when per-

forming database accesses. These ac- PErgC!ianS: transaction 1Ds / Trgﬂiﬂggon
cesses are performed outside the NTS. 9 status Support
When the PE wants to access the data- _ context requests

base during a subprocess, it requests a (client) (server)

physical database context from the NTS, context IDs

providing the NTS with the transaction
identifier on which the subprocess is
mapped. The NTS returns the physical
database context in which the PE should perform the database access.

The architecture of the NTS consists of three layers, each performing one of the
mapping steps. The interfaces of the layers are kept simple by using event based
communication, resulting in a modular architecture of independent layers, which
makes the architecture portable and flexible. Portability allows the architecture to be
implemented in different DBMS environments with little adaptation, while flexibility
allows it to be easily adapted to various nested transaction models. Modularity of the
architecture allows the layers to be used separately in various applications. The lower
layer, for instance, can be used independently in environments with flat transactions
only. Another example is the use of the lower two layers separately from the top layer
in situations where there is at most one business transaction active at a time.

Figure 4/gives a global overview of the architecture. The sections below each de-
scribe one of the architecture’s layers.

Figure 3: Communication between
NTS server and its client

4.1 Nested Transaction Manager

The Nested Transaction Manager (NTM) performs the first mapping step as de-
scribed in section 3.2. It acts as a nested transaction support server and can handle
multiple clients simultaneously. It receives notifications of process events (like ‘start
subprocess’ and ‘cancel subprocess’) from clients and maps these events to nested
transaction operations (like ‘start subtransaction’ and ‘cancel subtransaction’).

The NTM takes care of passing each nested transaction operation to the transaction
object that represents the corresponding nested transaction in the Nested Transaction

An Architecture for Nested Transaction Support on Standard Database Systems 455

Object layer. The NTM manages those CLIENT
objects: it creates and removes top-level
transaction objects when needed by a
process (see section 4.2).

process events

Nested Transaction Manager

nested transaction

4.2 Nested Transaction Objects operations ~—_
The middle layer of the architecture ‘Nested Transaction Objects
consists of Nested Transaction Objects DBMS-independent

. . A flat transacton ~—__
(NTO’s). There are two kinds of objects: operations
each Top-level Transaction (TT) object ‘ Flat Transaction Interface
represents a top-level transaction, while »

. . DBMS-specific ——

each Subtransaction Object (ST) repre- flat transaction
sents a subtransaction.| Figure 5 shows operations DBMS

the internal architecture of this layer, Figure 4: Internal architecture of NTS
with a hierarchical arrangement of the
objects.

Top-level transaction objects are responsible for the mapping from the nested trans-
action model to the abstract flat transaction model. They use the ST objects to keep
track of (1) the hierarchical decomposition of the top-level nested transaction and (2)
concurrency between subtransactions within the nested transaction.

There is no centralized administration of this decomposition or concurrency: this
knowledge is distributed among the objects. Each object applies the same algorithms
on the part of the nested transaction’s state that it represents. Each object takes care of
creating and deleting its own children. The TT objects are created and deleted by the
NTO-layer’s client (the Nested Transaction Manager).

A nested transaction operation enters the NTO-layer at a TT object. This object
passes the message to each of its children, which in turn pass it further to their chil-
dren until it reaches the proper object. This object takes care of handling the operation,
by performing an action like creating or deleting a child or by changing its status (e.g.
to ‘ended’ or ‘canceled’). Objects update their own administration of hierarchical
structure and concurrency. Decisions

NTO concerning the canceling of subtrans-
d actions are taken locally by the objects

@ corresponding to the subtransactions.

Transaction e . .

Object The notification of the action or deci-

sion is sent back up the tree until it
reaches the TT object. Based on the
notifications it gets from its children,
the TT object maps the operation to
the proper flat transaction operation.
As an example we take the nested
transaction operation ‘abort subtrans-
action’. This operation is sent by the
NTM layer to the TT object containing
the subtransaction. The TT object

Sub
Transaction
Object

Sub
Transaction
Object

Sub
Transaction
Object

Sub
Transaction
Object

Figure 5: Objects in the NTO layer

456 Erik M. Boertjes et al.

sends the abort message down until it
reaches the ST object representing the sub-
transaction to be canceled. This ST object FTI
changes its status to ‘canceled’ and informs Flat Transaction Manager

its parent of the cancellation. The parent
decides whether it should be canceled as
well, which depends on whether the child is
critical or not. The parent, in turn, notifies
its own parent of the decision, until the
decision reaches the TT object. Other ST Connection Manager
objects representing subtransactions that
are concurrent with the one aborted, might A
decide to abort as well. These decisions are Conn
also passed up to the TT object. Based on
all notifications coming from down the
hierarchy, the TT object maps the ‘abort

Flat
Transaction
Object

subtransaction’ operation either on the flat I

transaction operation ‘rollback to save- WI

point’ or on the flat transaction operation Figure 6: Internal architecture of the
‘abort flat transaction’. The latter one is FTI

chosen when one of the critical children (if
any) of the TT object has decided to abort itself.

4.3 Flat Transaction Interface

The Flat Transaction Interface (FTI), which forms the lower layer of the architecture,
is responsible for the third mapping step (see section 3.4). It translates abstract flat
transaction primitives to database specific flat transaction operations. This layer thus
forms the interface to the DBMS for the other two, DBMS-independent layers,
shielding them from DBMS-specific issues. By adapting the FTI, the nested transac-
tion support can be ported to different DBMS’s. Besides the mapping process, the FTI
also takes care of handling the client-server connections with the various DBMS’s.
Figure 6|shows the internal architecture of the Flat Transaction Interface.

The Flat Transaction Manager handles the creation and removal of Flat Transaction
Objects. Each time it is notified (by a Nested Transaction Object) of the start of a new
flat transaction, it creates a new flat transaction object. Likewise, when it is notified of
the end of a flat transaction (either by commit or cancel) it removes the corresponding
Flat Transaction object. Besides, the Flat Transaction Manager is responsible for dis-
patching the abstract flat transaction primitives to the proper Flat Transaction Objects.

A Flat Transaction Object represents one abstract, DBMS-independent, flat trans-
action. In practical applications, there is sometimes the need to perform accesses on
different DBMS’s within the same business transaction. As each business transaction
is mapped on one flat abstract transaction (via a nested transaction), this abstract flat
transaction should be mapped on multiple physical transactions. The Flat Transaction
Object takes care of this mapping. It ensures that all physical flat transactions belong-
ing to the same abstract flat transaction are committed, aborted or partially rolled back

An Architecture for Nested Transaction Support on Standard Database Systems 457

simultaneously. Flat transactions that are mapped onto more than one physical trans-
action are pseudo-atomic however. Imagine a flat transaction being mapped onto two
different physical transactions T1 and T2. When the flat transaction commits, the Flat
Transaction Object signals T1 and T2 to commit. T1 might commit successfully while
committing T2 might fail because of a DBMS failure, leaving the flat transaction only
partially committed.

The Connection Manager (CM) provides its clients (the Flat Transaction Objects)
with connections to the DBMS. When a Flat Transaction Object asks for a new physi-
cal transaction, the CM provides a free connection that is not in use by a Flat Transac-
tion object. If there is no free connection, the CM opens a new one by creating a new
Connection Object representing a client-server connection with the DBMS. The Con-
nection manager returns a reference to this Connection Object.

The X/A protocol [XOp96] allows multiple concurrent physical transactions to use
the same connection, but is not part of standard DBMS functionality. Since our goal is
to build transaction support on standard DBMS functionality, we assume that a con-
nection can be used by at most one physical transaction at a time. The actual opening
and closing of connections is done by the Connection Objects, as they contain the
DBMS-specific knowledge required to do so. Each Connection Object represents a
client-server connection to a DBMS. Connection Objects contain DBMS-specific
methods for opening and closing connections. They also perform the mapping from
DBMS-independent transaction primitives to DBMS-specific transaction operations.
Thus, all DBMS-specific knowledge is kept locally in the Connection Objects. For
each DBMS there must be defined a Connection Object class, from which the Con-
nection Manager can instantiate Connection Objects. The CM picks the class depend-
ing on the DBMS to which the CM’s client requires a connection.

5 Implementation

The architecture specified in section 4 has been implemented in the WIDE Esprit
project [Cas96a, Cas96b, Cer97, Gre97]. Goal of WIDE (Workflow on Intelligent
Distributed database Envi-
ronment) is to develop ex- glopal transaction o ont trateanton Suabrt
tended database technology

Workflow
. . Client
as the basis for a commercial Ne&tggagrea:ns.
next-generation workflow

Global
management .system. In Tronon Workion
WIDE, extending database Support Engine !
technology focuses on ex- .
tended transaction manage- Interface

ment and active rule support.

Figure 7 shows how the persistent o
. data j/Rel.
nested transaction support management Mapper
architecture is embedded in
the overall WIDE architec- ‘ DBMS ‘

ture. In WIDE, the nested
transaction support is called Figure 7: WIDE transaction support architecture

458 Erik M. Boertjes et al.

‘Local Transaction Support’. The Saga based transaction support for the higher level
processes (see section 1) is called Global Transaction Support. The terms Global and
Local do not refer to distribution aspects but rather to being below or above the busi-
ness transaction level. As can be observed from the architecture, the two modules of
transaction support are completely orthogonal. For a detailed description of the WIDE
architecture, see [Cer97].

The Workflow Engine (WFE) is the core of the Workflow Management System. It
takes care of scheduling and assigning processes. It provides the Nested Transaction
Manager with the process events of the processes on and below the level of business
transactions. The Nested Transaction Support performs the mapping as described in
section 3. It provides the WFE with transaction identifiers, that are used by the WFE
to access the DBMS. Database accesses go through the Object/Relational Mapper.
This Mapper provides an object-oriented database access interface to its clients and
maps this to the relational interface of the DBMS. It requests the physical database
context in which it performs the accesses from the FTI layer, providing it with the
transaction identifier. In case a subprocess is canceled by the Workflow Client, the
WEFE notifies the Nested Transaction Manager (NTM) accordingly. The NTM pro-
vides the WFE with the IDs of the subprocesses that have been canceled by the Nested
Transaction Support. The WFE can then adapt its scheduling and can notify its clients.
The architecture allows multiple clients per NTM (see section 4.1). For reasons of
simplicity, however, there is a separate NTM per WFE in the current implementation.
Each NTM is capable of handling multiple transactions simultaneously though.

The WIDE WEFMS has been built on top of the Oracle v.7.3 DBMS. Connection
Objects in the Flat Transaction Interface take care of mapping abstract flat transaction
primitives to Oracle specific function calls from the Oracle Call Interface (OCI) li-
brary [Ora96]. In the current implementation the Flat Transaction objects map each
abstract flat transaction on one physical transaction only.

6 Conclusions

In this paper, we have presented an architecture for the implementation of nested
transaction support. As shown by current research and commercial developments,
implementation of nested transaction support is valued important. This is also con-
firmed by the results of the prototype tests within WIDE.

Although illustrated by workflow management, the use of the architecture pre-
sented is not limited to this purpose. Thanks to its modularity, the architecture can be
easily used in other areas in which complex processes are important, like CSCW and
Process Control. Furthermore, the architecture is easily adaptable to different DBMS
environments. The architecture is implemented as part of the next generation
workflow management system FORO during the WIDE Esprit project, with Oracle as
the underlying commercial DBMS. The end users in the WIDE consortium used and
tested the implementation in their applications. They value Nested Transaction Sup-
port useful since it provides them with strong transactional primitives which they can
use in the modeling of complex processes.

We specified isolation concepts within nested transactions on the level of workflow
data objects. Further work will be aimed on implementing this intra-nested transaction

An Architecture for Nested Transaction Support on Standard Database Systems 459

isolation. Other future work will focus on the formalization of the algorithms used in
nested transaction support. As some of these algorithms take possibly critical decisions
about abortion of processes, formalization is desired to show the correctness of the
behavior of the Nested Transaction Support to advanced application designers.

References

[Alo96] G. Alonso, D. Agrawal et al.; Advanced Transaction Models in Workflow Contexts;
Procs. Int. Conf. on Data Engineering, 1996.

[Bar95] R. Barga & C. Pu; A Practical and Modular Method to Implement Extended Transac-
tion Models; Procs. 21st Int. Conf. on Very Large Data Bases; Ziirich, Switzerland, 1995.
[Cas96a] F. Casati, S. Ceri, B. Pernici, G. Pozzi; Deriving Active Rules for Workflow Enact-
ment; Procs. 7th Int. Conf. on Database and Expert Systems Applications; Ziirich, Switzer-

land, 1996.

[Cas96b] F. Casati, P. Grefen, B. Pernici, G. Pozzi, G. Sanchez; WIDE: Workflow Model and
Architecture; CTIT Technical Report 96-19; University of Twente, 1996.

[Cer97] S. Ceri, P. Grefen, G. Sanchez; WIDE - A Distributed Architecture for Workflow
Management; Procs. 7th Int. Workshop on Research Issues in Data Engineering (RIDE);
Birmingham, UK, 1997; pp. 76-79.

[Chr94] P.K. Chrysanthis, K. Ramamritham; Synthesis of Extended Transaction Models using
ACTA; ACM Transactions on Database Systems, vol. 19(3), 1994, pp. 450-491.

[Cosa] COSA Solutions Gmbh; Cosa Solutions: Turning Workflow into Cashflow;
http://www.cosa.de.

[Day92] U. Dayal, M. Hsu, R. Ladin; A Transactional Model for Long-Running Activities;,
Procs. 17th Int. Conf. on Very Large Databases, 1991.

[ElIm92] A. Elmagarmid, ed.; Database Transaction Models for Advanced Applications;
Morgan Kaufmann; USA, 1992.

[Gre97] P. Grefen, J. Vonk, E. Boertjes, P. Apers; Two-Layer Transaction Management for
Workflow Management Applications; Procs. 8th Int. Conf. on Database and Expert Systems
Applications; Toulouse, France, 1997.

[Gre98] P. Grefen, J. Vonk, E. Boertjes, P. Apers; Global Transaction Support: Formal
Specification and Practical Application; CTIT Technical Report 98-10; University of
Twente, 1998.

[Kan95] LE. Kang & T.F. Keefe; Reliable Nested Transaction Processing for Multidatabase
Systems; Integrated Computer-Aided Engineering, vol. 2(1), 1995, pp. 49-67.

[Mos85] J. E. B. Moss; Nested Transactions: An Approach to Reliable Distributed Computing;
The MIT Press, Cambridge, Massachusetts, 1985.

[Ora96] Oracle Corporation; Programmer’s Guide to the Oracle Call Interface, release 7.3,
Oracle Corporation, 1996.

[Reu95] A. Reuter, F. Schwenkreis; ConTracts - A Low-Level Mechanism for Building Gen-
eral-Purpose Workflow Management Systems; IEEE Data Engineering Bulletin; vol. 18(1),
1995, pp. 4-10.

[Sar96] S.K. Sarin; Workflow and Data Management in InConcert; Procs. 12th Int. Conf. on
Data Engineering; New Orleans, USA, 1996.

[XOp96] X/Open Company; X/Open Guide: Distributed Transaction Processing: Reference
Model, version 3; X/Open Company, 1996.

	1 Introduction
	2 Related Work
	3 Nested Transaction Support
	3.1 Nested Transaction Model
	3.2 Mapping Processes onto Nested Transactions
	3.3 Mapping from Nested Transaction Model to Flat Transaction Model
	3.4 Mapping from Flat Transaction Model to Database Specific Transactions

	4 Architecture
	4.1 Nested Transaction Manager
	4.2 Nested Transaction Objects
	4.3 Flat Transaction Interface

	5 Implementation
	6 Conclusions
	References

