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Abs t r ac t .  This paper describes a new approach to extracting aifine 
structure from 2D point-sets. The novel feature is to unify the tasks of es- 
timating transformation geometry and identifying point-correspondence 
matches. Unification is realised by constructing a mixture model over the 
bi-partite graph representing the correspondence match and by effecting 
optimisation using the EM algorithm. According to our EM framework 
the probabilities of structural correspondence gate contributions to the 
expected likelihood function used to estimate maximum likelihood affine 
parameters. This provides a means of rejecting structural outliers. We 
evaluate the technique on the matching of different affine views of 3.5in 
floppy discs. We provide a sensitivity study based on synthetic data. 

1 I n t r o d u c t i o n  

The est imation of t ransformational  geometry is key to many  problems of com- 
puter  vision and robotics [11, 12]. Broadly speaking the aim is to recover a matr ix  
representation of the t ransformation between image and world co-ordinate sys- 
tems. In order to est imate the matr ix  requires a set of correspondence matches 
between features in the two co-ordinate systems [13]. Posed in this way there is a 
basic chicken-and-egg problem. Before good correspondences can be estimated, 
there need to be reasonable bounds on the t ransformational  geometry. Yet this 
geometry is, after all, the ul t imate goal of computat ion.  This problem is usually 
overcome by invoking constraints to boots t rap  the estimation of feasible corre- 
spondence matches [6, 9]. One of the most popular  ideas is to use the epipolar 
constraint to prune the space of potential  correspondences [6]. 

The aim in this paper  is to develop a synergistic or holistic framework for 
matching. Specifically, we aim to facilitate feedback between the two problems 
of est imating t ransformational  geometry and locating correspondence matches. 
We realise this goal using an architecture tha t  is reminiscent of the hierarchi- 
cal mixture of experts  algorithm [7]. The key idea is to use a bi-part i te  graph 
to represent the current configuration of correspondence match.  This graphical 
s tructure provides an architecture that  can be used to gate contributions to the 
likelihood function for the geometric parameters  using structural  constraints. 
Correspondence matches and t ransformation parameters  are est imated by ap- 
plying the EM algorithm to the gated likelihood function. In this way we arrive 
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at dual maximisation steps. Maximum likelihood parameters are found by min- 
imising the structurally gated squared error residuals between features in the 
two images being matched. Correspondence matches are updated so as to max- 
imise the a pos te r ior i  probability of the observed structural configuration on the 
bi-partite association graph. 

It is important  to stress that  the idea of using a graphical model to provide 
structural constraints on parameter  estimation is a task of generic importance. 
Although the EM algorithm has been used to extract  affine and Euclidean pa- 
rameters from point-sets [15, 5] or line-sets [10], there has been no a t tempt  to 
impose structural constraints of the correspondence matches. Viewed from the 
perspective of graphical template matching [1, 8] our EM algorithm allows an 
explicit deformational model to be imposed on a set of feature points. Since the 
method delivers statistical estimates for both the transformation parameters and 
their associated covariance matrix it offers significant advantages in terms of its 
adaptive capabilities. 

We provide a practical illustration for several matching tasks. These exam- 
ples include the matching of images of floppy discs. Here we illustrate that  the 
technique degrades gracefully even when there is severe perspective foreshort- 
ening. The second example focusses on aerial images where there is significant 
barrel distortion. 

2 A t t i n e  T r a n s f o r m a t i o n  o f  P o i n t  S e t s  

Our goal is to recover the parameters of a geometric transformation r that  
best maps a set of image feature points w onto their counterparts in a model z. In 
order to do this, we represent each point in the image data  set by an augmented 
position vector w~ = (x~, y~, 1) T where i is the point index. This augmented 
vector represents the two-dimensional point position in a homogeneous coordi- 
nate system. We will assume that  all these points lie on a single plane in the 
image. In the interests of brevity we will denote the entire set of image points by 
w = { w ~ , V i  C 7:)} where 7) is the point set. The corresponding fiducial points 
constituting the model are similarly represented by z -- {zj ,  Vj E ~4} where A/[ 
denotes the index-set for the model feature-points z 3. 

In this paper we are interested in affine transformations. The affine transfor- 
mation has six free parameters. These model the two components of translation 
of the origin on the image plane, the overall rotation of the co-ordinate system, 
the overall scale together with the two parameters of shear. These parameters 
can be combined succinctly into an augmented matrix that  takes the form 

/ (~(n) ~h(n) ,4(n) \ 
11 'Pl,2 'Pl,3 
2,1 ~'2,2 
0 0 

(1) 

With this representation, the affine tranformation of co-ordinates is computed 
using the following matr ix multiplication 
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Clearly, the result of this multiplication gives us a vector of the form _(n) ~ j  ---- 

(x, y, 1) T. The superscript n indicates that  the parameters are taken from the 

n th  iteration of our algorithm. Our goal is to recover the elements r of the 

parameter  matrix ~(n)  which describes a coordinate system transformation that  
will best bring the set image points w into registration with the model set z. 

Since the ai}ine transformation can be represented in a linear fashion, the 
parameter  recovery process is easily realised by matrix inversion. To be fully 
constrained, the recovery process requires three image points that  are known to 
be in correspondence. There are several ways in which the correspondences may 
be established. One of the most popular is to use the epipolar constraint to search 
for candidate matches prior to parameter  recovery. If more than three such points 
are available, then the parameter  recovery process is over-constrained, and can 
be realised by least-squares fitting. If reliable correspondences are not available, 
then a robust fitting method must be employed. This involves removing rogue 
correspondences through outlier reject. A concrete example is furnished by the 
recent work of Torr [13]. 

In this paper we adopt a somewhat different approach to the affine recov- 
ery problem. We take the view that  the available correspondences are at best 
uncertain and may contain a substantial proportion of errors. However, rather 
than rejecting those correspondences which give rise to a large affine registra- 
tion error, we a t tempt  to iteratively correct them. In a nutshell, our idea is 
to alternate between estimating afline parameters and refining correspondence 
matches. The framework for this study is furnished by a variant of the EM algo- 
rithm. Specifically, we use a gating process similar to that  of Jordan and Jacob's 
[7] hierarchical mixture of experts architecture to control contributions to the 
log-likelihood function for the affine parameters.  

The gating layer represents the state of correspondence match between the 
point-sets. Rather than using epipolar constraints to gauge consistency, we use 
constraints provided by the spatial proximity of the points. These constraints 
are elicited by separately triangulating the data  and model points. The proxim- 
ity constraints provided by the correspondences between two edges weight the 
contributions to the log-likelihood function. In the next Section we describe how 
the relational consistency of the correspondence match can be modelled in a 
probabilistic manner. 

3 Relational Graph Matching 

One of our goals in this paper is to exploit structural constraints to improve the 
recovery of transformation parameters from sets of feature points. We abstract 
the process as bi-partite graph matching. Because of its well documented robust- 
ness to noise and change of viewpoint, we adopt the Delaunay triangulation as 
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our basic representation of image structure [14, 4]. We establish Delaunay trian- 
gulations on the data  and the model, by seeding Voronoi tessellations from the 
feature-points. 

The process of Delaunay triangulation generates relational graphs from the 
two sets of point-features. More formally, the point-sets are the nodes of a data 
graph GD : {D, ED} and a model graph GM : {Jk4,EM}. Here ED C ~) X 
ID and EM C M x M are the edge-sets of the data and model graphs. Key 
to our matching process is the idea of using the edge-structure of Delaunay 
graphs to constrain the correspondence matches between the two point-sets. 
This correspondence matching is denoted by the function f : f14 - ~ / )  from the 
nodes of the data-graph to those of the model graph. According to this notation 
the statement f(n) (i) = j indicates that  there is a match between the node i E /9  
of the model-graph to the node j E f14 of the data-graph at iteration n of the 
algorithm. We use the binary indicator 

s!n.) = [ 1  i f f ( ' ~ ) ( i ) = j  (3) 
*,3 ( 0 otherwise 

to represent the configuration of correspondence matches. 

3.1 Relational  Consistency 

We exploit the structure of the Delaunay graphs to compute the consistency 
of match using the Bayesian framework for relational graph-matching recently 
reported by Wilson and Hancock [16]. Details are beyond the scope of this paper. 
Suffice to say that  consistency of a configuration of matches residing on the 
neighbourhood R~ = i U (k ; (i, k) E ED} of the node i in the data-graph and 
its counterpart Sj = j U (1 ; (j,l) E Era} for the node j in the model-graph is 
gauged by Hamming distance. The Hamming distance H(i, j) counts the number 
of matches on the data-graph neighbourhood R, that  are inconsistently matched 
onto the model-graph neighbourhood Sj. According to Wilson and Hancock [16] 
the structural probability for the correspondence match f(i) = j at iteration n 
of the algorithm is given by 

exp [-flH (i, j)] 
!?) = (4) 
, , ,  [ ] 

E j E ~  exp -flH(i,j) 

In the above expression, the Hamming distance is given by 

H(i,j) = E (1 - s(n))k.l (5) 
(k,I)ER, eSj 

where the symbol * denotes the composition of the data-graph relation Ri and 
1-Pc the model-graph relation Sj. The exponential constant /3 = ln--pT- ~ is related 

to the uniform probability of structural matching errors Pe. This probability is 
set to reflect the overlap of the two point-sets. In the work reported here we set 
Pe = 211-MI-I~II 

II.MI+I~II " 
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4 T h e  H o l i s t i c  M a t c h i n g  A l g o r i t h m  

Our aim is to extract affine pose parameters and correspondences matches from 
the two point-sets using the EM algorithm. When couched probabilistically, the 
goal can be succinctly stated as that of jointly maximising the data-likelihood 
p(wlz , f, ~) over the space of correspondence matches f and the matrix of affine 
parameters ~. We realise this process using a dual-step or hierarchical version of 
the EM algorithm. According to the original work of Dempster et al [3] the ex- 
pected likelihood function is computed by weighting the current log-probability 
density by the a posteriori measurement probabilities computed from the pre- 
ceding maximum likelihood parameters. Here we wish to exploit Jordan and 
Jacobs [7] idea of augmenting the maximum likelihood process with a graphical 
model. From an architectural standpoint, the graphical model can be regarded 
as a supervisor network which effectively gates contributions to the expected 
log-likelihood function. The novelty of the work reported here is to develop a 
variant of this idea in which it is the bi-partite graph, i.e. f ,  which gates the 
likelihood function for the affine parameters 4~. This graph represent the current 
state of correspondence match between the two point-sets. 

We extract both maximum likelihood perspective parameters and maximum 
a posteriori matching probabilities by applying coupled update operations to the 
gated likelihood function. In this way the consistency of the structural matching 
process can guide the pose recovery process. Likewise error probabilities derived 
from the position residuals are used to guide the correspondence matching pro- 
cess. When the joint likelihood function is maximised in this way, when the 
correspondence matches play the role of missing data. 

In the spirit of Dempster, Laird and Rubin's EM algorithm [3], we aim to con- 
dition the updated parameter estimates (i.e. ~(n+l)) on the most recently avail- 
able correspondence matches (i.e. f(n)). In other words, the maximum-likelihood 
parameters satisfy the following condition 

~(n+~) = argm~xp(~lw, ffn)) (6) 

In a similar way, the m a x i m u m  a posteriori matches are conditioned upon the 
most recently available parameter-estimates. The matching configuration there- 
fore satisfies the following condition 

f(n+l) = arg mfax P ( f  tw, 4 ~(n)) (7) 

4.1 The ga ted  l ikelihood funct ion 

We have recently shown how coupled updates of this form can be realised through 
the optimisation of single integrated expected likelihood function. Details of the 
formal development are outside the scope of this paper and can found in the 
recent account of Cross and Hancock [2]. Suffice to say that the parameters and 
the correspondence matches may be sought through joint optimisation of the 
quantity 
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Q(~(n+x)[~(~))__ ~ P(zjlwi,~(~))~}~)lnp(w~lzj,~ (~+1)) (8) 

(i,j)Ef (~) 

The structure of this expected log-likelihood function requires further comment. 
The measurement densities p(wilzj ,~ (n+l)) model the distribution of error- 
residuals between the observed model-point position wi and the predicted po- 
sition of the model point zj under the current set of transformation parameter  
~(n+]). The log-likelihood contributions at iteration n + 1 are weighted by the 
a posteriori measurement probabilities P(zjlwi,q5 (n)) computed at the previ- 
ous iteration n of the algorithm. Following Jordan and Jacobs [7] we gate the 
individual expected-likelihood contributions using the the structural matching 
probabilities ~}j). Finally, the summation extends over the set Of correspondence 

matches (i, j) E f(n) available at iteration n. 
Using the Bayes rule, we can re-write the a posteriori measurement proba- 

bilities in terms of the of the conditional measurement densities 

(n) ~(~)) 
p(zj lwi ,~(~))= ay p(wilzj, (9) 

E j '  E fl~i oL~n) p(wilxJ ' , ~(n) ) 

The mixing proportions c~ n) are computed by averaging the a posteriori prob- 
abilities over the set of data-points, i.e. 

a(n+l) 1 Ep(zj lwi,~5(n) ) (10) 

In order to proceed with the development of a point registration process we 
require a model for the conditional measurement densities, i.e. p(wilzj, ~(n)). 
Here we assume that  the required model can be specified in terms of a multivari- 
ate Gaussian distribution. The random variables appearing in these distributions 
are the error residuals for the position predictions of the j t h  model point deliv- 
ered by the current estimated transformation parameters. Accordingly we write 

p(wilzj, ~(n)) (27r) ~ ~ exp - ei,j(~(n))rZ-lei,j(~ ('~)) (11) 

In the above expression S is the variance-covariance matr ix for the vector of 

error-residuals eij(~ (~)) = wi - z~ ~) between the components of the predicted 

measurement vectors z~ n) and their counterparts in the data, i.e. wi.  Formally, 
the matrix is related to the expectation of the outer-product of the error-residuals 
i.e. S = E[ei,j(~(~))e~ 5 (~(~))T]. With these ingredients, the expectation step 
of the EM algorithm simply reduces to computing the weighted squared error 
criterion 

Q'(~(n+l)ld)(n))= E P(zjtwi'~5(n))~}n)e~'(qs(n+l))TE-lei,J(~(n+l))',J ",, 

(12) 
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In other words, the a posteriori probabilities P(z j  Iwi, ~(~)) and the struc- 

tural matching probabilities ~!~) effectively regulate the contributions to the 
likelihood function. Matches for which there is little evidence contribute insignif- 
icantly, while those which are in good registration dominate. 

4.2 Maximisation 

As pointed out earlier, the maximisation step of our holistic matching algorithm 
is based on dual coupled update processes. The first of these aims to locate max- 
imum a posteriori probability correspondence matches. The second update op- 
eration is concerned with locating maximum likelihood perspective parameters. 
We effect the coupling by allowing information flow between the two processes. 

M a x i m u m  a posteriori probability matches: Point correspondences are sought 
so as to maximise the a posteriori probability of structural match. Individual 
point-correspondences should be updated in the following manner 

f(n+l) (i) = arg max P ( z  3 Iw,, q~(n))~},~) 
3C2r 

(13) 

Once this update equation has been applied, the unmatched model-graph 
nodes are identified for removal from the triangulation. At this point the edited 
set of model feature-points is re-triangulated to correct potential structural er- 
rors. We provide more detials of this graph-editing process in Section 4.2.3. A 
full account of the method can be found in the recent paper of Wilson and Han- 
cock [16]. The updated structural matching probabilities ~,~+l) are also updated 
using equations (4) and (5) as outlined in Section 3. 

M a x i m u m  likelihood parameters: In the case of affine geometry, the trans- 
formation is linear in the parameters. This allows us to locate the maximum- 
likelihood parameters directly by solving the following system of saddle-point 

r running over the indices equations for the independent affine parameters k,t 
k = 1,2 and l = 1,2,3 

= 0 (14) 
0~(,+i) "~'k,l 

For the affiue transformation the set of saddle-point equations is linear, and 
are hence easily solved by using matrix inversion. It is a straightforward to show 
that  ~,he updated matrix of affine parameters must satisfy the following implied 
system of linear equations 

E p(zjlWi,~(n))~(n)[i,j (~)i _ ~(n+l) zj)T~ -1] Zj U = 0 (15) 
(i,j)EI(n) 
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where the elements of the matr ix  U are the partial  derivatives of the affine 
t ransformation matr ix  with respect to the individual parameters ,  i.e. 

(lli) U =  1 1 
0 0 

As a result the updated  solution matr ix  is given by 

• 
( i , j )CI (  ~ 

P(zgJwi,~('~))~(n)z~,j J U T z T Z-~]  

1 P(z j  Iwi, ~('~) ~r U T } *,J W i  ~,--lj  Z T 

--1 

(16) 

(17) 

This allows us to recover a set of improved t ransformation parameters  at 
iteration n + 1. Once these are computed, the a posteriori measurement  prob- 
abilities may be updated  by applying the Bayes formula to the measurement  
density function. The update  procedure involves substi tuting the parameter  ma- 
trix of equation (1) into the Gaussian density of equation (11) and applying the 
Bayes theorem. 

U p d a t i n g  t h e  t r i a n g u l a t i o n :  Once we have an est imate of the t ransforma- 
tion parameters  for iteration n, we can use these to project the model point set 
z onto the da ta  point set w using the recovered transformational  geometry as 
outlined in section 2. Our Delaunay graph structures are completely invariant 
to translations, uniform scalings and rotations. They are in addition robust to 
the effects of non-uniform scaling, shear and perspective foreshortening. How- 
ever under severe deformations their structures do become perturbed.  In order 
to overcome this source of potential  structural  corruption, at the end of each 
iteration we re-tr iangulate the graph in order to accurately reflect the structnre 
of the points under the current est imate of the t ransformation parameters.  

In addition to this structural  modification, we can improve the robustness of 
parameter  est imation by removing points in the model-set which have no corre- 
spondence in the data-set  when computing the expected log-likelihood function 
in the expectat ion step of the EM algorithm. Once these points are removed 
we must once again re-tr iangulate the point set in order to reflect the change in 
structure. At each iteration of the maximisat ion stage, we also try re-introducing 
any deleted points back into the data  set. 

5 R e s u l t s  

In this section, we will provide experimental  evaluation of our new coupled 
matching process. This investigation has two distinct directions. Firstly, we will 
experimentally compare our algorithm with some commonly used alternatives. 
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In particular we will compare our scheme with standard least squares parameter 
recovery. We will also make comparison with a purely structural correspondence 
matching scheme. This first pair of comparisons serve to demonstrate that  the 
combined modeling of both point correspondences and transformation geome- 
t ry  yields significant advantages in terms of accuracy of convergence over their 
individual use. In other words, there are tangible advantages to our holistic 
approach. In the second part  of the experimental investigation we will furnish 
examples showing the use of the holistic scheme on real world imagery. Here 
we will use two different data  sets. The first of these involves perspective views 
of 3.5 inch floppy discs. The second example involves matching distorted aerial 
image data against a digital map. 

5.1 A l g o r i t h m  C o m p a r i s o n  

The aim of this section is to demonstrate how the holistic matching algorithm 
performs in comparison with other, similar, schemes reported in the literature. 
The principal modes of comparison will be with 

- S t a n d a r d  L e a s t  S q u a r e s  F i t t i n g :  The aim of this investigation is to 
demonstrate that  the structural component of the model can make a sig- 
nificant impact on the robust recovery of affine parameters.  In this section 
we will demonstrate how, by making no other modifications to the standard 
expectation-maximisation scheme, other than weighting the contributions of 
the different feature-points according by their structural consistency, we can 
recover the parameters in a robust manner. This performance advantage per- 
sists right down to the limits imposed by the number of degrees of freedom 
of the projective transformation. 

- S t a n d a r d  S t r u c t u r a l  M a t c h i n g :  In this set of experiments we aim to 
demonstrate how our EM methodology performs in comparison with stan- 
dard structural matching [16]. Viewed from an alternative perspective, our 
EM approach can equivalently be seen as a natural way of weighting standard 
structural matching schemes using a model of the point set transformation. 
When viewed in this way, it is clearly important  to investigate the role played 
by the explicit modeling of the transformational geometry. 

The results of the comparative study have been obtained using random point 
sets. This allows us to compare algorithm sensitivity in a controlled manner un- 
der varying noise conditions. This experimental methodology also allows the 
results to be averaged over a large number of runs, and meaningful error bars 
to be derived from the whole population of trials. In each of the following ex- 
periments, 100 trials where made for each point on the graph. The reported 
error-bars are the s tandard errors over the set of trials. 

C o m p a r i s o n  W i t h  L e a s t  S q u a r e s  F i t t i n g  A l g o r i t h m s :  Our aim in this 
experiment is to design a test that  meaningfully demonstrates the overall effect 
of the structural component upon the recovery of affine projection parameters. 
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Fig. 1. Comparing the holistic matching scheme with a least squares approach. 

With this aim in mind, we have taken random point sets and used these as 
the model graphs in our experiments. We generate data-graphs by deleting a 
controlled number of points and re-inserting random new ones into the original 
model graphs. The fraction of modified points is taken as a measure of structural 
corruption. As a measure of success we have used average, unweighted, distance 
between point correspondences. This figure of merit includes only points that  
have a direct correspondence match. In other words, we exclude nodes deleted 
from the graphs in the re-triangulation step. 

Figure l a  shows a comparison of the holistic matching scheme and the stan- 
dard, unweighted, least squares method of affine parameter  estimation. Here we 
show the average registered point-distance as a function of the fraction of correct 
correspondence matches. It is clear from this plot that  the structural component 
plays a significant role in reducing the effect of outliers on the converged image 
registration. Even when only 10 of the 20 nodes are correctly matched, then the 
structural approach successfully recovers solutions that  have an average point 
error of less than 0.01 with an insignificant standard-error. Figure lb  repeats 
this experiment but  for point sets with 30 nodes. Once again, we note tha t  even 
when the fraction of outliers is as high as 50%, then our holistic scheme manages 
to recover solutions with a much smaller average residual point-distance. 

Comparison W i t h  S t a n d a r d  Structural Matching: In order to demon- 
strate the relative stability of the hotistic matching scheme we will compare it 
with a structural graph matching schemb_The algorithm used in this compar- 
ison is essentially the discrete relaxation process of Wilson and Hancock [16]. 
This structural matching technique results solely from the iteration of the MAP 
update  process defined in equation (13), leaving the parameter estimates static. 
The aim of our study is to demonstrate the sensitivity of our method to isotropic 
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Fig. 2. Sensitivity study. 

image scale and rotation about the axis normal to the image plane. We will again 
base our study on large samples of random dot patterns. 

The results of these sensitivity comparisons for rotation and scale are shown 
in Figure 2a and 2b respectively. In these figures, the x-axis shows the initial 
rotation (Figure 2a) or scale (Figure 2b) difference between the images being 
matched. The y axis, on the other hand, represents the fractional number of 
nodes correctly matched upon convergence. The dotted lines show the sensitiv- 
ity of the standard structural matching scheme, while the solid lines are for the 
holistic matching method. It is clear that  our holistic expectation-maximisation 
approach performs better  than the standard relational matching scheme. In par- 
ticular, the range of both rotation and scale over which the EM scheme success- 
fully recovers meaningful results is significantly greater than that for the purely 
structural scheme. For instance, our method copes well with angle differences of 
up to 35 degrees, whereas the structural method must be initialised to within 
10 degrees. In the case of the scale difference, the holistic method copes with 
differences in the range 0.7 to 1.6, whereas the the MAP scheme only func- 
tions effectively over the range 0.9 to 1.1. However, it must be stressed that  the 
structural method can be rendered considerably more robust if affine invariant 
measures are used to compute the initial a posteriori  matching probabilities. 

5.2 R e a l  W o r l d  I m a g e r y  

In order to demonstrate the effectiveness of the new matching process on real 
world imagery we will consider the following two data-sets: 

- Disk  Se t :  This data  set consists of a set of digital photographs of 3.5 inch 
floppy disks. This data-set was chosen since it allows for controlled shifts 
in viewpoint to be made. Both small viewpoint shifts that  are nearly aMne, 
and very large shifts where the controlled introduction of strong perspective 
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foreshortening will be investigated. Experiments  with this da ta  are aimed at 
evaluating how our matching method degrades when the geometric transfor- 
mation departs  from the assumed affine model. 

- R o a d  N e t w o r k :  In this experiment we are concerned with the registration 
of aerial infra-red images against a digital map. The images were taken at 
night-time and the most  prominent features are those tha t  radiate absorbed 
heat. In the urban scenes under study these features are the t a rmac  roads. 
We therefore chose the road networks as the basis for our graph structures. 
The nodes in our graphs are junctions detected in the road network. I t  is 
important  to note tha t  these images are distorted due to the geometry of 
the line-scan process. The images are captured using horizontal line-scan 
as the aircraft moves in the vertical direction. The line-scan process is con- 
trolled by the rotat ion of a mirror. For this reason the images are subject 
to barrel distortion in the x-direction. In the y-direction there are also sam- 
pling irregularities due to the aircraft changing heading due to banking or 
turbulence. 

We will first consider the task of recognising planer objects in different 3D 
poses, which is posed by the set of images of floppy disks. The object used in this 
study is placed on a desktop. The different object viewing angles are contrived 
so as to introduce increasing degrees of perspective foreshortening. The feature 
points used to tr iangulate the object are corners which are extracted by hand. 
Figure 3 shows a sequence of object-views with the triangulations of the hand 
segmented feature-points superimposed. The first oblique view in the sequence 
is taken as the object-model; the remaining object-poses are used to test  the 
matching process. 

Fig. 3. The six views of used in the matching experiments. 

Figure 4 shows the initial and final poses for the registration of the first 
and second images in the dataset.  The fraction of correct initial correspondences 
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Fig. 4. a) An initial guess b) The final registration. 

was found to be 50 percent. From the superimposed images it is clear that  the 
recovered pose is accurate. Moreover, the ratio of the residual point registration 
error to the linear image dimension is 0.029. 

Next, we provide an illustration of the iterative properies of our matching 
algorithm when one of the images under match exhibits a degree of perspec- 
tive foreshortening. Clearly, in this case the affine transformation is no longer 
sufficient to represent the image deformation. Figure 5 shows the iterative reg- 
istration for this experiment. The registration quickly converges upon a pose 
that  is a good approximation to the full perspective transformation. In figure 6 
we show the Delaunay triangulation iterating in synchronization with the image 
registration of figure 5. It is interesting to note the structure of the triangulation 
changing with iteration number. This clearly illustrates the effectivenness of the 
graph edit process in controlling the topology of the graph in the registration 
sequence. 

Fig. 5. Iterative convergence using an affine transformation. 

The final piece of experimentation involves the registration of a digital map 
against a set of aerial infra-red images. Figure 7 shows the map data  together 
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Fig. 6. The graphs iterating in synchronisation with the registration process. 

Fig. 7. Aerial image registration: a) the digitial map; b) the registration with the high 
altitude image; c) the registration with the low altitude image. 

with the raw images used in this example. The salient structure in this im- 
agery is a road network. The feature points used in our matching experiments 
are junctions in the road network. These points are used to seed the Delaunay 
triangulation. There are three factors which complicate the matching process. 
Firstly, there are cartographic errors. As a result, there are features for which 
no correspondence exists even when the map is brought into exact registration 
with the images. Secondly, there is a significant amount of barrel distortion in 
these images. This process is not faithfully captured by our affine transforma- 
tion model. Finally, the extracted Delaunay triangulations exhibit a significant 
degree of structural corruption. Figure 7 shows the final affine transformations 
of the map superimposed on the different aerial images. The matching process 
commences from a random initial estimate of the affine transformation matrix. 
It is clear that  the recovered transformations are reasonably accurate given the 
poor geometric model. 
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6 C o n c l u s i o n s  

Our main contribution in this paper has been to develop a new holistic matching 
algorithm. This two-step iterative process involves coupled operations to locate 
point-correspondences and estimate geometric transformation parameters.  Point 
correspondences are located by maximum a posteriori graph-matching. Maxi- 
mum likelihood parameters are recovered using the expectation-maximisation 
algorithm. These coupled iterative processes communicate by exchanging sepa- 
rate pieces of matching information. The point-correspondences passed by the 
matching process improve the robustness of maximum likelihood parameter  esti- 
mation. In their turn, the maximum likelihood parameters are used to estimate 
a posteriori measurement probabilities which improve the accuracy of the point- 
correspondences. 

We illustrate the effectiveness of the resulting matching process under affine 
geometry. This is a task of generic importance in computer vision with applica- 
tion in image mosaicking, pose recovery and camera calibration. Here the coupled 
matching process is shown to outperform structural matching. Moreover, the use 
of point-correspondences is shown to offer significant advantages in the control 
of added image noise. 

In other words, we have presented a flexible matching method which unifies 
relational graph matching and pose-recovery. The framework is Bayesian and 
relies on some fairly non-restrictive assumptions concerning the Gaussian origin 
of measurement errors and observational independence. Our future plans revolve 
around the use of improved optimisation methods and more ambitious point- 
deformation models. 
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