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Abs t rac t .  The goal of surface reconstruction is to reconstruct a smooth 
surface while avoiding smoothing out discontinuities. In this paper, a new 
algorithm for surface reconstruction is proposed which can locate and 
identify discontinuities while reconstructing a smooth surface from a set 
of sparse and irregularly spaced depth measurements. This algorithm 
uses the wavelet transform technique to induce a multiresolution ap- 
proach for recovering discontinuities. In particular, the wavelet modulus 
maxima representation is used which allows correlation between wavelet 
coefficients at different scales. These correlations can be used for feature 
correspondence across scales. By using this multiresolution information, 
the estimation of locations of discontinuities is refined. The performance 
of the algorithm is investigated and compared with a recently published 
bending moment-based algorithm. It can be seen that our approach can 
locate and preserve discontinuities while ensuring smoothness in most of 
the regions. 

1 I n t r o d u c t i o n  

Surface interpolation is a common problem encountered in computer  vision, for 
instance in stereo imaging and visual motion analysis, when a dense depth map  
of the imaged scene is desirable. I t  refers to a process in which a piecewise smooth 
surface is reconstructed from a set of noisy measurements.  As identifying and 
locating discontinuities such as edges and boundaries in the scene are important ,  
we want not only to reconstruct the surface, but also to identify the location 
of discontinuous points in the reconstruction. This is the goal of the surface 
reconstruction problem. 

As in the case of feature-based stereo imaging, the measurements  are obtained 
through the feature correspondence between the left and right images. I t  thus 
gives an irregular sampling pat tern  and the sampling density could be very 
sparse. I t  may also happen that  some parts  in the image have no measurements  
as there may be no feature detectable in either the right or the left image. 
The reconstruction problem is therefore ill-posed in nature. Some additional 
constraints are needed in order to make the problem well-posed. 



203 

A popular approach to solve this ill-posed problem is by the regularization 
technique [1], [2]. It restricts the admissible solution to be a smooth function. 
The problem can be formulated as minimizing an error function defined as, 

K 

E = ~"~(Zk -- f (xk ,Yk) )  2 + AS(f) (1) 
k----1 

where K is the total number of measurements available, the first term is the 
data constraint, i.e., the residual error in surface fitting to the measurements, 
the second term S ( f )  is the smoothness requirement placed on f ,  and A is a 
regularization constant which controls the tradeoff between the data constraint 
and the smoothness constraint. One popular choice for the functional S ( f )  is 
the following quadratic form, 

S ( f )  f f = [(Dxf ) + 2(DxD~f)  2 + (D2f)2]dxdy (2) 

where D~ and Dy are the differential operators with respect to x and y respec- 
tively. 

As the smoothness constraint is applied globally to the entire scene, dis- 
continuities present serious difficulties to the above formulation. Most often, 
discontinuities are blurred by minimizing E without a proper choice of A. Dif- 
ferent methods have been proposed to relax the global smoothness constraint in 
various ways so as to preserve visual discontinuities. The basic philosophy is to 
apply different degrees of smoothness to different parts of the image as in [2], 
[3], [4]. However, the discontinuities are analyzed using single resolution meth- 
ods. As pointed out in [5], multiresolution analysis performs better than single 
resolution in discriminating between noise and desired features. 

Another difficulty encountered in this minimization problem is the slow con- 
vergence rate. It becomes particularly serious when the size of the problem is 
large. A way to improve the convergence rate is to employ multigrid processing 
which basically uses the multiresolution concept in improving the convergence 
rate [2]. 

Wavelet transform provides amultiresolution picture of an object and thus 
enables multigrid processing. There are many different kinds of scheme for wavelet 
transform. One popular choice is the orthogonal wavelet transform as in [6]. 
An orthogonal wavelet is used as a preconditioning transform, i.e., the wavelet 
transform is applied to diagonalize the linear equation system. However, the dis- 
continuities are found separately using the bending moment method rather than 
using the multiresolution property inherent to the wavelet transform [8]. In this 
paper, the scheme that we choose is the wavelet modulus maxima representation 
used by Mallat and Zhong [7]. This representation has a property that there ex- 
ists strong correlation between the wavelet coefficients across scales. Noise would 
usually show up in the first few wavelet bands with its effect decreases drasti- 
cally in the higher wavelet bands. In contrast strong edges will have their effects 
showing across all wavelet bands. Hence, by tracking the effects across wavelet 
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bands, we can establish whether the response is due to noise or not, and how 
strong the edge is [8]. 

We propose to make use of this property to establish correlations between 
the wavelet coefficients across different scales. These correlations can then en- 
hance the estimations of the wavelet coefficients at different scales and enable 
the discontinuities to be estimated robustly in a multiresolution manner. Exper- 
imental results show that  our approach can locate and preserve discontinuities 
and reconstruct the surface with good quality even when the measurements are 
sparse. 

In summary, our proposed algorithm allows surface reconstruction and dis- 
continuities detection to be carried out simultaneously and under the same 
wavelet framework. Besides, the multiresolution approach inherent in the wavelet 
formulation allows a more robust performance in discontinuity detection. 

2 M u l t i r e s o l u t i o n  A p p r o a c h  in  t h e  W a v e l e t  F r a m e w o r k  

Discretizing Eqns (1) and (2) gives the following expression for the surface re- 
construction error, 

K 
E = Z ( Z k  - f(mk,nk)) 2 -k ~ A(i,j)A2(i,j) (3) 

k=l i,j 

Z A(i, j )B 2 (i, j) + 2 Z A(i, j)C 2 (i, j) 
i,j i,j 

where 

A(i,j) = f ( i , j  + 1) - 2f(i , j )  + f ( i , j  - 1) (4) 

B(i, j)  -- f ( i  + 1,j)  - 2f(i , j )  + f ( i -  1,j)  

C(i,j) = f( i  + 1,j + 1) - I ( i  + 1,j)  

- f ( i , j  + 1) + f ( i , j )  

A, B and C are the discrete approximations to the differential operations D 2, 
D~ and DxDy respectively. The image up to a particular resolution can be 
represented using the quadratic spline wavelets as follows [5], 

Sa(m, n) -- Z Z ha(m, i)sa(i,j)ha(n,j) (5) 
i j 

+ Z  o(m, i) 1o (i, J)ko(n, ;) 
i j 

+ ~ Z ka (m, i)W2a(i, j)la (n, j) 
i j 

or in matrix-vector notation as, 

fa = H a S a H a  T -]- L a W l a l a  T Jr- i a W 2 a L a  T (6) 
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where a is the resolution level, fa is the image which consists of information only 
up to (a - 1) th level, So is the lowpass version of f at level a, wla and w2a are 
the wavelet coefficients at horizontal and vertical directions respectively, ho, Io 
and ka are the reconstruction filters for So, Wla and W2a and are defined in [8]. 

Our approach is first to reconstruct an overly smooth solution and then refine 
the discontinuities iteratively in the overly smooth surface. In our formulation, 
the first smooth surface is the lowpass portion of the image at a particular 
resolution. The smooth surface estimation could be done by assuming wlo and 
W2a to  be zero, and then choose the lowpass coefficient so so that the resultant 
]a minimizes E. The minimization is done by the steepest descent search for 
simplicity. The gradient of E with respect to Sa(m, n) is given by, 

O E  g 
aso = - 2  Z ( Z k  -- f(mk, n~))D(mk, nk, m, n) (7) 

k = l  

+2 Z )~(i, j)A(i, j)A'(i, j) 
i,j  

+2 Z )~(i, j )B (i, j )B'  (i, j) 
i,j  

+4 Z )~(i, j)C(i, j)C' (i, j) 
i , j  

where 

A'(i,j) = 

B'(i , j)  = 

c ' ( i , j )  = 

D(i, j  + 1,re, n) - 2D(i , j ,m,n) (8) 

+D(i,j  - 1,re, n) 
n( i  + 1,j ,m,n) - 2n( i , j ,m,n)  
+D(i - 1, j ,m,n) 
D(i + 1,j + 1,re, n) - n( i  + 1,j ,m,n) 
- D ( i , j  + 1,m,n) + n( i , j ,m ,n )  

D(i,j)  = h~,(i, k)ho(j,l) 

The derivative of E with respect to wla and W2a can be obtained accordingly. 
The actual implementation is done in the Fourier domain for computational 
efficiency. 

After having a set of coefficients for Sa, we then estimate the bandpass coef- 
ficients wla and W2a so that the resultant surface with discontinuities minimizes 
E further. In this way, the bandpass information is progressively added into the 
reconstruction process. The derivative of E with respect to wlo and w2a can be 

OE in Eq 7. obtained from Eq 4 in the same way as 0-72 
At the same time when the bandpass information is added to the recon- 

structed surface, we could track the wavelet modulus maxima positions across 
scales to find out whether the modulus maxima positions are due to noise (in- 
correct estimation) or due to discontinuities. Thus the estimations are improved 
by incorporating the multiresolution constraints inherent in our formulation. We 
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could also impose the constraint that  the modulus maxima cannot be created as 
one moves from fine to coarse scales. In this way, we could estimate where the 
discontinuities are robustly in the multiresolution framework. 

The individual wavelet transform modulus maxima represent discontinuities. 
However, in two or higher dimensions, they are usually not independent features; 
they refer to points or extended boundaries and belong to certain lines or curves. 
Hence, we could link the individual wavelet modulus maxima to form contours 
and use these contours as primitives in feature correspondence across different 
scales. 

In forming the wavelet modulus maxima contours, it is necessary to discard 
weak and short contours to facilitate the feature correspondence process. The 
boundaries of important  coherent structures often generate long contour curves 
whereas contours resulting from noise are short. We thus remove any contour 
curve whose length is smaller than a given length threshold. Also, contour that  
has a low average amplitude corresponds to small variation in the image which 
is ignored. The length threshold and the amplitude threshold are set to be 30 % 
of their respective mean values of all contours in an image. We keep only those 
contours that  satisfy both the length threshold and the amplitude threshold. 
Thus, the thresholds for both length and amplitude are set automatically for 
every test image. 

The criteria used for features correspondence are position, sign and amplitude 
of the contours. The determining factor is the sign. If the sign between two 
modulus maxima contours at two scales are not the same, then they do not 
match with each other. If the sign is correct, check the position. The positional 
tolerance which is determined by the width of the wavelet reproducing kernels 
is used to decide whether the contours are close or not. If the contours are close 
together, check the amplitude to see if they are similar. It should be noted that  
the matching between the fine scale and the coarse scale can only be a many-to- 
one mapping, but  not a one-to-many mapping. Since we match contours instead 
of individual pixels, we can either keep the contour if we find a match or remove 
the whole contour if no match is found. 

If we consider the resolution level to be three, our algorithm can be summa- 
rized as follows, 

1. Obtain a lowpass function s3 by assuming no discontinuities; 
2. Based on s3, estimate w13 and W23 by using the gradient search to minimize 

the error defined in Eq 4. A rough estimate of the discontinuities points can 
be obtained based on f3 and )~ is updated accordingly. 

3. Based on the above estimated f3 (ie., w13, w23 and s3 and hence s2), estimate 
w12 and W22 . Then extract  the modulus maxima of both pairs w12, w13 and 
w22, w23 and apply the feature correspondence to shape w12, w13 and w22, 
w23. Through the above procedure, some unlikely or unmatched contours are 
clean up and smoothed out and we could estimate where the discontinuous 
points are and update A accordingly. 

4. Based on the above estimated f2, estimate wll  and w21. Then apply feature 
correspondence to shape the wavelet coefficients at different scales and up- 
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date )~ accordingly. Repeat this step until the estimated f does not change 
much. 

A popular choice for )~(i, j) is a binary set, ie., {0,1}. If a particular pixel (i, j) 
is known to be a discontinuous point, then the smoothness constraint is turned 
off by setting )~(i,j) to zero, otherwise, the smoothness constraint is enforced by 
setting A(i, j) to one. We also adopt this approach except that A(i, j) in our case 
is determined by the wavelet maxima contours. At where the wavelet maxima 
contours are found, A is set to zero and at where the wavelet maxima contours 
are not found, )~ is set to one. In this way, we ensure that discontinuities are 
connected, they are not isolated features which could be due to noise or incorrect 
estimation. 

3 E x p e r i m e n t a l  R e s u l t s  

We provide some experimental results to illustrate the edge-detection and edge- 
preserving performance of our surface reconstruction algorithm. The proposed 
algorithm is applied to various data sets including both synthetic and real images. 
Its performance as a surface reconstruction algorithm was demonstrated on three 
images shown in Fig 1. For comparison purpose, a recently published bending 
moment-based algorithm [6] is also applied to the same images. 

Fig 2 shows synthetic range measurements where zero-valued means no sam- 
ple data and the intensity denotes the range. A sampling density of 10% of the 
range image is used. Fig 3 shows the discontinuities found and the reconstructed 
surface using our algorithm with three resolution levels and 50 iterations in each 
level. Fig 4 shows the discontinuities found and the reconstructed surface using 
the bending moment-based algorithm. A number of edge thresholds have been 
tried and the best discontinuity map is obtained by setting the threshold to be 
150. It can be seen that the bending moment-based algorithm fails to reconstruct 
the three-level surface and the discontinuities detected are incorrect. Despite the 
sparse data available over a surface with a lot of discontinuities, our algorithm 
gives a good reconstruction. 

In the bending moment-based algorithm, the discontinuities are detected 
using the bending moment method rather than using the multiresolution frame- 
work inherent to the wavelet transform. Moreover the off-diagonal terms of the 
preconditioned equation system are all approximated to be zero. The effect of 
this diagonalization depends on the regularization constant, the sampling den- 
sity and the reconstruction level chosen. Thus, the diagonal assumption may not 
be valid at all times. In contrast, our algorithm uses the multiresolution infor- 
mation in constructing the discontinuity map which thus enhance the estimation 
of the wavelet coefficients and give a good solution. 

In the second example, a checkerbox surface of size 128 • 128 is interpolated. 
The sampling density is also 10% and the sampled image is shown in Fig 5. 
Fig 6 shows the discontinuities found and the reconstructed surface using our 
algorithm with three resolution levels and 50 iterations in each level. Fig 7 shows 
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Fig. 1. The images used to test the surface reconstruction algorithm, (a) the wedding 
cake range image; (b) a checkerboard image; and (c) a bird image 



209 

Fig. 2. 10 % sampling density of the wedding cake image. Dots indicate the sampled 
data, and the brightness on them indicate the depth. The brighter the point is, the 
closer to the viewer it is. 

Fig. 3. The results obtained with the proposed algorithm for the 10 % wedding cake 
range data; (a) the discontinuities found and (b) the reconstructed surface. 
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Fig.  4. The results obtained with the bending moment-based algorithm for the wedding 
cake range data; (a) the discontinuities found and (b) the reconstructed surface. The 
resolution level is set to be three and the edge threshold is 150. 

Fig.  5. A 10 % sampling density of the checkerboard image. Dots indicate the sampled 
data, and the brightness on them indicate the depth. The brighter the point is, the 
closer to the viewer it is. 
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Fig.  6. The results obtained with the proposed algorithm for the 10 % checkerboard 
image; (a) the discontinuities found and (b) the reconstructed surface. 

Fig.  7. The results obtained with the bending moment-based algorithm for the checker- 
board image; (a) the discontinuities found and (b) the reconstructed surface. The res- 
olution level is set to be four and the edge threshold is 150. 
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the edges found and the reconstructed surface using the bending moment-based 
algorithm. 

We have experienced some difficulties in the bending moment-based algo- 
rithm in this example. When the resolution level is chosen to be four, the results 
are not good and the discontinuities detected using bending moment are messy. 
But if the resolution level is set to three, the reconstructed surface looks better 
except that some artifacts appear in the reconstructed surface as evidenced in 
Fig 8. This happens because the diagonalization assumption which depends on 
resolution level and the sampling density is not valid. However, our algorithm 
can still give a good reconstruction. 

Fig. 8. The reconstructed surface using the bending moment-based approach. The 
resolution level is set to be three, and the number of iterations is two. Artifacts axe 
obvious in the reconstructed surface. 

In the above two examples, we can see that the bending moment-based al- 
gorithm do not give a good reconstruction when the sampling density is only 
10 %. The discontinuity map which is obtained in a single resolution framework 
is also not as good as the multiresolution discontinuity detection. We have also 
tried on some higher sampling density case to see how the new algorithm com- 
pares with the bending moment-based algorithm. The results shown here are 
about the image of a bird. The sampling density is 30% in this example. Fig 9 
shows the reconstructed surfaces using our algorithm and the bending moment- 
based algorithm. The reconstruction of the bending moment-based algorithm is 
improved. However, our algorithm again provides a better reconstruction. 
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Fig. 9. The reconstructed surfaces obtained by (a) our proposed algorithm and (b) 
bending moment-based algorithm for a 30% sampling density of the bird image. 

4 C o n c l u s i o n  

Global smoothness constraints intrinsic to standard regularization are inade- 
quate near discontinuities. Since discontinuities play a vital role in inverse visual 
problems, some ways are needed to detect their locations so as to avoid smooth- 
ing over the discontinuous points. Typical ways to analyze discontinuities are, 
however, single resolution method in nature. We have presented in this paper a 
new surface reconstruction method which combines the multiresolution disconti- 
nuity tracking and the wavelet transform techniques to reconstruct from a sparse 
set of measurement a piecewise smooth surface that preserve discontinuities. 

The new algorithm uses the wavelet modulus maxima representation [7]. Be- 
cause of the multiresolution property of the representation and the existence of 
correlations between wavelet coefficients at different scales, feature correspon- 
dence across scales is possible. This improves the estimation of discontinuities 
and enhance the performance of the surface reconstruction algorithm. 

The new algorithm starts with an overly smoothed surface. Discontinuities 
information which are characterized by the wavelet modulus maxima are added 
to the reconstructed surface progressively. Thus the discontinuity map undergoes 
refinement during surface reconstruction. 

The new algorithm has been tested on a number of synthetic and real data 
sets. Simulation results show that the approach can preserve the discontinuities 
while ensuring smoothness in most regions. Comparison of the proposed algo- 
rithm with a recently published algorithm [6] has also been presented. From the 
experimental results, the performance of our algorithm has been shown to be 
superior in the surface reconstruction problem. 
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