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Abs t r ac t .  In a scene observed from a fixed viewpoint, the set of shadow 
curves in an image changes as a point light source (nearby or at infin- 
ity) assumes different locations. We show that for any finite set of point 
light sources illuminating an object viewed under either orthographic or 
perspective projection, there is an equivalence class of object shapes hav- 
ing the same set of shadows. Members of this equivalence class differ by 
a four parameter family of projective transformations, and the shadows 
of a transformed object are identical when the same transformation is 
applied to the light source locations. Under orthographic projection, this 
family is the generalized bas-relief (GBR) transformation, and we show 
that the GBR transformation is the only family of transformations of an 
object's shape for which the complete set of imaged shadows is identical. 
Finally, we show that given multiple images under differing and unknown 
light source directions, it is possible to reconstruct an object up to these 
transformations from the shadows alone. 

1 I n t r o d u c t i o n  

In his fifteenth century Treatise on Paint ing [15], Leonardo da Vinci errs in 
analysis of shadows while comparing painting and relief sculpture: 

As far as light and shade are concerned low relief fails both  as sculpture 
and as painting, because the shadows correspond to the low nature of the 
relief, as for example in the shadows of foreshortened objects, which will 
not exhibit the depth of those in painting or in sculpture in the round. 

I t  is t rue tha t  - when illuminated by the same light source - a relief surface 
and a surface "in the round" will cast different shadows. However, Leonardo 's  
s ta tement  appears  to overlook the fact tha t  for any flattening of the surface 
relief, there is a corresponding change in the light source direction such tha t  the 
shadows appear  the same. This is not restricted to classical reliefs but,  as we 
will later show, applies equally to a greater set of projective transformations.  
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Fig. 1. An illustration of the effect of applying a generalized perspective bas-relief 
(GPBR) transformation to a scene composed of a teapot resting on a supporting plane. 
The first image shows the original teapot. The second image shows the teapot after 
having undergone a GPBR transformation (al, a2, a3,a4) = (.05, .05, .05, 1) with re- 
spect to the viewpoint used to generate the first image. Note that the attached and 
cast shadows as well as the occluding contour are identical in first two images. The 
third image shows the original teapot from a second viewpoint. The fourth image re- 
veals the nature of the GPBR transformation, showing the transformed teapot from 
the same viewpoint as used for the third image. 

More specifically, when an object is viewed from a fixed viewpoint, there is 
a four parameter  family of projective transformations of the object 's s tructure 
and the light source locations such that  the images of the shadows remain the 
same. It follows then, that  when light source positions are unknown one cannot 
determine the Euclidean structure of an object from its shadows alone. Yet in 
all past work on reconstruction from shadows, it is explicitly assumed that  the 
direction or location of the light source is known. An implication of these results 
is that  two objects differing by these transformations cannot be recognized solely 
from their shadow lines. 

In early work, Waltz considered labelings of shadow edges in line drawing 
interpretation [27]. Subsequently, Shafer showed how geometric constraints on 
surface orientation could be obtained from labeled line drawings using shadow 
and surface outlines under orthographic projection [23]. The Entry-Exit  method 
was developed to segment and label shadow curves using information about  the 
projection onto the image plane of the light source direction [11]. Kender and his 
colleagues have undertaken a series of studies pertaining to metric reconstruction 
of surfaces from the shadows in multiple images of an object in fixed pose when 
the light source direction is known [12, 17, 29]. Shadows have also been used in the 
interpretation of aerial images, particularly to locate and reconstruct buildings 
when the sun direction is known [6, 13, 14, 20]. 

Here we consider shadows on unknown objects produced by light sources 
whose directions are also unknown. In the next section we show that  seen from 
a fixed viewpoint under perspective projection, two surfaces produce the same 
shadows if they differ by a particular projective transformation - which we call 
the Generalized Perspective Bas-Relief (GPBR) transformation. See Figure 1 for 
an example of this transformation. This result holds for any number of proximal 
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or distant point light sources. Furthermore, under conditions where perspective 
can be approximated by orthographic projection, this transformation is the Gen- 
eralized Bas-Relief (GBR) transformation [3]. As will be shown in Section 3, the 
GBR transformation is unique in that  any two smooth surfaces which produce 
the same shadows must differ by a GBR. 

In Section 4, we propose an algorithm for reconstructing, from the attached 
shadow boundaries, the structure of an object up to a GBR transformation. 
The algorithm assumes that  the object is viewed orthographically and that  it 
is illuminated by a set of point light sources at infinity. We do not propose 
this algorithm with the belief that  its present form has great applicability, but 
rather  we give it to demonstrate tha t  under ideal conditions information from 
shadows alone is enough to determine the structure of the object up to a GBR 
transformation. 

2 S h a d o w i n g  A m b i g u i t y  

Let us define two objects as being shadow equivalent if there exists two sets of 
point light sources S and S'  such that  for every light source in S illuminating 
one object, there exists a light source in S'  illuminating the second object, such 
that  the shadowing in both images is identical. Let us further define two objects 
as being strongly shadow equivalent if for any light source illuminating one ob- 
ject, there exists a source illuminating the second object such that  shadowing 
is identical - i.e., S is the set of all point light sources. In this section we will 
show that  two objects are shadow equivalent if they differ by a particular set of 
projective transformations. 

Consider a camera-centered coordinate system whose origin is at the focal 
point, whose x and y axes span the image plane, and whose z-axis points in 
the direction of the optical axis. Let a smooth surface f be defined with respect 
to this coordinate system and lie in the halfspace z > 0. Since the surface is 
smooth, the surface normal n(p)  is defined at all points p E f .  

We model illumination as a collection of point light sources, located nearby 
or at infinity. Note that  this is a restriction of the lighting model presented by 
Langer and Zucker [19] which permits anisotropic light sources whose intensity is 
a function of direction. In this paper, we will represent surfaces, light sources, and 
the camera center as lying in either a two or three dimensional real projective 
space (]RlP 2 or IR]P3). (For a concise t reatment  of real projective spaces, see 
[21].) This allows a unified t reatment  of both point light sources that  are nearby 
(proximal) or distant (at infinity) and camera models that  use perspective or 
orthographic projection. 

When a point light source is proximal, its coordinates can be expressed as 
s = (sx, sy, sz). In projective (homogeneous) coordinates, the light source s �9 
IR]P 3 can be written as s = (s=, Sy, sz, 1). (Note that  different fonts are used to 
distinguish between Euclidean and projective coordinates.) When a point light 
source is at infinity, all light rays are parallel, and so one is concerned with the 
direction of the light source. The direction can be represented as a unit vector 
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in ]R 3 or as point on an illumination sphere s E S 2. In projective coordinates, 
the fourth homogeneous coordinate of a point at infinity is zero, and so the light 
source can be expressed as s -= (sx,sy, sz,O). (Note tha t  when the light source 
at infinity is represented in projective coordinates, the antipodal points from S 2 
must  be equated.) 

For a single point source s E ~ ] p 3  let us define the set of light rays as the 
lines in IR~ )3 passing through s. For any p E ]RIP 3 with p ~ s, there is a single 
light ray passing through p. Naturally it is the intersection of the light rays with 
the surface .f which determine the shadows. We differentiate between two types 
of shadows: attached shadows and cast shadows [2, 25]. See Figures 2 and 3. A 
surface point p lies on the border of an attached shadow for light source s if and 
only if it satisfies both  a local and global condition: 

Local Attached Shadow Condition: The light ray through p lies 
in the tangent  plane to the surface at p. Algebraically, this condition 
can be expressed as n(p)  �9 (p - s) = 0 for a nearby light source and as 
n(p)  �9 s = 0 for a distant light source. A point p which satisfies at  least 
the local condition is called a local attached shadow boundary point. 

G l o b a l  Attached Shadow Condition: The light ray does not inter- 
sect the surface between p and s, i.e., the light source is not occluded 
a t p .  

Now consider applying an arbi t rary  projective t ransformation a : IRIP 3 -~ 
IRIP 3 to both  the surface and the light source. Under this t ransformation,  let 
pt = a(p)  and s I = a(s). 

L e m m a  1. A point p on a smooth surface is a local attached shadow boundary 
point for point light source s iff p~ on a transformed surface is a local attached 
shadow boundary point for point light source s ~. 

Proof. At a local at tached shadow boundary point p, the line defined by p E 
]R]P 3 and light source s E ~ I P  3 lies in the tangent plane at  p. Since the order 
of contact (e.g., tangency) of a curve and surface is preserved under projective 
transformations,  the line defined by p~ and s ~ lies in the tangent plane at p~. 

Cast shadows occur at points on the surface tha t  face the light source, but  
where some other portion of the surface lies between the shadowed points and 
the light source. A point p lies on the boundary  of a cast shadow for light source 
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s if and only if it similarly satisfies both  a local and global condition: 

Local C a s t  S h a d o w  C o n d i t i o n :  The light ray through p grazes the 
surface at some other point q (i.e., q lies on an at tached shadow). A 
point p which satisfies at least the local condition is called a local cast 
shadow boundary point. 

G l o b a l  Attached Shadow Condition: The only intersection of the 
surface and the light ray between p and s is at q. 

Lemma 2. A point p on a smooth surface is a local cast shadow boundary point 
for point light source s iff p~ on a transformed surface is a local cast shadow 
boundary point for point light source s I. 

Proof. For a local cast shadow boundary point p E ]pjp3 and light source s E 
]R]P 3, there exists another  point q E ]RIP 3 on the line defined by p and s such 
tha t  q lies on an at tached shadow. Since collinearity is preserved under projective 
transformations,  p ' ,  q '  and s '  are collinear. From Lemma 1, q '  is also an at tached 
shadow point. 

Taken together, Lemmas 1 and 2 indicate that  under a projective transfor- 
mat ion of a surface and light source, the set of local shadow curves is a projective 
t ransformation of the local shadow curves of the original surface and light source. 
However, these two lemmas do not imply that  the two surfaces are shadow equiv- 
alent since the t ransformed points may project to different image points, or the 
global conditions may not hold. 

2.1 Perspective Projection: G P B R  

We will further restrict the set of projective transformations.  Modeling the cam- 
era as a function 7r : IR]P 3 --+ ]R]P 2, we require that  for any point p on the 
surface ~(p)  = ~(a(p))  where a is a projective t ransformation - tha t  is p and 
a(p)  must  project  to the same image point. We will consider two specific camera  
models in turn: perspective projection ~rp and orthographic projection 7to. 

Without  loss of generality, consider a pinhole perspective camera with unit 
focal length located at the origin of the coordinate system and with the optical 
axis pointed in the direction of the z-axis. Let t ing  the homogeneous coordinates 
of an image point be given by u E lRlP 2, then pinhole perspective projection of 
p E ]R]P 3 is given by u = Hpp where 

IIp = 10  . (1) 
0 1  

For lrp(p) = ~rp(a(p)) to be true for any point p, the t ransformation must  
move p along the optical ray between the camera center and p. This can be 
accomplished by the projective t ransformation a : p ~ Ap where 
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Fig. 2. In this 2-d illustration of the generalized perspective bas-relief transformation 
(GPBR), the lower shadow is an attached shadow while the upper one is composed of 
both attached and cast components. A GPBR transformation has been applied to the 
left surface, yielding the right one. Note that under GPBR, all surface points and the 
light source are transformed along the optical rays through the center of projection. 
By transforming the light source from s to s', the shadows are preserved. 

i ~ 0 1 0 0  
A =  0 1 0 " (2) 

al a2 a3 a4 

We call this t ransformation the Generalized Perspective Bas-Relief (GPBR) 
transformation.  In Euclidean coordinates, the t ransformed surface and light 
source are given by 

1 1 
p '  - p s '  = s (3) 

a - p + a 4  a . s + a 4  

where a = (al,a2,a3) T. Figure 2 shows a 2-d example of G P B R  being applied 
to a planar curve and a single light source. The effect is to move points on the 
surface and the light sources along lines through the camera center in a manner  
tha t  preserves shadows. The sign of a .  p + a4 plays a critical role: if it is positive, 
all points on f move inward or outward from the camera center, remaining in 
the halfspace z > 0. On the other hand, if the sign is negative for some points 
on f ,  these points will move through the camera center to points with z < 0, 
i.e., they will not be visible to the camera. The equation a -  p + a4 = 0 defines 
a plane which divides ~t 3 into these two cases; all points on this plane map  to 
the plane at  infinity. A similar effect on the t ransformed light source location is 
determined by the sign of a -  s + a4. 

Proposition 1. The image of the shadow curves for a surface f and light source 
s is identical to the image of the shadow curves for a surface f f  and light source 
s ~ transformed bya G P B R i f a . s + a 4 > O  a n d a . p + a 4 > O  for all p e r .  

Proof. Since G P B R  is a projective transformation,  Lemmas 1 and 2 show tha t  
the local a t tached and cast shadow curves on the t ransformed surface f f  from 
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light source s t are a G P B R  of the local shadow curves on f from light source 
s. For any point p on the surface and any G P B R  transformation A, we have 
/ /pp = IIpAp,  and so the images of the local shadow curves are identical 

To show tha t  the global condition for an at tached shadow is also satisfied, 
we note tha t  projective transformations preserve collinearity; therefore, the only 
intersections of the line defined by s ~ and pt with f~ are t ransformations of 
the intersections of the line defined by s and p with f .  Within each light ray 
(a projective line), the points are subjected to a projective transformation;  in 
general, the  order of the t ransformed intersection points on the line may be a 
combination of a cyclic permutat ion and a reversal of the order of the original 
points. However, the restriction tha t  a - p  + a4 > 0 for all p E f and tha t  
a -  s + a4 > 0 has the effect of preserving the order of points between p and s 
on the original line and between pt and s t on the t ransformed line. 

It  should be noted for tha t  for any a and a4, there exists a light source s 
such tha t  a .  s + a4 < 0. When ] is illuminated by such a source, the t ransformed 
source passes through the camera center, and the global shadowing conditions 
may not be satisfied. Hence two objects differing by G P B R  are not strongly 
shadow equivalent. On the other hand, for any bounded set of light sources and 
bounded object f ,  there exists a set of a l , . . . ,  aa such tha t  a -  s + a4 > 0 and 
a .  p + a4 > 0. Hence, there exist a set of objects which are shadow equivalent. 

Since the shadow curves of multiple light sources are the union of the shadow 
curves from the individual light sources, this also holds for multiple light sources. 
I t  should also be noted that  the occluding contour (silhouette) of f and f t  are 
identical, since the camera center is a fixed point under G P B R  and the occluding 
contour is the same as the at tached shadow curve produced by a light source 
located at the camera center. 

Figure 1 shows an example of the G P B R  transformation being applied to a 
scene containing a teapot  resting on a support  plane. The images were generated 
using the VORT ray tracing package - the scene contained a single proximal 
point light source, the surfaces were modeled as Lambert ian,  and a perspective 
camera model was used. When the light source is t ransformed with the surface, 
the shadows are the same for both  the original and t ransformed scenes. Even 
the shading is similar in both  images, so much so tha t  it is nearly impossible to 
distinguish the two surfaces. However, from another  viewpoint, the effect of the 
G P B R  on the object 's  shape is apparent.  

This result compliments past  work on structure from motion in which the aim 
of s tructure recovery is a weaker non-Euclidean representation, such as affine [18, 
22, 24, 26], projective [9], or ordinal [10]. 

2.2 O r t h o g r a p h i c  P r o j e c t i o n :  G B R  

When a camera is distant and can be modeled as orthographic projection, the 
visual rays are all parallel to the direction of the optical axis. In ]RlP 3, these 
rays intersect at the camera center which is a point at infinity. Without  loss 
of generality consider the viewing direction to be in the direction of the z-axis 
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Fig. 3. The image points that lie in shadow for a surface under light source s are 
identical to those in shadow for a transformed surface under light source s t. In this 2-d 
illustration, the lower shadow is an attached shadow while the upper one is composed 
of both attached and cast components. A generalized bas-relief transformation with 
both flattening and an additive plane has been applied to the left surface, yielding the 
right one. 

and the x and y axes to span the image plane. Again, letting the homogeneous 
coordinates of an image point be given by u E ]RiP 2, orthographic projection of 
p E ]RIP 3 c a n  be expressed as u = Hop where 

IIo = 10  . (4) 
0 0  

Now, let us consider another set of projective transformations g : ]RIP 3 
]RIP 3. For 7co(p) = ~ro(g(p)) to be true for any point p, the transformation 
g must move p along the viewing direction. This can be accomplished by the 
projective transformation g : p ~ Gp where [ 000] 

a = 1 0 0 (5) 
19293 g4 

0 0  1 

with g3 > 0. The mapping g is an affine transformation which was introduced 
in [3] and was called the generalized bas-relief (GBR) transformation. Consider 
the effect of applying GBR to a surface parameterized as the graph of a depth 
function, (x, y, f ( x ,  y)). This yields a transformed surface 

yt = y . 

z t glx + g2Y + g3f(x,  y) + g4 

See Figure 3 for an example. The parameter g3 has the effect of scaling the 
relief of the surface, gl and g2 characterize an additive plane, and ga provides 
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a depth offset. As described in [3], when gl -- g2 ~- 0 and 0 < g3 < 1, the 
resulting transformation is simply a compression of the surface's relief, as in 
relief sculpture. 

P r o p o s i t i o n  2. The image of the shadow curves for a surface f and light source 
s are identical to the image of the shadow curves for a surface f '  and light source 
s ~ transformed by any GBR. 

Proof. The proof follows that  of Proposition 1. 

It should be noted that  Proposition 2 applies to both nearby light sources and 
those at infinity. However, in contrast to the GPBR transformation, nearby light 
source do not move to infinity nor do light sources at infinity become nearby light 
sources since GBR is an affine transformation which fixes the plane at infinity. 
Since Proposition 2 holds for any light source, all objects differing by a GBR 
transformation are strongly shadow equivalent. 

An implication of Propositions 1 and 2 is that  when an object is observed 
from a fixed viewpoint (whether perspective or orthographic projection), one can 
at best reconstruct its surface up to a four parameter family of transformations 
(GPBR or GBR) from shadow or occluding contour information, irrespective 
of the number of images and number of light sources. Under the same condi- 
tions, it is impossible to distinguish (recognize) two objects that  differ by these 
transformations from shadows or silhouettes. 

3 U n i q u e n e s s  o f  t h e  G e n e r a l i z e d  B a s - R e l i e f  

T r a n s f o r m a t i o n  

Here we prove that  under orthographic projection the generalized bas-relief 
(GBR) transformation is unique in that  there is no other transformation of an 
object 's surface which preserves the set of shadows produced by illuminating the 
object with all possible point sources at infinity. We consider only the simplest 
case - an object with convex shape casting no shadows on its own surface - 
and show that  the set of attached shadow boundaries are preserved only under 
a GBR transformation of the object 's surface. 

Recall that  an attached shadow boundary is defined as the contour of points 
(x, y, f ( x ,  y)) satisfying n �9 s = 0, for some s. For a convex object, the global 
attached shadow condition holds everywhere. Here the magnitude and the sign 
of the light source are unimportant  as neither effects the location of the at- 
tached shadow boundary. Thus, let the vector s = (sx, sy, Sz) T denote in ho- 
mogeneous coordinates a point light source at infinity, where all light sources 
producing the same attached shadow boundary are equated, i.e., (s=, sy, sz) T - 
(ksx, kSy, ksz) T Vk E JR, k ~ O. With this, the space of light source directions 3 
is equivalent to the real projective plane (]RIP2), with the line at infinity given 
by coordinates of the form (s=, su, 0). Note that  in the previous section, we repre- 
sented light sources as points in ]Rlp3; here, we restrict our selves only to distant 
light sources lying on the plane at infinity of lR]P 3, (a real projective plane). 
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Collineation 

S--]RIP 2 t * S ' - - ]RIP 2 

Dual 

Collineation 

Dual I 

A f = ] R ] P  2 4 ~ A f ' = ] R P  2 

Fig. 4. The relation of different spaces in proof of Proposition 3. 

Let n = (nx,ny,nz)  T denote the direction of a surface normal. Again, the 
magnitude and sign are unimportant,  so we have (n~, ny, nz) T - (kn=, knv, knz) T 
Vk E JR, k # 0. Thus, the space of surface normals Af is, likewise, equivalent to 
]RlP 2. Note that  under the equation n -  s -- 0, the surface normals are the dual 
of the light sources. Each point in the ]RlP 2 of light sources has a corresponding 
line in the ]RIP 2 of surface normals, and vice versa. 

Let us now consider the image contours defined by the points (x, y) satisfying 
n -  s = 0, for some s. These image contours are the attached shadow boundaries 
orthographically projected onto the image plane. For lack of a bet ter  name, we 
will refer to them as the imaged attached shadow boundaries. 

The set of imaged attached shadow boundaries for a convex object forms an 
abstract projective plane lP 2, where a "point" in the abstract projective plane 
is a single attached shadow boundary, and a "line" in the abstract projective 
plane is the collection of imaged attached shadow boundaries passing through 
a common point in the image plane. To see this, note the obvious projective 
isomorphism between the real projective plane of light source directions S and 
the abstract projective plane of imaged attached shadow boundaries IP 2. Under 
this is isomorphism, we have bijections mapping points to points and lines to 
lines. 

Now let us say that  we are given two objects whose visible surfaces are 
described by respective functions f (x ,  y) and f~(x, y). If the objects have the 
same set of imaged attached shadow boundaries as seen in the image plane (i.e., 
if the objects are strongly shadow equivalent), then the question arises: How are 
the two surfaces f ( x ,  y) and f ' (x ,  y) related? 
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P r o p o s i t i o n  3. I f  the visible surfaces of two convex objects f and f '  are strongly 
shadow equivalent, then the surfaces are related by a generalized bas-relief trans- 
formation. 

Proof. As illustrated in Figure 4, we can construct a projective isomorphism be- 
tween the set of imaged attached shadow boundaries IP 2 and the real projective 
plane of light source directions $ illuminating surface f ( x ,  y). The isomorphism 
is chosen to map the collection of imaged attached shadow boundaries passing 
through a common point (x, y) in the image plane (i.e., a line in IP 2) to the 
surface normal n(x, y). In the same manner, we can construct a projective iso- 
morphism between ]p2 and the real projective plane of light source directions S'  
illuminating the surface f ' (x ,  y). The isomorphism is, likewise, chosen to map the 
same collection of imaged attached shadow boundaries passing through (x, y) in 
the image plane to the surface normal n'(x, y). Under these two mappings, we 
have a projective isomorphism between S and S' which in turn is a projective 
transformation (collineation) [1]. Because Af and Af' are the duals of S and S'  
respectively, the surface normals of f (x, y) are also related to the surface normals 
of f ( x ,  y) by a projective transformation, i.e., n~(x, y) = Pn(x ,  y) where P is a 
3 x 3 invertible matrix. 

The transformation P is further restricted in that  the surface normals along 
the occluding contour of f and f~ are equivalent, i.e., the transformation P 
pointwise fixes the line at infinity of surface normals. Thus, P must be of the 
form 

P = lp2  
0 P3 

where P3 ~ 0. The effect of applying P to the surface normals is the same as 
applying G in Eq. 5 to the surface if pl = -gl /g3,  P2 = -g2/g3 and P3 = 1/g3. 
That  is, P has the form of the generalized bas-relief transformation. Note that  
the shadows are independent of the translation g4 along the line of sight under 
orthographic projection. 

4 R e c o n s t r u c t i o n  f r o m  A t t a c h e d  S h a d o w s  

In the previous section, we showed that  under orthographic projection with 
distant light sources, the only transformation of a surface which preserves the set 
of imaged shadow contours is the generalized bas-relief transformation. However, 
Proposition 3 does not provide a prescription for actually reconstructing a surface 
up to GBR. In this section, we consider the problem of reconstruction from the 
attached shadow boundaries measured in n images of a surface, each illuminated 
by a single distant light source. We will show that  it is possible to estimate the 
n light source directions and the surface normals at a finite number of points, all 
up to GBR. In general, we expect to reconstruct the surface normals at O(n 2) 
points. From the reconstructed normals, an approximation to the underlying 
surface can be computed for a fixed GBR. Alternatively, existing shape-from- 
shadow methods can be used to reconstruct the surface from the estimated light 
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$1 n2 %~ 0 ~ 1 , 2  ~ s l  n2 ~ ~ 1,2 
n3 = �9 s2 ~ n  

S4 

s2 

C5"~~Cl ( -" 
c 3 C ~  
Ce 

c. d. 

Fig. 5. Reconstruction up to GBR from attached shadows: For a single object in fixed 
pose, these figures show superimposed attached shadow contours Ci for light source 
direction si. The surface normal where C~ intersects the occluding contour is denoted 
by hi. The normal at the intersection of Ci and Cj is denoted by ni,j. a) The three 
contours intersect at three points in the image, b) The three contours meet at a common 
point implying that Sl, s2 and sa lie on a great circle of the illumination sphere, c) Eight 
attached shadow boundaries of which four intersect at pl,2 and four intersect at pl,3; 
the direction of the light sources sl . . .  ss and the surface normals at the intersection 
points can be determined up to GBR. d) The structure of the illumination sphere S 2 
for the light source directions generating the attached shadow boundaries in Fig. 5.c. 

source directions (for a fixed GBR) and from the measured at tached and cast 
shadow curves [12, 17, 29]. 

First, consider the occluding contour (silhouette) of a surface which will be 
denoted Co. This contour is equivalent to the at tached shadow produced by a 
light source whose direction is the viewing direction. Define a coordinate system 
with ~ and ~ spanning the image plane, and with ~ pointing in the viewing 
direction. For all points p on the occluding contour, the viewing direction lies 
in the tangent  plane (i.e., n (p)  �9 ~, = 0), and the surface normal n(p)  is parallel 
to the image normal.  Hence if the normal to the image contour is (nx, ny), the 
surface normal is n = (nx, ny, 0) T. In ]RIP 2, the surface normals to all points on 
the occluding contour correspond to the line at infinity. 

Now consider the at tached shadow boundary C1 produced by a light source 
whose direction is sl .  See Figure 5.a. For all points p E C1, sl lies in the tangent  
plane, i.e., sl  �9 n(p)  = 0. Where C1 intersects the occluding contour, the normal 
nl  can be directly determined from the measured contour as described above. I t  
should be noted tha t  while C1 and the occluding contour intersect transversally 
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on the surface, their images generically share a common tangent  and form the 
crescent moon image singularity [8]. Note tha t  by measuring nl  along the oc- 
cluding contour, we obtain a constraint on the light source direction, Sl �9 111 = 0. 
This restricts the light source to a line in IRIP 2 or to a great circle on the illumi- 
nation sphere S 2. The source Sl can be expressed parametrical ly in the camera  
coordinate system as 

S1(81) ~-~ COS81n1 q- sin81~. 

From the shadows in a single image, it is not possible to further constrain sl  nor 
does it seem possible to obtain any further information about  points on C1. 

Now, consider a second at tached shadow boundary C2 formed by a second 
light source direction s2. Again, the measurement  of n2 (where C2 intersects Co) 
determines a projective line in ]RIP 2 (or a great circle on S 2) that  the light source 
s2 must  lie on. In general, C1 and C2 will intersect at  one or more visible surface 
points. If  the object is convex and the Gauss map  is bijective, then they only 
intersect at one point Pl,2- For a nonconvex surface, C1 and C2 may intersect 
more than  once. However in all cases, the direction of the surface normal  111,2 
at the intersections is 

111,2 = s1(81) x s2(82). (6) 

Thus from the at tached shadows in two images, we directly measure 111 and 112 
and obtain estimates for nl,2, Sl, and s2 as functions of 81 and 82. 

Consider a third image illuminated by s3, in which the at tached shadow 
boundary  C3 does no t  pass through Pl,2 (Fig. 5.a). Again, we can est imate a 
projective line (great circle on S 2) containing s3. We also obtain the surface 
normal at two additional points, the intersections of C3 with C1 and C2. From 
the at tached shadow boundaries for a convex surface measured in n images - 
if no three contours intersect at a common point - the surface normal can be 
determined at n ( n  - 1) points as a function of n unknowns 8i, i -- 1 . . .  n. 

However, the number  of unknowns can be reduced when three contours inter- 
sect at a common point. Consider Fig. 5.b where contour C4 intersects C1 and 
C2 at  Pl,2- In this case, we can infer from the images that  Sl, s2 and s4 all lie in 
the tangent plane to Pl,2. In ~ I P  2, this means tha t  Sl, s2, s4 all lie on the same 
projective line. Since 114 can be measured, s4 can be expressed as a function of 
81 and 82, i.e., 

s 4 ( e 1 , e 2 ) = 1 1 4  • ( s l ( e l )  • 

Thus, a set of at tached shadow curves (C1, C2, C4 in Fig. 5.b) passing through 
a common point (Pl,2) is generated by light sources (sl ,s2,  s4 in Fig. 5.d) lo- 
cated on a great circle of S 2. The light source directions can be determined up 
to two degrees of freedom 81 and 82. Now, if in addition a second set of light 
sources lies along another  projective line (the great circle in Fig 5.d containing 
sl ,  s3, s6, ST), the corresponding shadow contours (C1, C3, C8, C7 in Fig 5.c) in- 
tersect at  another  point on the surface (Pl,3). Again, we can express the location 
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of light sources (s6, sT) on this great circle as functions of the locations of two 
other sources (Sl and s3): 

8i(81,83) = h i  X (81(81) X 83(83) ). 

Since S1 lies at the intersection of both projective lines, we can estimate the 
direction of any light source located on either line up to just three degrees of 
freedom 81,82, and 83. Furthermore, the direction of any other light source (ss 
on Fig. 5.d) can be determined if it lies on a projective line defined by two light 
sources whose directions are known up to 81,82 and 83. From the estimated 
light source directions, the surface normal can be determined using Eq. 6 at all 
points where the shadow curves intersect. As mentioned earlier, there are O(n 2) 
such points - observe the number of intersections in Fig. 5.c. It is easy to verify 
algebraically that  the three degrees of freedom 81,82 and 83 correspond to the 
degrees of freedom in GBR gl, g2 and g3. The translation g4 of the surface along 
the line sight cannot be determined under orthographic projection. 

5 D i s c u s s i o n  

We have defined notions of shadow equivalence for object, showing that  two ob- 
jects differing by a four parameter family of projective transformations (GPBR) 
are shadow equivalent under perspective projection. Furthermore, under ortho- 
graphic projection, two objects differing by a generalized bas-relief (GBR) trans- 
formation are strongly shadow equivalent - i.e., for any light source illuminating 
an object, there exits a light source illuminating a transformed object such that  
the shadows are identical. We have proven that  GBR is the only transformation 
having this property. While we have shown that  the occluding contour is also 
preserved under GPBR and GBR, it should be noted that  image intensity dis- 
continuities (step edges) arising from surface normal discontinuities or albedo 
discontinuities are also preserved under these transformations since these points 
move along the line of sight and are viewpoint and (generically) illumination in- 
dependent. Consequently, edge-based recognition algorithms should not be able 
to distinguish objects differing by these transformations, nor should edge-based 
reconstruction algorithms be able to perform Euclidean reconstruction without 
additional information. 

In earlier work where we concentrated on light sources at infinity [4, 3], we 
showed that  for any set of point light sources, the shading as well as the shad- 
owing on an object with Lambertian reflectance are identical to the shading 
and shadowing on any generalized bas-relief transformation of the object, i.e., 
the illumination cones are identical. This is consistent with the effectiveness of 
well-crafted relief sculptures in conveying a greater sense of the depth than is 
present. It is clear that  shading is not preserved for GPBR or for GBR when the 
light sources are proximal; the image intensity falls off by the reciprocal of the 
squared distance between the surface and light source, and distance is not pre- 
served under these transformations. Nonetheless, for a range of transformations 
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and for some sets of light sources, it is expected that  the intensity may only vary 
slightly. 

Furthermore, we have shown that  it is possible to reconstruct a surface up 
to GBR from the shadow boundaries in a set of images. To implement a recon- 
struction algorithm based on the ideas in Section 4 requires detection of cast and 
attached shadow boundaries. While detection methods have been presented [5, 
28], it is unclear how effective these techniques would be in practice. In par- 
ticular, attached shadows are particularly difficult to detect and localize since 
for a Lambertian surface with constant albedo, there is a discontinuity in the 
intensity gradient or shading flow field, but not in the intensity itself. On the 
other hand, there is a step edge at a cast shadow boundary, and so extensions 
of the method described in Section 4 which use information about cast shadows 
to constrain the light source direction may lead to practical implementations. 

Leonardo da Vinci's statement that  shadows of relief sculpture are "foreshort- 
ened" is, strictly speaking, incorrect. However, reliefs are often constructed in a 
manner such that  the cast shadows will differ from those produced by sculpture 
in the round. Reliefs have been used to depict narratives involving numerous 
figures located at different depths within the scene. Since the sculpting medium 
is usually not thick enough for the artist to sculpt the figures to the proper rela- 
tive depths, sculptors like Donatello and Ghiberti employed rules of perspective 
to determine the size and location of figures, sculpting each figure to the proper 
relief [16]. While the shadowing for each figure is self consistent, the shadows 
cast from one figure onto another are incorrect. Furthermore, the shadows cast 
onto the background, whose orientation usually does not correspond to tha t  of a 
wall or floor in the scene, are also inconsistent. Note however, that  ancient Greek 
sculpture was often painted; by painting the background of the Parthenon Frieze 
a dark blue [7], cast shadows would be less visible and the distortions less ap- 
parent. Thus, Leonardo's statement is an accurate characterization of complex 
reliefs such as Ghiberti 's East Doors on the Baptistery in Florence, but  does not 
apply to figures sculpted singly. 
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