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A b s t r a c t .  This paper describes a novel and adaptive dictionary method 
for face recognition using genetic algorithms (GAs) in determining the 
optimal basis for encoding human faces. In analogy to pursuit methods, 
our novel method is called Evolutionary Pursuit (EP), and it allows 
for different types of (non-orthogonal) bases. EP processes face images 
in a lower dimensional whitened PCA subspace. Directed but random 
rotations of the basis vectors in this subspace are searched by GAs where 
evolution is driven by a fitness function defined in terms of performance 
accuracy and class separation (scatter index). Accuracy indicates the 
extent to which learning has been successful so far, while the scatter 
index gives an indication of the expected fitness on future trials. As a 
result, our approach improves the face recognition performance compared 
to PCA, and shows better generalization abilities than the Fisher Linear 
Discriminant (FLD) based methods. 

1 I n t r o d u c t i o n  

A successful face recognition methodology depends heavily on the part icular  
choice of the features used by the (pat tern)  classifier [6], [31], [4]. The search for 
the best feature set corresponds to finding an opt imal  neural code, biologically 
characterized as a lattice of receptive fields (RFs) ( 'kernels') and computat ion-  
ally developed as an optimal basis [26], [2], [30]. Optimizat ion of the visual 
system then requires searching for such an opt imal  basis according to the design 
criteria such as (A) redundancy minimization and decorrelation, (B) minimiza- 
tion of the reconstruction error, (C) maximizat ion of information transmission 
(infomax) [24], and (D) sparseness of the neural code [26]. Furthermore,  to the 
design criteria listed above one should add as an impor tan t  functionality the one 
related to successful pa t tern  classification, referred to by Edelman [13] as neural 
Darwinism. The  rationale behind feature extract ion using an optimal  basis rep- 
resentation is tha t  most  practical methods for bo th  regression and classification 
use parameter iza t ion  in the form of a linear combination of basis functions. This 
leads to a t axonomy based on the type of the basis functions used by a part icular  
method and the corresponding optimization procedure used for parameter  esti- 
mation.  According to this taxonomy, most  practical  methods use basis function 
representat ion - -  those are called dictionary or kernel methods,  where the par- 
ticular type of chosen basis functions consti tutes a kernel. Further distinction is 
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made between non-adaptive methods using fixed (predetermined) basis functions 
and adaptive dictionary methods where basis functions depend (nonlinearly) on 
some (tunable) parameters,  such that  the basis functions themselves (or their 
parameters) are fit to available data  [9]. 

Representative classes of adaptive dictionary methods include two approaches 
sharing similar dictionary representations : Projection Pursuit  (statistical meth- 
od) and Multilayer Perceptron (neural network method) [20]. Since most practi- 
cal methods use nonlinear models, the determination of optimal kernels becomes 
a nonlinear optimization problem. When the objective function lacks an analyti- 
cal form suitable for gradient descent or the computation involved is prohibitively 
expensive one should use (directed) random search techniques for nonlinear op- 
timization and variable selection as those methods characteristic of evolutionary 
computation and genetic algorithms [17]. 

Most neural network methods use the same type of basis function, defined as 
hidden units of a feed forward net and having the same form of activation func- 
tion (sigmoid or radial basis). In contrast, many statistical adaptive methods 
do not require the form of all basis functions to be the same. In terms of opti- 
mization, statistical methods estimate the basis functions one at a time, hence 
there is no need for all basis functions to be the same. On the other hand, neu- 
ral network methods based on gradient descent optimization are more suitable 
for handling representations with identical basis functions which are updated 
simultaneously. 

Projection Pursuit  (PP)  regression is an example of an additive model with 
univariate basis functions [15] [19]. A greedy optimization approach, called back- 
fitting, is often used to estimate additive approximating functions. The back- 
fitting algorithm provides a local minimum of the empirical risk encountered 
during functional approximation by sequentially estimating the individual basis 
functions of the additive approximating function. Similar to PP  in spirit and 
characteristic of the non-orthogonal and over complete methods is the Matching 
Pursuit  (MP) algorithm [25]. MP decomposes any signal into a linear expansion 
of waveforms that  are selected from a redundant dictionary of functions. These 
waveforms are chosen in order to best match the signal structure. Using a dictio- 
nary of Gabor functions a matching pursuit defines an adaptive time-frequency 
transform. More recently, Chen and Donoho [7] have described Basis Pursuit  as 
a technique for decomposing a signal into an optimal superposition of dictionary 
elements using as the optimization criterion the 11 norm of coefficients. 

The search for optimal basis amounts to identifying relevant feature sub- 
sets as a result of exploiting non-linear interactions in high dimensional feature 
spaces. The identification of optimal basis can be approached through the use 
of Genetic Algorithms (GAs) [17]. GAs work by maintaining a constant-sized 
population of candidate solutions known as individuals ( 'chromosomes'). The 
power of a genetic algorithm lies in its ability to exploit, in a highly efficient 
manner, information about  a large number of individuals. The search underly- 
ing GAs is such that  breadth and depth - -  exploration and exploitation - -  are 
balanced according to the observed performance of the individuals evolved so 
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far. By allocating more reproductive occurrences to above average individual 
solutions, the overall effect is to increase the population's average fitness. We 
advance in this paper an adaptive dictionary method for face recognition using 
GAs in determining the optimal basis for encoding human faces. In analogy to 
the pursuit methods referred to earlier our novel method is called Evolutionary 
Pursuit (EP). The EP method, takes advantage of both statistical and neural 
methods, and it is described in Sect. 4. EP allows for different types of bases, 
as some statistical methods do, but it would update the dictionary of choices 
simultaneously as neural networks do. 

As systems that employ several strategies have been shown to offer significant 
advantages over single-strategy systems, we have developed a hybrid method- 
ology seeking the basis representation for human faces that leads to optimal 
performance on face recognition tasks. The optimal basis for face recognition is 
usually defined in terms of 2nd order statistics. PCA related 2nd order meth- 
ods and their use for face recognition are reviewed in Sect. 2 as they provide 
the benchmark for comparing our new hybrid and evolutionary methodology for 
face recognition. Sect. 3 describes the overall strategy for face recognition and 
the modules involved, while Sect. 4 details the evolutionary pursuit method for 
deriving the optimal basis and its use for face recognition. Experimental results 
are given in Sect. 5, while conclusions are presented in Sect. 6. 

2 2 n d  O r d e r  M e t h o d s  a n d  F a c e  R e c o g n i t i o n  

Principal Component Analysis (PCA), also known as the Karhunen-Loeve ex- 
pansion, is a classical technique for signal representation [21], [16]. Sirovich and 
Kirby [32], [22] applied PCA for representing face images. They showed that any 
particular face can be economically represented along the eigenpictures coordi- 
nate space, and that any face can be approximately reconstructed by using just a 
small collection of eigenpictures and the corresponding projections ('coefficients') 
along each eigenpicture. 

PCA generates a set of orthonormal basis vectors, known as principal compo- 
nents, that maximize the scatter of all projected samples. Let X -- IX1, X2, . . . ,  
Xn] be the sample set of the original images. After normalizing the images to 
unity norm and subtracting the grand mean a new image set Y = [Y1, Y2,. . . ,  }In] 
is obtained. Each Yi represents a normalized image with dimensionality N, 
Yi = ( y i l , Y i 2 , . . . , y i N )  t , (i = 1 ,2 , . . . , n ) .  The covariance matrix of the nor- 
malized image set is defined as 

S y  = -~1 ~ y~yt = 1YYtn (1) 
i = l  

and the eigenvector and eigenvalue matrices ~, A are computed as 

- - -  (2) 
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Note that  y y t  is an N x N matr ix while y t y  is an n x n matrix. If the 
sample size n is much smaller than the dimensionality N, then the following 
method saves some computation [35] 

(yty)~p = ~PA1 (3) 

= Vk~ (4) 

where AI -- diag{Ax, A2, . . . ,  An), and .~ = [4~1, ~2 , - . - ,  ~n]- If one assumes that  
the eigenvalues are sorted in decreasing order, A1 >_A2_>-" ">_),n, then the first m 
leading eigenvectors define matr ix P 

g ~-~ [~x,~2,--- ,~i~m] (5) 

The new feature set Z with lower dimensionality m (m<<N) is derived 

Z = p r y  (6) 

For pat tern recognition, the PCA technique is exploited both directly and 
indirectly. The direct approaches use the principal components (PCs) as the 
projection basis, hence preserve the orthogonality of the basis vectors. The in- 
direct methods use PCA primarily as a dimensionality reduction technique for 
subsequent transformations, and the overall projection basis vectors are usually 
no longer orthogonal. Unlike signal representation, orthogonality is not a re- 
quirement for pat tern recognition, and one can expect bet ter  performance from 
non-orthogonal bases over orthogonal ones as they lead to an over complete and 
robust representational space [12]. 

Since eigenpictures are fairly good at representing face images, one can also 
consider using the projections along them as classification features to recognize 
faces. As a result, Turk and Pentland developed a well known face recognition 
method, known as eigenfaces, where the eigenfaces correspond to the eigenvectors 
associated with the dominant eigenvalues of the face covariance matrix. The 
eigenfaces define a feature space, or "face space", which drastically reduces the 
dimensionality of the original space, and face detection and identification are 
carried out in the reduced space [35]. 

The advantage of direct approaches (PCA only) is their generalization ability 
[27]. PCA yields projection axes based on the variations from all the training 
samples, hence these axes are fairly robust for representing both training and 
testing images (not seen during training). This is the merit of PCA as an optimal 
technique for signal representation. As a result, the performance during testing 
will not be very different from that  encountered during training. In other words, 
direct approaches display good generalization ability. The disadvantage of the 
direct approaches is tha t  they can not distinguish the variations between within 
and between class scatters, since PCA treats all the training samples equally. As a 
consequence, by maximizing the scatter measurement,  the unwanted within class 
scatters are also maximized along with the between class scatter maximization. 
This will lead to poor performance when the within class scatter is big due to 
lighting, facial expression, pose, and duplicate images. 
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While PCA is a classical technique for signal representation, Fisher's Lin- 
ear Discriminant (FLD) is a classical technique for pattern recognition [14], [3]. 
Several authors have applied this technique for face recognition, gesture recogni- 
tion, and pattern rejection [8], [11], [1]. Recently Swets and Weng have pointed 
out that the eigenfaces derived using PCA are only the most expressive features 
(MEF), which are unrelated to actual face recognition. To derive most discrimi- 
nating features (MDF), one needs a subsequent FLD projection [33]. Their pro- 
cedure involves the simultaneous diagonalization of the two within and between 
class scatter matrices [16]. The MDF space is superior to the MEF space for face 
recognition only when the training images are representative of the range of face 
(class) variations; otherwise, the performance difference between the MEF and 
MDF is not significant. Belhumire, Hespanha, and Kriegman developed a similar 
approach called fisherfaces by applying first PCA for dimensionality reduction 
and then FLD for discriminant analysis [3]. 

The advantage of the indirect methods (combining PCA and FLD) is that 
they distinguish the different roles of within and between class scatter by apply- 
ing discriminant analysis, e.g. FLD, and they usually produce non-orthogonal 
projection axes. But the indirect methods have their disadvantage too, namely 
poor generalization to new data, because those methods overfit to the train- 
ing data. As the FLD procedure involves the simultaneous diagonalization of 
the two within and between class scatter matrices, it is equivalent to two-step 
operations: first 'whitening' the within class scatter matrix - -  applying an ap- 
propriate transformation that will make the within class scatter matrix equal to 
unity, and second applying PCA on the new between class scatter matrix [16]. 
Note that whitening as used here lacks generalization ability when compared to 
global whitening methods (see Sect. 3.1) which are applied across both within 
and between scatter matrices defined together as the covariance matrix Zy  (see 
Eq. 1). The purpose of the 'whitening' step here is to normalize the within class 
scatter to unity, while the second step would then maximize the between class 
scatter. The robustness of the FLD procedure thus depends on whether or not 
the within class scatter can capture enough variations for a specific class. When 
the training samples do not include most of the variations due to lighting, facial 
expression, pose, and/or duplicate images as those encountered during testing, 
the 'whitening' step is likely to fit misleading variations, i.e. the normalized 
within class scatter would best fit the training samples but it would generalize 
poorly when exposed to new data. As a consequence the performances during 
testing for such an indirect method will deteriorate. In addition, when the train- 
ing sample size for each class is small, the within class scatter would usually not 
capture enough variations. The FLD procedure thus leads to overfitting. 

The Evolutionary Pursuit (EP) approach detailed in the following sections 
would take into consideration of both performance accuracy and generalization 
capability and evolve balanced results displaying good performance during test- 
ing. As a result, EP improves the face recognition performance compared to 
(direct) PCA (Eigenfaces), and shows better generalization abilities than the 
FLD based (indirect) methods (MDF/Fisherfaces). 
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3 O p t i m a l  B a s i s  a n d  F a c e  R e c o g n i t i o n  

Our architecture for face recognition is shown in Fig. 1. The main thrust  is to 
find out an optimal basis along which faces can be projected leading to a compact 
and efficient face encoding in terms of recognition ability. As discussed in the 
previous section, PCA first projects the face images into a lower dimensional 
space. The next step is the whitening transformation and it counteracts the 
fact that  the Mean-Square-Error (MSE) principle underlying PCA preferentially 
weights low frequencies. Directed but random rotations of the lower dimensional 
(whitened PCA) space are now driven by evolution and use domain specific 
knowledge ('fitness'). The fitness behind evolution, the one used to find the 
optimal basis, considers both recognition rates and the scatter index which are 
derived using the projections of the face images onto the rotated axes. Evolution 
is implemented using Evolutionary Pursuit  (EP) as a special form of Genetic 
Algorithms (GAs). Note that  the reachable space of EP is increased as a result 
of using a non-orthonormal (whitening) transformation. One can expect bet ter  
performance from non-orthogonal bases over orthogonal ones as they lead to 
an over complete and robust representational space [12]. Note that  under the 
whitening transformation the norms (distances) are not preserved. 

Fig. 1. System Architecture for Face Recognition using Evolutionary Pursuit 

3.1 W h i t e n i n g  T r a n s f o r m a t i o n  

After dimensionality reduction using PCA, the lower dimensional feature set 
Z (from Eq. 6) is now subjected to the whitening transformation and leads to 
another feature set V 

y = r z  (7) 

where F ---- diag{),-~ 1/2, ,V~1/2,..., ,X=, '/~ } �9 
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The reason why the whitening procedure can lead to non-orthogonal bases 
of the overall t ransformat ion is as follows. Let Q be a m x m rotat ion matr ix  
(QtQ = QQt = I) and apply Q to the feature set V. Combined with Eqs. 6 and 
7 one obtains the overall t ransformation matr ix  

= P F Q  (8) 

Now assume the basis vectors in .~ are orthogonal (using proof by contradiction), 

_-t . -  = z~ (9) 

where A is a diagonal matr ix.  From Eqs. 8 and 9 it follows tha t  

1,2 = A = c I  (10) 

where c is a constant.  Eq. 10 holds only when all the eigenvalues are equal, and 
when this is not the case the basis vectors in ~ are not orthogonal.  (see Fig. 6). 

3.2 R o t a t i o n  T r a n s f o r m a t i o n s  

The rotat ion t ransformations are carried out in the whitened m dimensional 
space, in which the feature set V lies (see Eq. 7). Let t? = [r162 be the 
basis of this space where ~1 ,~2 , . . - ,~m are the unit vectors. Our evolutionary 
pursuit  approach would later on search for tha t  (reduced) subset of some basis 
vectors rota ted from cl ,  r --,  r in terms of best discrimination performance. 
The rotat ion procedure is carried out by pairwise axes rotation. In particular, 
let us suppose the basis vectors ~i and r need to be ro ta ted  by ak, then a new 
basis 41, ~2 , . . . ,  4-, is derived by 

[ ~ , , ~ 2 , . . . , ~ ]  = [ ~ l , ~ 2 , . . . , ~ ] V k  (11) 

where Qk is a rotat ion matr ix.  There are M = m ( m  - 1)/2 rotat ion angles in 
total  corresponding to the M pairs of basis vectors to be rotated.  For the purpose 
of evolving optimal  basis for recognition, it makes no difference if the angles are 
confined to (0, 77/2), since the positive directions and the order of axes are not 
important .  The overall rotat ion matr ix  Q is defined by 

O = OlO2" .Om(m-1) /2  (12) 

3.3 Face Recognition 

Let T = [O~l ,Oi2 , . . . ,@s]  be the optimal basis derived by EP (evolutionary 
pursuit) (see Sect. 4.2). The new feature set U is derived as 

u = [u1, v 2 , . . . ,  u , ]  = TrY (13) 

where V is the whitened feature set (Eq. 7), and [[/1, U 2 , . . . ,  Un] are the feature 
vectors corresponding to different face images. 
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Let U ~ (k = 1, 2 , . . . ,  n), be the prototype of class k, the decision rule can be 
expressed as 

IIu~ o - U~I[2 -- minHUi - U~ Ui e cok (14) 
3 

The face image Ui is classified to the class wk to which it has the minimum 
Euclidean distance. 

4 Genetic Algorithms (GAs) and Evolutionary Pursuit 
(EP) 

The task for EP is to search through all the rotation axes defined over properly 
whitened PCA subspaces. Evolution is driven by a fitness function defined in 
terms of performance accuracy and class separation (scatter index). Accuracy 
indicates the extent to which learning has been successful so far, while the scatter 
index gives an indication of the expected fitness on future trials. A large scat- 
ter index calls for additional learning so present performance becomes a good 
indicator on future ( 'predicted') performance. Predictors on future performance 
can thus modulate the amount  of learning and stop learning, when constant but  
well behaved performance can be expected from the individual chromosomes. EP 
defined as above is thus a hybrid between the "filter" and "wrapper" approaches 
[23] and takes advantage of their comparative merits. 

The EP method is implemented using GAs and it has the following advan- 
tages. First, directed search in the whitened PCA subspaces which are more reli- 
able than the whitened subspaces of the within class scatter matr ix  (see MDF for 
comparison); the reason is that  PCA exploits the variations from all the training 
samples while the within class scatter uses only within class variations. When 
the sample size of each class is small and the variations are not representative, 
the whitened subspaces of the within class scatter matrix do not represent the 
actual unit within class scatter any more. Second, the fitness function consists 
of two terms: performance accuracy and class separation. These two terms put 
opposite pressures on the fitness function: the performance accuracy term is sim- 
ilar to the criterion of choosing projection axes with smaller scatter,  while the 
class separation term favors axes with larger scatter. By combining these two 
terms together (with proper weights), GA can evolve balanced results with good 
testing performances and generalization abilities. 

One should also point out tha t  just using more PCs (principal components) 
does not necessarily lead to bet ter  performance, since some PCs might capture 
the within class scatter which is unwanted for the purpose of recognition. In our 
experiments we searched the 20 and 30 dimensional whitened PCA subspaces 
corresponding to the leading eigenvalues, since it is in those subspaces that  most 
of the variations characteristic of human faces occur. 

4.1 C h r o m o s o m e  R e p r e s e n t a t i o n  a n d  G e n e t i c  O p e r a t o r s  

As is discussed in Sect. 3.2, corresponding to different sets of rotat ion angles 
different basis vectors are derived. GAs are used to search among the differ- 
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ent rotat ion t ransformations and different combinations of basis vectors in or- 
der to pick up the best subset of vectors with the most  discriminant power. 
The  optimal  basis is evolved from a larger vector set {~1,~2,- . . ,~m} rota ted 
from a basis ~1, c 2 , . . . ,  ~,~ in m dimensional space by a set of rotat ion angles 
c~1, c~2,.. . ,  (~m(m-1)/2 with each angle in the range of (0, ~/2) .  If the angles are 
discretized with small enough steps, then we can use GA to search this dis- 
eretized space. GA requires the solutions to be represented in the form of bit 
strings or chromosomes. If we use 10 bits (resolution) to represent each an- 
gle, then each discretized (angle) interval is less than  0.09 degree, and we need 
10 * [m(m- 1)/2] bits to represent all the angles. As we also have m basis vectors 
(projection axes) to choose from, another  m bits should be added to the chro- 
mosome to facilitate tha t  choice. Fig. 2 shows the chromosome representation, 
where ai, (i = 1 , 2 , . . .  ,m), has the value 0 or 1 and indicates whether the i-th 
basis vector is chosen or not. 

Fig. 2. Chromosome Representation of Rotation Angles and Projection Axes 

Let Ns be the number  of different choices of basis vectors in the search space. 
The  size of genospace, too large to search it exhaustively, is 

Ns = 2 5m(m-1)+m (15) 

Fig. 3. Two Points Crossover 

As it searches the genospace, the GA makes its choices via genetic operators  
as a function of a probabil i ty distribution driven by the fitness function. The  
genetic operators  are selection, crossover (or recombination),  and muta t ion  [17]. 
In our experiments,  we use (i) propor t ionate  selection: preselection of parents 
in proport ion to their relative fitness; (ii) two points crossover: exchange the 
sections between the crossover points as shown in Fig. 3; and (iii) fixed prob- 
ability mutation: each position of a chromosome is given a fixed probabil i ty of 
undergoing muta t ion  (flipping the corresponding bit). 
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4.2 T h e  F i t n e s s  F u n c t i o n  

Fitness values guide GA on how to choose offsprings for the next generation from 
the current parent generation�9 Let F - ~1, ~2, �9 �9 �9 O Z m ( m - 1 ) / 2 ;  el, a2, �9 - . , am rep- 
resent the parameters to be evolved by GA, then the fitness function ~(F) is 
defined as 

~(F) = ~a(F) + )~(s(F) (16) 

where ~a (F) is the performance accuracy term, ~s (F) is the class separation term, 
and A is a positive constant. In our experiments, we set (a(F) to be the number 
of faces correctly recognized as the top choice after the rotation and selection of 
a subset of axes, and (~(F) the scatter measurement among different classes. 
is empirically chosen such that  (~ (F) contributes more to the fitness than ~s (F) 
does. Note that  the fitness function defined here has a similar form compared to 
the cost functional derived from the principle of regularization theory, which is 
very useful for solving ill-posed problems in computer vision and improving the 
generalization ability of RBF networks in neural network [34], [29], [18]. Actually, 
those two terms, (~ (F) and ~s (F), put opposite pressures on the fitness function: 
the performance accuracy term r is similar to the criterion of choosing 
projection axes with smaller scatter, while the class separation term ~s (F) favors 
axes with lager scatter. By combining those two terms together (with proper 
weight )~), GA can evolve balanced results displaying good performance during 
testing. 

Let the rotation angle set be a~ k), a~k),, a (k) " ' ,  re(m-I)/2, and the basis vectors 

after the transformation be ~k), ~ k ) , . . . ,  ~(m k) according to Eqs. 11 and 12. If GA 

chooses l vectors ~1,~72, ,~Tt from ~(k) c(k) ,~(m k) then the new feature set �9 ' '  %1 ' % 2  , ' ' '  , 

is specified as 
W : [ / } 1 , / } 2 ,  � 9  � 9  l l l ] t V  (17) 

where V is the whitened feature set (see Eq. 7). 
Let Wl, w2, . . . ,  WL and N1, N 2 , . . . ,  NL denote the classes and number of im- 

ages within each class, respectively. Let M1, M2, . . . ,  ML and Mo be the means of 
corresponding classes and the grand mean in the new feature space spaniel1, r12, 
. . . ,  r/t], we then have 

1 Ni 
Mi -- ~ E W(0 '  i = 1 , 2 , . . . , L  (18) 

j-----1 

W (0,  j = 1, 2 , . . . ,  Ni, represent the sample images from class wi, where and 

N~Mi (19) 
1 

M 0 =  n 
i----1 

where n is the total number of images for all the classes. Thus, ~ (F) is computed 
a s  

~ ( F )  = E ( M i  - Mo) 2 (20) 
i ~ l  
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Driven by this fitness function, GA would evolve the optimal solution F ~ - 

a ~ , a ~ ,  c~ ~ "a ~ o Let Q in Eq. 12 represent this particu- �9 " ,  re(m-I)~2, 1 , a ~ , . . . , a m .  
o o . c~o (re- lar basis set corresponding to the rotation angles ( ~ 1 , a 2 , . . ,  re(m-l)/2 

member e l , e 2 , . . . , E m  are unit vectors), and let the column vectors in Q be 
{91,  (~2 ,  �9 �9 �9 , O m  

Q = [O1, O 2 , . . . ,  (0m] (21) 

.. o o ., o then Let Oil, Oi2, �9 (0it be the basis vectors corresponding to a l , a 2 , . ,  am,  
the optimal basis T can be expressed as 

T = [0i l ,  0 i 2 , . . . ,  (0it] (22) 

where i j  E { 1 , 2 , . . . , m } ,  i j  ~ ik for j ~ k, and l < m. 

4.3 The Evolutionary Pursuit (EP) Algorithm 

The evolutionary pursuit (EP) algorithm works as follows: 

1. Compute the eigenvector and eigenvalue matrices of y t y  using singular value 
decomposition (SVD) or Jacobi's method, and derive A1 = diag{A1,  A 2 , . . . ,  

)~n} and .~ -- [ r  according to Eqs. 3 and 4. Choose then the 
first m leading eigenvectors from .~ as basis vectors (Eq. 5) and project the 
original image set Y onto those vectors to form the feature set Z (Eq. 6) in 
this reduced PCA subspace. 

2. Whiten the feature set Z and derive the new feature set V in the whitened 
PCA subspace (Eq. 7). 

3. Set [ E l ,  ~ 2 , ' - ' ,  Cm] to be a m • m unit matrix: [el, ~ 2 , - . , ,  C m ]  : Ira. 

4. Begin the evolution loop until the stopping criteria (e.g., the maximum num- 
ber of trials) are reached: 

(a) 

(b) 

(c) 

Sweep the m ( m  - 1)/2 pairs of axes according to a fixed order to get the 

rotat ion angle set ol~k) ,ol~k) , . . . ,  O ~ ( : I m _ l ) / 2  f r o m  the individual chromo- 

some representation (Fig. 2), and rotate  the unit basis vectors, [Cl, ~2 , . . - ,  
~m], in this m dimensional space to derive the new projection axes: 
~(k) ~(k)  . , ~ )  using Eqs. 11 and 12. 1 ' ~2 ' " " 

Compute the fitness value (Eq. 16) in the feature space defined by 
the l projection axes, ~l ,y2, . . . ,~?l ,  chosen from the rotated axes set 
{~(k) ~(k) ~ ) }  ~1 ,u2 , ' - ' ,  according to the a~s from the individual chromo- 

some representation (Fig. 2). 

Find the sets of angles and the subsets of projection axes that  maximize 
the fitness value, and keep these chromosomes as the best solutions so 
far. 
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(d) Change the values of rotation angles and the subsets of the projection 
axes according to GA's genetic operators, and repeat the evolution loop. 

5. Carry out recognition using Eqs. 22, 13, and 14, after GA evolves the optimal 
basis, 0il , 0i2,..., Oi,. 

The computational complexity of the algorithm falls mainly into two parts: 
the PCA computation of step 1 and the evolution loop of step 4. In step 1, the 
SVD of matrix of size n x n has the complexity of O(n 3) according to [5], the 
computation of the eigenvector matrix .~ (Eq. 4) is O(n2N), and the derivation 
of the feature set Z (Eq. 6) is O(mnN). In step 4, the rotation transforma- 
tions of (a) and the fitness value computations of (b) account for most of the 
computation. In step 4 (a), each rotation transformation changes two column 
vectors (pairwise axes rotation), and there are m ( m -  1)/2 rotations in total, 
hence the complexity is O(m3). In step 4 (b), if we only count the number of 
multiplications, then Eq. 17 accounts for the major part of the computation with 
the computational complexity O(lmn). The overall complexity of the evolution 
procedure also depends on the maximum number of trials. 

5 E x p e r i m e n t a l  R e s u l t s  

The experimental data consists of 1107 facial images corresponding to 369 sub- 
jects and it comes from the US Army FERET database [28]. 600 out of the 1107 
images correspond to 200 subjects with each subject having three images - -  two 
of them are the first and the second shot, and the third shot is taken under low 
illumination (see Fig. 4). For the remaining 169 subjects there are also three im- 
ages for each subject, but two out of the three images are duplicates taken at a 
different time (see Fig. 4). Two images of each subject are used for training with 
the remaining image for testing. The images are cropped to the size of 64 x 96, 
and the eye coordinates are manually detected. 

We implemented the evolutionary pursuit (EP) algorithm with m = 20 and 
m = 30, respectively (PCA reduces the dimensionality of the original image 
space from N = (64 x 96) to m ). The Eigenface and MDF methods were 
implemented and experimented with as well. Note that once EP found a reduced 
subset of basis vectors, the same number of projection axes was used by both 
the eigenface and MDF methods for comparison purposes (see Tables 1, 2 and 
3). Table 1 shows comparative training performance, while Tables 2 and 3 give 
comparative testing performance. In Table 2 and 3, top 1 recognition rate means 
the accuracy rate for the top response being correct, while top 3 recognition rate 
represents the accuracy rate for the correct response being included among the 
first three ranked choices. 

When m = 20, the evolutionary pursuit approach derived 18 vectors as the 
optimal basis. Fig. 5 plots the 18 basis vectors, and Fig. 6 shows the non- 
orthogonality of these vectors. For each row (or column) the unit bar (along 
the diagonal position) represents the norm of a basis vector, and the other bars 
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represent the dot products of this vector and the other 17 basis vectors. Since 
the dot products are non-zero, these basis vectors are not orthogonal. When 
m = 30, the EP approach derived 26 vectors as the optimal basis. 

Table 1. Comparative Training Pe r fo rmances  for the Eigenface, MDF, and Evolu- 
tionary Pursuit Methods Using 18 and 26 Basis Vectors, respectively 

method \features 18 26 
Eigenface Method 78.05% 81.30~ 

MDF Method 100% 100% 
Evolutionary Pursuit 83.47% 82.66% 

Table 2. Comparative Test ing Pe r fo rmances  for the Eigenface, MDF, and Evolu- 
tionary Pursuit Methods when the 20 dimensional whitened PCA subspace is searched 
b y E P  ( m = 2 0 )  

method features top 1 recognition rate top 3 recognition rate 
Eigenface Method 18 81.57% 94.58% 

MDF Method 18 79.95% 87.80% 
Evolutionary Pursuit 18 87.80% 95.93% 

Table  3. Comparative Test ing Pe r fo rmances  fi)r the Eigenface, MDF, and Evolu- 
tionary Pursuit Methods when the 30 dimensional whitened PCA subspace is searched 
b y E P  ( m = 3 0 )  

method # features ! top 1 recognition rate top 3 recognition rate! 
Eigenface Method 26 87.26% 95.66% 

MDF Method 26 86.45% 93.77% 
Evolutionary Pursuit 26 92.14% 97.02% 

Table 1 gives the comparative training performances of Eigenface, MDF, and 
Evolutionary Pursuit  methods with 18 and 26 basis vectors, respectively, and one 
can see that  the training performances for MDF method is perfect (100% correct 
recognition rate). During testing (see Tables 2 and 3) and using 369 test images 
(not used during training), the performance displayed by the MDF method, 
however, deteriorates as it lacks a good generalization ability. Both the Eigenface 
and EP approach display bet ter  generalization abilities when compared against 
MDF. In particular, Table 2 shows that  when the 20 dimensional whitened PCA 
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Fig. 4. Examples of Face Images from FERET Database 

Fig. 5. Optimal Basis (18 Vectors) Derived by the Evolutionary Pursuit (EP) Method 

Fig. 6. Non-orthogonality of the Basis Vectors Derived by Evolutionary Pursuit 
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subspace is searched, the EP approach derives 18 vectors as the optimal basis 
with top 1 recognition rate 87.80% compared to 81.57% for the Eigenface method 
and 79.95% for the MDF method. For top 3 recognition rate, the EP approach 
again comes first and yields 95.93%, compared to 94.58% for Eigenface and 
87.80% for MDF method. When the EP approach evolves the optimal basis in the 
30 dimensional whitened PCA subspace (see Table 3), it requires only 26 vectors 
for its optimal basis and achieves 92.14% top 1 recognition rate, compared to 
87.26% for Eigenface and 86.45% for the MDF methods. For top 3 recognition 
rate, the EP approach yields 97.02%, compared to 95.66% for Eigenface and 
93.77% for the MDF method. 

Prom Tables 1, 2 and 3 it becomes apparent that MDF does not display good 
generalization abilities, while PCA and the evolutionary pursuit approach do. 
The range of training data is quite large as it consists of both original and du- 
plicate images acquired at a later time. As a consequence, during training, MDF 
performs better than both the Eigenface and evolutionary pursuit (EP) methods 
because it overfits to a larger extent its classifier to the data. Evolutionary pur- 
suit yields, however, improved performances over the other two methods, during 
testing. 

6 C o n c l u s i o n s  

This paper describes an adaptive dictionary method for face recognition using 
GAs in determining the optimal basis for encoding human faces. In analogy to 
pursuit methods, our novel method is called Evolutionary Pursuit (EP), and it 
allows for different types of bases, as some statistical methods do, but it up- 
dates the dictionary of choices ('kernels') simultaneously as neural networks do. 
The main thrust of the EP method is to find out an optimal basis along which 
faces can be projected leading to a compact and efficient face encoding in terms 
of recognition ability. EP processes face images in a lower dimensional space 
defined as PCA projections. The projections are then whitened to counteract 
the fact that the Mean-Square-Error (MSE) principle underlying PCA preferen- 
tially weights low frequencies. The reachable space of EP is increased as a result 
of using a non-orthonormal (whitening) transformation. One can expect better 
performance from non-orthogonal bases over orthogonal ones as they lead to an 
over complete and robust representational space. Directed but random rotations 
of the lower dimensional (whitened PCA) space are then searched by GAs and 
use domain specific knowledge ('fitness'). Experimental results show that the EP 
approach compares favorably against the two methods for face recognition - -  
the Eigenfaces and MDF methods. 

The fitness driving evolution considers both recognition rates ('performance 
accuracy') - -  empirical risk - -  and the scatter index - -  predicted risk - -  corre- 
sponding to the projections of the face images onto the rotated axes. The fitness 
function is similar to cost functionals implementing regutarization methods for 
ill-posed problems in computer vision. The prediction risk, included as a penalty, 
is a measure of generalization ability and is driven by the scatter index ('class 
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separation') .  The relative contribution of performance accuracy and the scatter  
index to the fitness function is given through a positive weight parameter  A. The 
weight pa ramete r  indicates the degree of generalization expected from the EP 
method.  In one of the limiting cases, )~ --+ 0 implies tha t  only performance accu- 
racy defines fitness and the derived optimal  basis will display poor generalization 
abilities. The other limiting case, )~ --+ cc implies tha t  now it is the scatter  index 
which fully defines fitness and the derived opt imal  basis will display poor recog- 
nition rates. The weight parameter  used for the experimental  da ta  presented 
earlier gives more weight to the empirical risk than  to the predicted risk. 

As 2nd order statistics provide only partial  information on the statistics of 
both  natural  images and human faces it becomes necessary to consider higher 
order statistics as well. Towards that  end and in analogy to recent methods 
such as Independent  Component  Analysis (ICA) [10] we plan to expand the EP 
method so it can also consider higher order statistics when deriving the optimal  
basis - -  neural code. 
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