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A b s t r a c t .  We discuss optimal estimation of the current location of a 
robot by matching an image of the scene taken by the robot with the 
model of the environment. We first present a theoretical accuracy bound 
and then give a method that attains that bound, which can be viewed 
as describing the probability distribution of the current location. Using 
real images, we demonstrate that our method is superior to the naive 
least-squares method. We also confirm the theoretical predictions of our 
theory by applying the bootstrap procedure. 

1 I n t r o d u c t i o n  

For a robot to navigate autonomously, it must  have a geometric model of the 
environment; it may  be given as da ta  or constructed by the robot itself from 
vision and sensor data. Here, we consider the case in which a robot already has 
a three-dimensional map of the environment and study the problem of identifying 
its current location in the world model. In theory, the current location can be 
computed by tracing the history of motion from a known initial position, e.g., 
integrating the rotat ion of the wheels or incrementally correcting the position by 
estimating robot motion from images [8]. However, the accuracy of the computed 
location quickly deteriorates as errors (due to slippage of the wheels, vibration 
of the camera, etc.) are accumulated in the course of integration. At some point, 
therefore, we need to est imate the current location by some direct means. 

A typical method for self-localization is computing the current position of 
the camera by matching feature points detected in the images with their cor- 
responding positions in the world model. A direct method is stereo vision, by 
which the 3-D locations of the feature points can be computed relative to the 
cameras [1]. This falls, however, if the feature points are located very far away 
as compared with the baseline of the stereo system. In an outdoor environment,  
feature points easily discernible from a wide range of positions are usually those 
located very far away (e.g., towers and mountain  tops). Hence, we need a method 
for computing the current position by matching a single image with the world 
model. 
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The problem oLmatching image and model features is inseparable from the 
problem of computing the 3-D position; we first hypothesize a matching based on 
known clues (e.g., brightness, color, shape, etc.) and then validate the resulting 
3-D position (e.g., by  comparing it with that obtained by integrating the history 
of motion, examining the image if features that  should be observed from that 
position actually exist, etc.) [10, 11]. Hence, computing the 3-D position for given 
matching between image and model features is crucial whether the matching is 
correct or not. 

Computing the 3-D relationship between image and model features has been 
studied by many researchers in the past in the form known as "PnP",  in which 
the goal is to compute the 3-D positions of the feature points relative to the 
camera, given a 3-D configuration of the feature points relative to each other. 
Here, we are interested in computing the absolute position of the camera, given 
absolute 3-D positions of feature points. 

If the robot motion is constrained to be on a horizontal surface (e.g., the 
ground or a floor), a simple method based on elementary geometry of circles 
is well known for this purpose [7]. It can also be applied to three-dimensional 
motion by replacing circles by spheres [9]. But this technique uses only pairwise 
relative orientations of the lines of sight defined by the feature points; their ab- 
solute positions in the image are not used. Using minimal information has the 
advantage that it can be adapted to mismatch removal: we pick out multiple 
minimal sets of data  and choose the solution supported by majority voting [4]. 
For assumed matching, however, it is obviously bet ter  to fuse all available in- 
formation in an optimal manner. Such a method also exists [2], but so far the 
main concern has been methods for estimation; little at tention has been given 
on theoretical optimality and reliability of the solution. 

The aim of this paper is not to propose yet another new solution technique. 
Rather, we focus on statistical aspects. We first introduce a model of noise and 
view the problem as statistical estimation. Then, we present a theoretical accu- 
racy bound that  can be evaluated independently of particular solution techniques 
involved. Next, we give a computational scheme that  attains that  bound; such 
a method alone can be called "optimal". 

Since the solution attains the accuracy bound, we can view it as quantita- 
tively describing the "probability distribution" of the current location of the 
robot. We show that we can compute this distribution without any knowledge 
about the magnitude of image noise. This computation helps validate the hypoth- 
esized matching: if the evaluated distribution spreads out widely, the hypothesis 
is very questionable. We confirm the theoretical predictions of our theory by 
using real images and applying the bootstrap procedure [3]. 

2 S t a t i s t i c a l  S e l f - L o c a l i z a t i o n  

We regard the camera imaging geometry as perspective projection and define an 
X Y Z  camera coordinate system in such a way that  its origin is at the center of 
projection and its optical axis is along the Z-axis (Fig. l(a)).  Letting ] be the 
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Fig. 1. (a) Camera imaging geometry. (b) The camera coordinate system and the world 
coordinate system. 

focal length, we identify the plane Z -- f with the image plane, on which we 
define an x y  image coordinate system in such a way that  the origin is on the 
optical axis and the x- and y-axes are parallel to the X- and Y-axes, respectively. 

We regard observed image coordinates (x~, y~) (in pixels) as perturbed from 
their true values (2~, ~ )  by noise and write 

x~ = ~ + Axe ,  y~ = #4 + Aye .  (1) 

We regard Ax~ and Ay~ as (generally correlated) Gaussian random variables of 
mean 0, independent for each a. 

Suppose the camera coordinate system is in a position defined by translating 
the world coordinate system by t and rotating it by R with respect to the world 
coordinate system (Fig. l(b)). We call {t, R} the m o t i o n  parameters .  Our goal 
is formally stated as follows: 

P r o b l e m 1 .  Given image coordinates (x(~,yr ~ - -1 ,  ..., N, of feature points 
whose 3-D positions r~, a = 1, ..., N, with respect to the world coordinate 
system are known, optimally compute the motion parameters {t , /~} and their 
probability distribution. 

We represent a point with image coordinates (x, y) by the following three- 
dimensional vector: 

IxiS  
== r y e s ) .  (2) 

This vector indicates the line of sight starting from the camera coordinate origin 
and passing through the corresponding point in the scene (Fig. l(a)). Let xa 
and 5~a be the a th  observed point and its true position, respectively. The error 
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Ax~ = x~ -- 5~ is a three-dimensional vector. We define its covariance matr ix 
by 

V[=o] = E [ ~ x ~ x ~ ] ,  (3) 

where El .  ] denotes expectation and the superscript T denotes transpose. Since 
the Z component of Ax~ is identically 0, the covariance matr ix V[x~] is singular; 
its third row and third column consist of 0s. 

The covariance matr ix V[x~] measures the uncertainty of detecting the fea- 
ture point x~, but  in practice it is usually very difficult to predict it precisely. 
However, it is often possible to predict the relative likelihood of noise. Here, we 
assume that  the covariance matr ix is known only up to scale and write 

= ( 4 )  

We assume that  V0[x~] is known but the constant e is unknown; we call e the 
noise level, and V0[x~] (generally different from point to point) the normalized 
covariance matrix [6]. 

For example, if Ax~ and Ay~ are subject to an isotropic and identical Gans- 
sian distribution of mean 0 and variance cr 2, we have 

O" 
e ---- 7 '  V0[x~] --= diag(1, 1,0), (5) 

where diag(A1, A2, A3) denotes the diagonal matrix with diagonal elements A1, 
A2, and A3 in that  order. 

The vector ~ is defined with respect to the camera coordinate system. If 
it is described with respect to the world coordinate system, it becomes P ~  
(Fig. l(b)).  Hence, letting Z~ be the depth of the a th  feature point in the scene 
from the camera coordinate origin, we obtain the following relationship: 

r~ = t + Z ~ P ~ .  (6) 

Such a depth Z~ exists if and only if vector r~  - t is parallel to vector RSvp. 
Hence, Problem 1 reduces to the following statistical estimation: 

Problem2. Given {ra},  estimate the motion parameters { t , /~}  that  satisfy 

( t  - • = o ,  = t , . . . ,  N ,  ( 7 )  

from the noisy data  {x~ }. At the same time, compute the probability distribution 
of the estimated motion parameters {t, R}. 

3 T h e o r e t i c a l  A c c u r a c y  B o u n d  

Let {~,/~} be an estimator of the true motion parameters {3, i~}. The deviation 
of translation can be measured by the "difference" 

= - ( s )  
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of the estimator t from its true value t. The deviation of rotation can be measured 
by the "quotient" R R T  i.e., the rotation of /~  relative to R. Let I (unit vector) 

and A~? be, respectively, the axis and angle of the relative rotation /~/~T, and 
define 

A ~  = A J21. (9) 

We define the covariance matrices of the estimator {t, R} as follows: 

V[t] = E[AtAtT] ,  V[t, R] = E[AtAyjT],  

V[.R, t] = E [ A a A t T ] ,  V[.R] -- E[Aff2A,('2T]. (i0) 
Applying the theory of Kanatani [6], we can obtain the following lower bound, 
which Kanatani called the Cramer-Rao lower bound in analogy with the corre- 
sponding bound in traditional statistical estimation: 

( V [ t ]  V[t,/~]~ e2 {~,~=i-N A,~T-w,~A,~- ~ = i N  A,~-Tw,~B,~- _ ~ - i  
N - V - - N / ~ T  - - (11) \V[/~,~] V[R] ] ~- \E~=tB~W~A~E~=I ~W~B~) 

Here, U ~- V means that U - V is a positive semi-definite symmetric matrix. 
The matrices .&~, B~,  and I7r are defined as follows ( I  is the unit matrix): 

Am = - ( R ~ , )  x E, B~ = (re - r , ,  R a $ ~ ) I  - R ~ , ( t  - r , )  T, (12) 

= ( ( t - -  1tel ) X l ~ V o [ X o ~ ] . / ~  T X ( t -  leo , ) ) - -  . (13 )  W,~ 

Throughout this paper, the inner product of vectors u and v is denoted by (u, v). 
The product v x U of a vector v and a matrix U is the matrix whose columns 
are the vector products of v and the columns of U. The product U x v of a 
matrix U and a vector v is the matrix whose rows are the vector products of 
the rows of U and vector v. The operation ( - ) -  designates the (Moore-Penrose) 
generalized inverse. 

4 Optimal Estimation 

Applying the general theory of Kanatani [6], we can obtain a computational 
scheme for solving Problem 2 in such a way that  the resulting solution attains 
the accuracy bound (11) in the first order (i.e., ignoring terms of O(e4)): we 
minimize the sum of squared Mahalanobis distances 

N 

J = E ( ~  - ~ ,  V0[w~]-(~ - x~)) (14) 

with respect to { ~ }  subject to the constraint (7). The solution is given by 
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w o  = ( ( t - , o )  • R ot olR • (, - -  , ( 1 6 )  

where the operation (.)~- designates the rank-constrained (Moore-Penrose) gen- 
eralized inverse computed by transforming it into the canonical form, replac- 
ing its eigenvaiues except the r largest ones by 0, and computing the (Moore- 
Penrose) generalized inverse (this operation is necessary for preventing numerical 
instability [6]). 

Substituting eq. (15) into eq. (14), we obtain the following expression to be 
minimized with respect to the motion parameters {t, R} alone: 

N 

J =  E ( ( t - r a )  x R x ~ , W a ( ( t - r a ) x R x ~ ) ) .  (17) 

The unknown noise level e can be estimated a posteriori. Let J be the resid- 
ual, i.e., the minimum of J.  Since  ,]/e 2 is subject to a X 2 distribution with 2 N - 6  
degrees of freedom in the first order [6], we obtain an unbiased estimator of the 
squared noise level e 2 in the following form: 

Y 
~2 = ~ .  ( i s )  

2 N -  6 

Because the solution {i, i~} of the minimization (17) attains the accuracy 
bound (11) in the first order, we can evaluate their covariance matrices by op- 
timally estimating the true positions {$~} (we discuss this in the next section) 
and substituting the solution {t , /~} and the estimator (18) for their true values 
{t, R} and ~2 in eqs. (11). Using the covariance matrix Y[t] in eqs. (11), we 
can estimate the probability distribution of the current location in the following 
form: 

1 e_(r_~,V[~l-l(v_~))/2 (19) 
p(r) = (27dv[$11)3/2 

We conduct the minimization (17) by modified Newton iterations. If rotation 
R is perturbed by a small rotation represented by the vector A ~  defined by 
eq. (9), the perturbed rotation has the expression 

R+aa• ~, (20) 

where Ilull denotes the norm of a vector u and O(u, v, ...)k designates terms of 
order k or higher in the elements of vectors u, v, . . . .  Substituting eq. (20) and 
t +  At for R and t, respectively, in eq. (17) and expanding it with respect to At  
and Y2, we obtain the following expression: 

1 
J + ( V t J  , At) + ( V R J  , A f2) + ~(At ,  V~tJ , At) 

+ (at, v~M, an) + �89 v~aJ ,  aa)  + o(at, an) 3. (21) 
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Differentiating this with respect to At and A ~ ,  letting the resulting expres- 
sions equal zero, and ignoring terms of O(At,  A ~ )  3, we obtain the following 
simultaneous linear equations: 

( % +  v i m  fat  (v,.l 
\ V R j  ) �9 (221 

Starting from an initial guess {t, R}, we solve eq. (22) for the increments 
{At, A ~ }  and update  the solution in the form t 4- t q- At and R +- T~(AY2)R, 
where n ( A I 2 )  designates the rotation matrix by angle ]]al/2]] around axis AI2: 

n(Ag2)  = cos A$2I + (1 -- cos AY2)ll T + sin A$21 x I .  (23) 

We iterate this until II~atll < ~t and IlzXt~ll < ~R for specified thresholds e t and 
e R �9 

We compute the initial guess {t, R} by a structure-from-motion algorithm. 
First, we hypothetically place a reference camera coordinate system in a known 
position in the world model and compute the image coordinates of the fea- 
ture points viewed from that  position (we need not actually generate a graphics 
image). From the correspondences of image coordinates between this reference 
image and the actually observed image, we can reconstruct the 3-D motion of 
the camera and the 3-D positions of the feature points up to scale; since we 
know the absolute positions of the feature points, we can easily adjust the scale 
a posteriori. Here, we adopt the statistically optimal algorithm of Kanatmfi [5] 
using a technique called renormalization. 

5 E x a m p l e  1 

Fig. 2(a) is a real image of a toy house. We manually input the feature points 
marked by white dots and used the noise model of eqs. (5). The computation 
converged after five iterations for thresholds e t = 0.01cm (the height of the house 
is 8cm) and e R = 0.01 ~ Fig. 2(b) displays the house and the estimated camera 
coordinate axes viewed from an angle. 

We evaluated the reliability of the computed solution (t,/2/} in the following 
two ways: 

- Theoretical analysis. 
- Random noise simulation. 

The former is straightforward: since our method attains the accuracy bound 
(11) in the first order, we can evaluate the reliability of the solution by approx- 
imating the true values by their estimates in eq. (11). 

A well known method for the latter is bootstrap [3]~ which can be applied to 
any solution method. Here, we adopt the following procedure. We first optimally 
correct the observed positions {x~} into {&~} so that  constraint (7) exactly 
holds. From eq. (15), this optimal correction is done as follows: 

�9 = =o - Vo[ olR - • • - ( 2 4 )  
\ ] 
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Fig. 2. (a) A real image of a toy house. (b) Estimated current location. 

= - • RV0[ o]RT • _ (2 ,5 )  
\ ] 2  

Estimating the noise variance by eq. (18), we generate random Gaussian noise 
that has the estimated variance and add it to the corrected positions indepen- 
dently. Then, we compute the motion parameters {t*, R*} and the angle A~2* 

and axis l* of the relative rotation /~./~T. 
Fig. 3 shows three-dimensional plots of the error vectors At* = t* -- t and 

A ~ *  = A~2*l* for 100 trials. The ellipsoids in the figures are respectively defined 
by 

( a t* ,  v [ t ] - i  At *) = l, (z~'~*, V[/~I-1A~~ *) ~-~ 1, (26) 

where V[t] and V[/~] are computed by approximating/~,  { ~ } ,  and e 2 by 1~, 
{ ~ } ,  and ~2 on the right-hand side of eq. (11). These ellipsoids indicate the 
standard deviation of the errors in each orientation [6]. The cubes in the figures 
are displayed as a reference. 

We compared our method with the naive least-squares method; we simply 
replaced the matr ix W~ by the unit matr ix I .  Fig. 4 shows the result that  
corresponds to Fig. 3 (the ellipsoids and the cubes are the same as in Fig. 3). 

Comparing Figs. 3 and 4, we can confirm that  our method improves the 
accuracy of the solution as compared with the least-squares method. We can 
also see that  errors for our method distribute around the ellipsoids, indicating 
that our method already attains the theoretical accuracy bound; no further 
improvement is possible. 

The above visual observation can be given quantitative measures. We define 
the bootstrap standard deviations by 

where B is the number of bootstrap samples and the subscript b labels each 
sample. The corresponding standard deviations for the (estimated) theoretical 
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(a) (b) 

Fig. 3. Bootstrap errors (our method): (a) translation; (b) rotation. 

(a) (b) 
Fig. 4. Bootstrap errors (least squares): (a) translation; (b) rotation. 

lower bound are 

respectively. Table 1 lists the values of S~ and Si~ for our method and the 
least-squares method (B = 1000) together with their theoretical lower bounds 
S t and S R .  We can see from this that our method is indeed superior to the 
least-squares method and that  the accuracy of our solution is very close to the 
theoretical lower bound. 

This observation confirms that we can evaluate the probability distribution 
of the estimated location by (approximately) evaluating the theoretical accuracy 
bound given by eq. (11). 

6 E x a m p l e  2 

Fig. 5(a) is a real image of a real building for which a design plan is available. 
We manually input the feature points marked by white dots and used the noise 
model of eq. (5). The computation converged after four iterations for thresholds 
e t -= 0.1cm and e/~ -- 0.01% 
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Table  1. Bootstrap standard deviations and the theoretical lower bounds. 

Our method 
Least squares 
Lower bounds ~ 

Translation Rotation 
0.16cm 0.16 ~ 
0.25cm 0.45 ~ 
0.16cm 0.15 ~ 

Fig. 5. (a) A real image of a real building. (b) Estimated current location and its 
reliability. 

Fig. 5(b) displays the building and the est imated camera coordinate axes 
viewed from above; the ellipse in the figure indicates the ellipsoid corresponding 
to those in Figs. 3(a) and 4(a) enlarged by three times. We also evaluated the 
reliability of the solution by bo th  theoretical analysis and bootstrap.  Table 2 is 
the result corresponding to Table 1. We can again confirm that  our method is 
superior to the least-squares method and that  our method almost at tains the 
theoretical bound, which can be viewed as describing the probabili ty distribution 
of the est imated location. 

7 Example  3 

If the robot is constrained to be on a horizontal plane, the computat ion is consid- 
erably simplified. Fig. 6(a) is a real image of a city scene. We manually spotted 
nine features at the bo t toms  of the white vertical bars in the figure and computed  
the viewer location by matching the positions of the bars to their corresponding 
locations in the city map. The initial guess was computed by the method of circle 
geometry [7, 9]; the computat ion converged after five iterations for thresholds e t 

= 0.01m and e R -- 0.01 ~ 
Fig. 6(b) shows the est imated current location superimposed on the city 

map. The ellipse in the figure is the two-dimensional version of the ellipsoids 
in Figs. 3(a) and 4(a). The white dot indicates the place where we actually took 
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Table  2. Bootstrap standard deviations and the theoretical lower bounds. 

Our method 
Least squares 
Lower bounds 

Translation Rotation 
44.1cm 1.31 ~ 
47.3cm 1.39 ~ 
43.7cm 1.29 ~ 

Fig. 6. (a) A real image of a city scene. (b) Estimated current location. 

the picture of Fig. 6(a), and it is within the ellipse. Fig. 7 shows the angle of 
view from the est imated location superimposed on the city map; the locations 
of the feature points are marked by white dots. 

Figs. 8(a) and (b) show 100 boots t rap  errors in the est imated location plotted 
in the same way as Figs. 3(a) and 4(5) (we omit errors in rotation; they are 
very small). Table 3 corresponds to Tables 1 aad  2 (this t ime B = 10000); our 
method is still superior to the least-squares method,  although the difference is 
not so marked as in the three-dimensional case. At any rate, our method almost 
at tains the theoretical bound, which can be viewed as describing the probabil i ty 
distribution of the est imated location. 

8 Concluding Remarks 

We have discussed optimal estimation of the current location of a robot by 
matching an image of the scene taken by the robot with the model of the en- 
vironment.  We have first presented a theoretical accuracy bound defined inde- 
pendently of solution techniques and then given a method that  at tains it; our 
method is truly "optimal" in that  sense. Since the solution at tains the accuracy 
bound, we can view it as describing the probabil i ty distribution of the est imated 
location; the computat ion does not require any knowledge about  the noise mag- 
nitude. Using real images, we have demonstrated that  our method is superior to 
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Fig. 7. Estimated angle of view. 

�9 . ' .  
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(a) (b) 

Fig. 8. Bootstrap errors in the estimated location: (a) our method; (b) least squares. 

the naive least-squares method.  We have also confirmed the theoretical predic- 
tions of our theory by applying the boots t rap  procedure. 
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