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ABSTRACT: In this tutorial-overview, which resulted from a lecture course given by the authors at
the European Summer School in Logic, Language and Information 1997 in Aix-en-Provence (
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), we show how knowledge representation (KR) can be done
with the help of generalized logic programs. We start by introducing the core of PROLOG, which is
based on definite logic programs. Although this class is very restricted (and will be enriched by various
additional features in the rest of the paper), it has a very nice property for KR-tasks: there exist efficient
query-answering procedures—a top-down approach and a bottom-up evaluation. In addition we can not
only handle ground queries but also queries with variables and compute answer-substitutions.

It turns out that more advanced KR-tasks can not be properly handled with definite programs. Therefore
we extend this basic class of programs by additional features like negation-as-finite-failure, default-
negation, explicit negation, preferences, and disjunction. The need for these extensions is motivated by
suitable examples and the corresponding semantics are discussed in detail.

Clearly, the more expressive the respective class of programs under a certain semantics is, the less
efficient are potential query-answering methods. This point will be illustrated and discussed for every
extension. By well-known recursion-theoretic results, it is obvious that there do not exist complete
query-answering procedures for the general case where variables and function symbols are allowed.
Nevertheless we consider it an important topic of further research to extract feasible classes of programs
where answer-substitutions can be computed.

1 INTRODUCTION

One of the major reasons for the success story (if one is really willing to call it
a success story) of human beings on this planet is our ability to invent tools that
help us improve our—otherwise often quite limited—capabilities. The invention
of machines that are able to do interesting things, like transporting people from
one place to the other (even through the air), sending moving pictures and sounds
around the globe, bringing our email to the right person, and the like, is one of the
cornerstones of our culture and determines to a great degree our everyday life.

Among the most challenging tools one can think of are machines that are able
to handle knowledge adequately. Wouldn’t it be great if, instead of the stupid
device which brings coffee from the kitchen to your office every day at 9 am, and
which needs complete reengineering whenever your coffee preferences change,
you could (for the same price, admitted) get a smart robot who simply can be told
that you want your coffee black this morning, and that you need an extra Aspirin
since it was your colleague’s birthday yesterday? To react in the right way to your
needs such a robot would have to know a lot, for instance that Aspirin should
come with a glass of water, or that people in certain situations need their coffee
extra strong.

Building smart machines of this kind is at the heart of Artificial Intelligence
(AI). Since such machines will need tremendous amounts of knowledge to work
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properly, even in very limited environments, the investigation of techniques for
representing knowledge and reasoning is highly important.

In the early days of AI it was still believed that modeling general purpose prob-
lem solving capabilites, as in Newell and Simon’s famous GPS (General Problem
Solver) program, would be sufficient to generate intelligent behaviour. This hy-
pothesis, however, turned out to be overly optimistic. At the end of the sixties
people realized that an approach using available knowledge about narrow domains
was much more fruitful. This led to the expert systems boom which produced
many useful application systems, expert system building tools, and expert system
companies. Many of the systems are still in use and save companies millions of
dollars per year1.

Nevertheless, the simple knowledge representation and reasoning methods un-
derlying the early expert systems soon turned out to be insufficient. Most of the
systems were built based on simple rule languages, often enhanced with ad hoc
approaches to model uncertainty. It became apparent that more advanced methods
to handle incompleteness, defeasible reasoning, uncertainty, causality and the like
were needed.

This insight led to a tremendous increase of research on the foundations of
knowledge representation and reasoning. Theoretical research in this area has
blossomed in recent years. Many advances have been made and important results
were obtained. The technical quality of this work is often impressive.

On the other hand, most of these advanced techniques have had surprisingly
little influence on practical applications so far. To a certain degree this is under-
standable since theoretical foundations had to be laid first and pioneering work
was needed. However, if we do not want research in knowledge representation to
remain a theoreticians’ game more emphasis on computability and applicability
seems to be needed. We strongly believe that the kind of research presented in
this tutorial, that is research aiming at interesting combinations of ideas from logic
programming and nonmonotonic reasoning, provides an important step into this
direction.

1.1 Some History

Historically, logic programs have been considered in the logic programming com-
munity for more than 20 years. It began with [Colmerauer et al., 1973; Kowal-
ski, 1974; van Emden and Kowalski, 1976] and led to the definition and imple-
mentation of PROLOG, a by now theoretically well-understood programming lan-
guage (at least the declarative part consisting of Horn-clauses: pure PROLOG).
Extensions of PROLOG allowing negative literals have been also considered in
this area: they rely on the idea of negation-as-finite-failure, we call them logic-
programming-semantics (or shortly LP-semantics).

1We refer the interested reader to [Russel and Norvig, 1995] which gives a very detailed and nice
exposition of what has been done in AI since its very beginning until today.
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In parallel, starting at about 1980, Nonmonotonic Reasoning entered into com-
puter science and began to constitute a new field of active research. It was origi-
nally initiated because Knowledge Representation and Common-Sense Reasoning
using classical logic came to its limits. Formalisms like classical logic are inher-
ently monotonic and they seem to be too weak and therefore inadequate for such
reasoning problems.

In recent years, independently of the research in logic programming, people
interested in knowledge representation and nonmonotonic reasoning also tried to
define declarative semantics for programs containing default or explicit negation
and even disjunctions. They defined various semantics by appealing to (different)
intuitions they had about programs.

This second line of research started in 1986 with the Workshop on the Founda-
tions of Deductive Databases and Logic Programming organized by Jack Minker:
the revised papers of the proceedings were published in [Minker, 1988]. The strat-
ified (or the similar perfect) semantics presented there can be seen as a splitting-
point: it is still of interest for the logic programming community (see [Cavedon
and Lloyd, 1989]) but its underlying intuitions were inspired by nonmonotonic
reasoning and therefore much more suitable for knowledge representation tasks.
Semantics of this kind leave the philosophy underlying classical logic program-
ming in that their primary aim is not to model negation-as-finite-failure, but to
construct new, more powerful semantics suitable for applications in knowledge
representation. Let us call such semantics NMR-semantics.

Nowadays, due to the work of Apt, Blair and Walker, Fitting, Lifschitz, Przy-
musinski and others, very close relationships between these two independent re-
search lines became evident. Methods from logic programming, e.g. least fixpoints
of certain operators, can be used successfully to define NMR-semantics.

The NMR-semantics also shed new light on the understanding of the classical
nonmonotonic logics such as Default Logic, Autoepistemic Logic and the various
versions of Circumscription. In addition, the investigation of possible semantics
for logic programs seems to be useful because

1. parts of nonmonotonic systems (which are usually defined for full predicate
logic, or even contain additional (modal)-operators) may be “implemented”
with the help of such programs,

2. nonmonotonicity in these logics may be described with an appropriate treat-
ment of negation in logic programs.

1.2 Non-Monotonic Formalisms in KR

As already mentioned above, research in nonmonotonic reasoning has begun at
the end of the seventies. One of the major motivations came from reasoning about
actions and events. John McCarthy and Patrick Hayes had proposed their situation
calculus as a means of representing changing environments in logic. The basic idea
is to use an extra situation argument for each fact which describes the situation in
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which the fact holds. Situations, basically, are the results of performing sequences
of actions. It soon turned out that the problem was not so much to represent what
changes but to represent what does not change when an event occurs. This is the
so-called frame problem. The idea was to handle the frame problem by using a
default rule of the form

If a property � holds in situation � then � typically also holds in the
situation obtained by performing action � in � .

Given such a rule it is only necessary to explicitly describe the changes induced
by a particular action. All non-changes, for instance that the real colour of the
kitchen wall does not change when the light is turned on, are handled implicitly.
Although it turned out that a straightforward formulation of this rule in some of the
most popular nonmonotonic formalisms may lead to unintended results the frame
problem was certainly the challenge motivating many people to join the field.

In the meantime a large number of different nonmonotonic logics have been
proposed. We can distinguish four major types of such logics:

1. Logics using nonstandard inference rules with an additional consistency
check to represent default rules. Reiter’s default logic (see Appendix A.3)
and its variants are of this type.

2. Nonmonotonic modal logics using a modal operator to represent consistency
or (dis-) belief. These logics are nonmonotonic since conclusions may de-
pend on disbelief. The most prominent example is Moore’s autoepistemic
logic.

3. Circumscription (see Appendix A.4) and its variants. These approaches are
based on a preference relation on models. A formula is a consequence iff it
is true in all most preferred models of the premises. Syntactically, a second
order formula is used to eliminate all non-preferred models.

4. Conditional approaches which use a non truth-functional connective � � to
represent defaults. A particularly interesting way of using such conditionals
was proposed by Kraus, Lehmann and Magidor. They consider � as a default
consequence of � iff the conditional � � � � is in the closure of a given condi-
tional knowledge base under a collection of rules. Each of the rules directly
corresponds to a desirable property of a nonmonotonic inference relation.

The various logics are intended to handle different intuitions about nonmonotonic
reasoning in a most general way. On the other hand, the generality leads to prob-
lems, at least from the point of view of implementations and applications. In the
first order case the approaches are not even semi-decidable since an implicit con-
sistency check is needed. In the propositional case we still have tremendous com-
plexity problems. For instance, the complexity of determining whether a formula
is contained in all extensions of a propositional default theory is on the second
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level of the polynomial hierarchy. As mentioned earlier we believe that logic pro-
gramming techniques can help to overcome these difficulties.

Originally, nonmonotonic reasoning was intended to provide us with a fast
but unsound approximation of classical reasoning in the presence of incomplete
knowledge. Therefore one might ask whether the higher complexity of NMR-
formalisms (compared to classical logic) is not a real drawback of this aim? The
answer is that NMR-systems allow us to formulate a problem in a very compact
way as a theory � . It turns out that for some problems any equivalent formula-
tion in classical logic (if possible at all) as a theory ��� is much larger: the size of
��� is exponential in the size of � ! We refer to [Gogic et al., 1995] and [Cadoli
et al., 1996; Cadoli et al., 1997; Cadoli et al., 1995] where such problems are
investigated.

1.3 How this Paper is organized

In this overview paper we show how Knowledge Representation can be done with
the help of generalized logic programs. We start by introducing the core of PRO-
LOG, which is based on definite logic programs. Although this class is very re-
stricted (and will be enriched by various additional features in the rest of the pa-
per), it has a very nice property for KR-tasks: there exist efficient query-answering
procedures— a top-down approach and a bottom-up evaluation. In addition we
can not only handle ground queries but also queries with variables and compute
answer-substitutions.

It turns out that more advanced KR-tasks can not be properly handled with def-
inite programs. Therefore we extend this basic class of programs by additional
features like negation-as-finite-failure, default-negation, explicit negation, prefer-
ences, and disjunction. The need for these extensions is motivated by suitable
examples and the corresponding semantics are also discussed.

Clearly, the more expressive the respective class of programs under a certain
semantics is, the less efficient are potential query-answering methods. This point
will be illustrated and discussed for every extension. By well-known recursion-
theoretic results, it is obvious that there do not exist complete query-answering
procedures for the general case where variables and function symbols are allowed.
Nevertheless we consider it an important topic of further research to extract feasi-
ble classes of programs where answer-substitutions can be computed.

2 DEFINITE LOGIC PROGRAMS

In this section we consider the most restricted class of programs: definite logic
programs, programs without any negation at all. All the extensions of this basic
class we will introduce later contain at least some kind of negation (and perhaps
additional features). But here we also allow the ocurrence of free variables as well
as function symbols.
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In Section 2.1 we introduce as a representative for the top-down approach the
SLD-resolution. Section 2.2 presents the main competing approach of SLD: bottom-
up evaluation. This approach is used in the database community and it is effi-
cient when additional assumptions are made (finiteness-assumptions, no function
symbols). In Section 2.3 we consider the influence and appropriateness of Her-
brand models and their underlying intuition. Finally in Section 2.4 we present and
discuss two important examples in KR: reasoning in inheritance hierarchies and
reasoning about actions. Both examples clearly motivate the need of extending
definite programs by a kind of default-negation “ ��� � ”.

First some notation used throughout this paper. A language � consists of a set
of relation symbols and a set of function symbols (each symbol has an associated
arity). Nullary functions are called constants. Terms and atoms are built from �
in the usual way starting with variables, applying function symbols and relation-
symbols.

Instead of considering arbitrary � -formulae, our main object of interest is a
program:

Definition 2.1 (Definite Logic Program).
A definite logic program consists of a finite number of rules of the form

�����
	���
�
�
��������

where ����� 	 ��
�
�
���� � are positive atoms (containing possibly free variables). We
call � the head of the rule and � 	 ��
�
�
���� � its body. The comma represents con-
junction � .

We can think of a program as formalizing our knowledge about the world and
how the world behaves. Of course, we also want to derive new information, i.e. we
want to ask queries:

Definition 2.2 (Query).
Given a definite program we usually have a definite query in mind that we want
to be solved. A definite query � is a conjunction of positive atoms � 	 ��
�
�
������
which we denote by

?- � 	 ��
�
�
������ .
These � � may also contain variables. Asking a query � to a program � means
asking for all possible substitutions ! of the variables in � such that �"! follows
from � . Often, ! is also called an answer to � . Note that �"! may still contain
free variables.

Note that if a program � is given, we usually assume that it also determines the
underlying language � , denoted by �$# , which is generated by exactly the symbols
ocurring in � . The set of all these atoms is called the Herbrand base and denoted
by �&%(' or simply ��# . The corresponding set of all ground terms is the Herbrand
universe. Another important notion that we are not explaining in detail here is that
of unification. Given two atoms � and � with free variables we can ask if we can
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compute two substitutions ! 	 � ! � for the variables such that

�
! 	 is identical to � ! � �
or if we can decide that this is not possible at all. In fact, if the two atoms are
unifiable we can indeed compute a most general unifier, called mgU (see[Lloyd,
1987]). The mgU ! is a substitution defined on the set of variables occurring in
both � and � such that ��! is identical to � ! .

This will be important in our framework because if an atom appears as a subgoal
in a query, we may want to determine if there are rules in the program whose heads
unify with this atom.

How are our programs related to classical predicate logic? Of course, we can
map a program-rule into classical logic by interpreting “ � ” as material implication
“ � ” and universally quantifying. This means we view such a rule as the following
universally quantified formula

� 	 � 
�
�
�� � � � �"

However, as we will see later, there is a great difference: a logic program-rule

takes some orientation with it. This makes it possible to formulate the following
principle as an underlying intuition of all semantics of logic programs:

Principle 1 (Orientation).
If a ground atom � does not unify with some head of a program rule of � , then
this atom is considered to be false. In this case we say that “ � � � � ” is derivable
from � to distinguish it from classical � � .

The orientation principle is nothing but a weak form of negation-by-failure.
Given an intermediate goal � � � � , we first try to prove � . But if � does not unify
with any head, � fails and this is the reason to derive ��� � � .

2.1 Top-Down

SLD-Resolution2 is a special form of Robinson’s general resolution rule. While
Robinson’s rule is complete for full first order logic, SLD is complete for definite
logic programs (see Theorem 2.1 on page 9). We do not give a complete definition
of SLD-resolution (see [Lloyd, 1987]) but rather prefer to illustrate its behaviour
on the following example.

Example 2.1 (SLD-Resolution).
Let the program �����	� consist of the following three clauses


���

�

�� ��� 
 � �


�� ��� 
 � �

 � ��� 

���


�

�� � ��

���


�

�� ��� 


2SL-resolution for Definite clauses. SL-resolution stands for Linear resolution with Selection func-
tion.
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Figure 1. An infinite SLD-Tree

The query � we are interested in is given by �

�� ��� 
 . I.e. we are looking for all

substitutions ! for
�

such that �

 � ��� 
 ! follows from � .

Figure 1 illustrates the behaviour of SLD-resolution. We start with our query in
the form ��� . Sometimes the notation

� ��� is also used, where
�

denotes the
falsum. In any round the selected atom is underlined: numbers 1, 2 or 3 indicate
the number of the clause which the selected atom is resolved against. Obviously,
there are three different sorts of branches, namely

1. infinite branches,

2. branches that end up with the empty clause, and

3. branches that end in a deadlock (“Failure”): no applicable rule is left.

In this example we always resolve with the last atom in the goal under considera-
tion. If we choose always the first atom in the goal, we will obtain, at least in this
example, a finite tree.
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Definite programs have the nice feature that the intersection of all Herbrand-
models exists and is again a Herbrand model of � . It is denoted by � # and called
the least Herbrand-model of � . Note that our original aim was to find substitutions
! such that �"! is derivable from the program � . This task as well as � # is
closely related to SLD:

Theorem 2.1 (Soundness and Completeness of SLD).
The following properties are equivalent:

� ������ �"! , i.e. � �"! is true in all models of � ,

� � # � ��� ��! ,

� SLD computes an answer � that subsumes3 ! wrt � .

Note that not any correct answer is computed, only the most general one is (which
of course subsumes all the correct ones).

The main feature of SLD-resolution is its goal-orientedness. SLD automatically
ensures (because it starts with the Query) that we consider only those rules that are
relevant for the query to be answered. Rules that are not at all related are simply
not considered in the course of the proof.

2.2 Bottom-Up

We mentioned in the last section the least Herbrand model � # . The bottom-up
approach can be described as computing this least Herbrand model from below.
We start first with rules with empty bodies (in our example these are all instantia-
tions of rules (2) and (3)). We get as facts all atoms that are in the heads of rules
with empty bodies (namely �


 � � � 
 � �

 � ��� 
 � �


�� ��� 
 in Example 2.1 on page 7). In
the next round we use the facts that we computed before and try to let the rules
“fire”, i.e. when their bodies are true, we add their heads to the atoms we already
have (this gives us �


 � ��� 
 ).
To be more precise we introduce the immediate consequence operator � # which

associates to any Herbrand model another Herbrand model.

Example 2.2 ( � # ).
Given a definite program � let � #	� ��
 '
���� ��
 '����	���� � # 
 � 


� # 
 � 
 ����� ��� ��#�� there is an instantiation of a rule in �
s.t. � is the head of this rule and all
body-atoms are contained in ���

It turns out that � # is monotone and continuous so that (by a general theorem of
Knaster-Tarski) the least fixpoint is obtained after � steps. Moreover we have

3i.e. �! #"�$�%& (')$+* .
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Theorem 2.2 ( � # and � # ).
� # � � #���� ����� �



� # 
 .

This approach is especially important in database applications, where the un-
derlying language does not contain function symbols (DATALOG) — this ensures
the Herbrand universe to be finite. Under this condition the iteration stops after
finitely many steps. In addition, rules of the form

� � �

do not make any problems. They simply can not be applied or do not produce
anything new. Note that in the top-down approach, such rules give rise to infi-
nite branches! Later, elimination of such rules will turn out to be an interesting
property. We therefore formulate it as a principle:

Principle 2 (Elimination of Tautologies).
Suppose a program � has a rule which contains the same atom in its body as well
as in its head (i.e. the head consists of exactly this atom). Then we can eliminate
this rule without changing the semantics.

Unfortunately, such a bottom-up approach has two serious shortcomings. First,
the goal-orientedness of SLD-resolution is lost: we are always computing the
whole � # , even those facts that have nothing to do with the query. The reason is
that in computing � # we do not take into account the query we are really inter-
ested in. Second, in any step facts that are already computed before are recomputed
again. It would be more efficient if only new facts were computed. Both problems
can be (partially) solved by appropriate refinements of the naive approach:

� Semi-naive bottom-up evaluation ([Bry, 1990; Ullman, 1989a]),

� Magic Sets techniques ([Beeri and Ramakrishnan, 1991; Ullman, 1989b]).

2.3 Herbrand-Models and the underlying language

Usually when we represent some knowledge in first order logic or even in logic
programs, it is understood that the underlying language is given exactly by the
symbols that occur in the formal theory. Suppose we have represented some
knowledge about the world as a theory � in a language � . Classical predicate
logic formalizes the notion of a formula � entailed by the theory � . This means
that � is true in all models of � (we denote this set by MOD



�


). Why are we

considering all models? Doesn’t it make sense to look only at Herbrand models,
i.e. to models generated by the underlying language? After all we are not inter-
ested in models that contain elements which are not representable as terms in our
language. These requirements are usually called unique names assumption and
domain closure assumption:

Definition 2.3 (UNA and DCA).
Let a language � be given. We understand by the unique names assumption the
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restriction to those models � , where syntactically different ground � -terms � 	 ��� �
are interpreted as nonidentical elements: �

�
	 is not identical to �

� � .
By the domain closure assumption we mean the restriction to those models �

where for any element
�

in � there is a � -term � that represents this element:� ���
�

.

As an example, in Theorem 2.1 on page 9 of Section 2.1 we referred to � # , the
least Herbrand model of � . The reason that the first equivalence in this theorem
holds is given by the fact that for universal theories � and existential formulae �
the following holds

MOD


�

 � � � iff Herb % -MOD



�

 � � � 


In our particular case, where � is a definite program � , we can even replace
Herb % -MOD



�



in the above equation by the single model � # .
This last result does not hold in general. But what happens if we nevertheless

are interested in only the Herbrand-models of a theory � (and therefore automati-
cally4 assume UNA and DCA)? At first sight one can argue that such an approach
is much simpler: in contrast to all models we only need to take care about the
very specific Herbrand models. But it turns out that determining the truth of a for-
mula in all Herbrand models is a much more complex task (namely � 		 -complete)
than to determine if it is true in all models. This latter task is also undecidable in
general, but it is recursively enumerable, i.e. ��� 	 -complete. The fact that this task
is recursively enumerable is the content of the famous completeness theorem of
Gödel, where “truth of a formula in all models” is shown to be equivalent to de-
riving this formula in a particular axiomatization of the predicate calculus of first
order. We refer to the appendix (Section A.1 and Section A.2) where the necessary
notions are introduced.

But we have still a problem with Theorem 2.1 on page 9 in our restricted set-
ting:

Example 2.3 (Universal Query Problem).
Consider the program � ��� �


 � 

, the query � ��� �


���

and the empty substitution

! � ��� . We have
� � # � � � � �


�� 

,

� but SLD only computes the answer
��� �

.

Przymusinski called this the universal query problem.

There are essentially two solutions to avoid this behaviour: to use a language
which is rich enough (i.e. contains sufficiently many terms, not only those ocurring
in the program � itself) or to consider arbitrary models, not only Herbrand models.
Both approaches have been followed in the literature but they are beyond the scope
of this paper.

4The only difference between Herbrand models and models satisfying UNA and DCA is that
the interpretation of terms is uniquely determined in Herbrand models. It is required that a term
“ 	�

��������������	���� ” is interpreted in a Herbrand model � as “ 	���
���� � ������������� � � ”.
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2.4 Why going beyond Definite Programs?

So far we have a nice query-answering procedure, SLD-Resolution, which is goal-
oriented as well as sound and complete with respect to general derivability. But
note that up to now we are not able to derive any negative information. Not even
our queries allow this. From a very pragmatic viewpoint, we can consider “ � � � � ”
to be derivable if � is not. Of course, this is not sound with respect to classical
logic but it is with respect to � # .

In KR we do not only want to formulate negative queries, we also want to
express default-statements of the form

Normally, unless something abnormal holds, then � implies � .

Such statements were the main motivation for nonmonotonic logics, like Default
Logic or Circumscription (see Section A.3 and Section A.4 of the appendix). How
can we formulate such a statement as a logic program? The most natural way is to
use negation “ � � � ”

� ��� ��� � � � �
where

� � stands for abnormality. Obviously, this forces us to extend definite pro-
grams by negative atoms, we call them default atoms.

A typical example for such statements occurs in Inheritance Reasoning. We
take the following example from [Baral and Gelfond, 1994]:

Example 2.4 (Inheritance Hierachies).
Suppose we know that birds typically fly and penguins are non-flying birds. We
also know that Tweety is a bird. Now an agent is hired to build a cage for Tweety.
Should the agent put a roof on the cage? After all it could be still the case that
Tweety is a penguin and therefore can not fly, in which case we would not like to
pay for the unneccessary roof. But under normal conditions, it should be obvious
that one should conclude that Tweety is flying.

A natural axiomatization is given as follows:

�������	��
 �
��� ����� � ��������� 
�� 
 � ������� 
 ��
 � � � � � � 
 ��	 � ��

������� 
���
 � ���	��� � ��� 
 ��
� � 
 � 	 � ��
 � ���	��� � ��� 
 ��
� �! � ��" �


�� 
 � ���#����� 
�� 


together with some particular facts, like e.g. ������� 
 �%$&�'� � � 
 and ���	��� � ��� 
 �
� � 


.
The first rule formalizes our default knowledge, while the third formalizes that
the default rule should not be applied in abnormal or exceptional cases. In our
example, it expresses the famous specificity principle which says that more specific
knowledge should override more general one ([Touretzky, 1986; Touretzky et al.,
1988; Horty et al., 1990]).

For the query “ � �! � ��" �


�&$&�'� � � 
 ” we expect the answer “yes” while for

“ � �! � ��" �



�
� � 


” we expect the answer “no”.
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Another important KR task is to formalize knowledge for reasoning about ac-
tion. We again consider a particular important instance of such a task, namely
temporal projection. The overall framework consists in describing the initial state
of the world as well as the effects of all actions that can be performed. What we
want to derive is how the world looks like after a sequence of actions has been
performed.

Example 2.5 (Temporal Projection: Yale-Shooting Problem).
We distinguish between three sorts5 of variables:

� situation variables: � � � � ��
�
�
 ,
� fluent variables: �$��� � ��
�
�
 ,
� action variables: ��� � � ��
�
�
 .

The initial situation is denoted by the constant � � , and the two-ary function symbol
����� 
 ��� �



denotes the situation that is reached when in situation � the action �

has been performed. The relation symbol ��" ��� � 
 �$� �



formalizes that the fluent �
is true in situation � .

For the YSP there are three actions ( $ � ��� , ��" � � and ��� "�" � ) and two fluents
(
� �#� � � and ��" � � �'� ). Initially a turkey called � �'�'� is alive. We then load a gun,

wait and shoot. The effect should be that Fred is dead after this sequence of actions.
The common-sense argument from which this should follow is the

Law of Inertia: Things normally tend to stay the same.

Using our intuition from the last example, a natural formalization is given as fol-
lows:

��� � # ����" ��� � 
 �$� �'��� 
 �"� �

�
 � � " � � � 
 �$� �


 ��� � � � � 
 � 	 � �����$� �



��" ��� � 
 � " � � �'��� ���'� 
 ��" � ��� �

�
 �� � 
 � 	 ������"�" � � � �#� � � � �


 � � " � � � 
 � " � ���'�(� �



��" ��� � 
 � �#� � � ��� �

 �

Such a straightforward formalization leads in most versions of classical non-
monotonic logic to the unexpected result, that Fred is not neccesarily dead. But
obviously we expect to derive � " � � � 
�� ��� � � � ����� 
 � " � �(��� �


�

and

� � � ��" ��� � 
�� �#� � ��� ���'� 
 ����"�" � � ����� 
 $ � ��� � ����� 
 � " � �(��� �

�
�
�


Up to now we only have stated some very “natural” axiomatizations of given
knowledge. We have motivated that something like default-negation “ � � � ” should
be added to definite programs in order to do so and we have explicitly stated the
answers to particular queries. What is still missing are solutions to the following
very important problems

5To be formally correct we have to use many-sorted logic. But since all this could also be coded in
predicate logic by using additional relation symbols, we do not emphasize this fact. We also understand
that instantiations are done in such a way that the sorts are respected.
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� How should an appropriate query answering mechanism handling default-
negation “not” look like?

� What is the formal semantics that such a procedural mechanism should be
checked against?

Such a semantics is certainly not classical predicate logic because of the default
character of “ � � � ”— � � � is not classical � . Both problems will be considered in
detail in Section 3.

2.5 What is a Semantics?

In the last subsections we have introduced two principles (Orientation and Elim-
ination of Tautologies) and used the term semantics of a program in a loose, im-
precise way. We end this section with a precise notion of what we understand by a
semantics.

As a first attempt, we can view a semantics as a mapping that associates to
any program a set of positive atoms and a set of default atoms. In the case of
SLD-Resolution the positive atoms are the ground instances of all derivable atoms.
But sometimes we also want to derive default atoms (like in our two examples
above). Our Orientation-Principle formalizes a minimal requirement for deriving
such default-atoms.

Of course, we also want that a semantics SEM should respect the rules of � ,
i.e. whenever SEM makes the body of a rule true, then SEM should also make the
head of the rule true. But it can (and will) happen that a semantics SEM does not
always decide all atoms. Some atoms � are not derivable nor are their default-
counterparts � � � � . This means that a semantics SEM can view the body of a rule
as being ��� ����� � ��� .

This already happens in classical logic. Take the theory

� ��� � 
 � � � 
 � ����� � � � � 

What are the atoms and negated atoms derivable from � , i.e. true in all models of
� ? No positive atom nor any negated atom is derivable! The classical semantics
therefore makes the truthvalue of � � � undefined in a sense.

Suppose a semantics SEM treats the body of a program rule as undefined. What
should we conclude about the head of this rule? We will only require that this
head is not treated as false by SEM—it could be true or undefined as well. This
means that we require a semantics to be compatible with the program viewed as a
3-valued theory—the three values being “ 	�
�� � ”, “
������ � ” and “ ��� ����� � ��� ”. For the
understanding it is not neccessary to go deeper into 3-valued logic. We simply note
that we interpret “ � ” as the Kleene-connective which is 	�
�� � for “ ��� ����� � ��� �
��� ����� � ��� ” and 
������ � for “
������ � ����� ����� � ��� ”.

Our discussion shows that we can view a semantics SEM as a 3-valued model
of a program. In classical logic, there is a different viewpoint. For a given theory
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� we consider there the set of all classical models MOD


�



as the semantics. The
intersection of all these models is of course a 3-valued model of � , but MOD( � )
contains more information. In order to formalize the notion of semantics as general
as possible we define

Definition 2.4 (SEM).
A semantics SEM is a mapping from the class of all programs into the powerset
of the set of all 3-valued structures. SEM assigns to every program � a set of
3-valued models of � :

SEM



�

��

MOD
%�'����� � �



�

 


This definition covers both the classical viewpoint (classical models are 2-
valued and therefore special 3-valued models) as well as our first attempt in the
beginning of this subsection. Later on, in most cases we will be really interested
only in Herbrand models.

Formally, we can associate to any semantics SEM in the sense of Definition 2.4
two entailment relations

sceptical: SEM � ���	� � 
 �



is the set of all atoms or default atoms that are true in all
models of SEM



�


.

credulous: SEM
��
���
 
 �



is the set of all atoms or default atoms that are true in at

least one model of SEM



�


.

In this tutorial we only consider the sceptical viewpoint. Also, to facilitate
notation, we will not formally distinguish between SEM and SEM � ���	� � . In cases
where by definition SEM can only contain a single model (like in the case of well-
founded semantics) we will omit the outer brackets and write

SEM



�

 �)�

instead of SEM



�

 � � � � . We will also slightly abuse notation and write � �

SEM



�



as an abbreviation for � � � for all � � SEM



�


.

3 ADDING DEFAULT-NEGATION

In the last section we have illustrated that logic programs with negation are very
suitable for KR—they allow a natural and straightforward formalization of default-
statements. The problem still remained to define an appropriate semantics for this
class and, if possible, to find efficient query-answering methods. Both points are
adressed in this section.

We can distinguish between two quite different approaches:

LP-Approach: This is the approach taken mainly in the logic programming com-
munity. There one tried to stick as close as possible to SLD-resolution and
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treat negation as “finite-failure”. This resulted in an extension of SLD, called
SLDNF-resolution, a procedural mechanism for query answering. For a nice
overview, we refer to [Apt and Bol, 1994].

NML-Approach: This is the approach suggested by non-monotonic reasoning
people. Here the main question is “What is the right semantics?” I.e. we
are looking first for a semantics that correctly fits to our intuitions and treats
the various KR-Tasks in the right (or appropriate) way. It should allow us
to jump to conclusions even when only little information is available. Here
it is of secondary interest how such a semantics can be implemented with
a procedural calculus. Interesting overviews are [Minker, 1993; Minker,
1996] and [Dix, 1995c; Dix et al., 2001a].

The LP-approach is dealt with in Section 3.1. It is still very near to classical
predicate logic—default negation is interpreted as finite-failure. To get a stronger
semantics, we interpret “ � � � ” as failure in Section 3.2. The main difference is
that the principle Elimination of Tautologies holds. We then introduce a principle
GPPE which is related to partial evaluation. In KR one can see this principle as
allowing for definitional extensions—names or abbreviations can be introduced
without changing the semantics.

All these principles do not yet determine a unique semantics—there is still room
for different semantics and a lot of them have been defined in the last years. We
do not want to present the whole zoo of semantics nor to discuss their merits or
shortcomings. We refer the reader to the overview articles [Apt and Bol, 1994]
and [Dix, 1995c] and the references given therein. We focus on the two main
competing approaches that still have survived. These are the wellfounded seman-
tics WFS (Section 3.3) and the stable semantics STABLE (Section 3.4). Finally,
in Section 3.5 we discuss complexity and expressibility results for the semantics
presented so far.

3.1 Negation-as-Finite-Failure

The idea of negation treated as finite-failure can be best illustrated by still con-
sidering definite programs, but queries containing default-atoms. How should we
handle such default-atoms by modifying our SLD-resolution? Let us try this:

� If we reach a default-atom “ ��� � � ” as a subgoal of our original query, we
keep the current SLD-tree in mind and start a new SLD-tree by trying to
solve “ � ”.

� If this succeeds, then we falsified “ � � � � ”, the current branch is failing and
we have to backtrack and consider a different subquery.

� But it can also happen that the SLD-tree for “ � ” is finite with only failing
branches. Then we say that � finitely fails, we turn back to our original
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SLD-tree, consider the subgoal “ � � � � ” as successfully solved and go on
with the next subgoal in the current list.

It is important to note that an SLD-tree for a positive atom can fail without being
finite. The SLD-tree for the program consisting of the single rule � � � with
respect to the query � is infinite but failing (it consists of one single infinite branch).
In Figure 1 on page 8 the leftmost branch is also failing but infinite.

Although this idea of finite-failure is very procedural in nature, there is a nice
model theoretical counterpart—Clark’s completion comp



�



([Clark, 1978]). The
idea of Clark was that a program � consists not only of the implications, but also of
the information that these are the only ones. Roughly speaking, he argues that one
should interpret the “ � ”-arrows in rules as equivalences “ � ” in classical logic.
We do not give the exact definitions here, as they are very complex; in the non-
propositional case, a symbol for equality, together with axioms describing it6, has
to be introduced. However, for the propositional case, ������� 
 �



is obtained from

� by just

1. collecting all given clauses with the same head into one new “clause” with
this respective head and a disjunctive body (containing all bodies of the old
clauses), and

2. replacing the implication-symbols “ � ” by “ � ”.

Definition 3.1 (Clark’s Completion ������� 
 �


).

Clark’s semantics for a program P is given by the set of all classical models of the
theory ������� 
 �



.

We can now see the classical theory ���	�
� 
 �



as the information contained in the
program � . ���	�
� 
 �



is like a sort of closed world assumption applied to � . We

are now able to derive negative information from � by deriving it from ������� 
 �


.

In fact, the following soundness and completeness result for definite programs �
and definite queries ����� � � � (consisting of only positive atoms) holds:

Theorem 3.1 (COMP and Fair FF-Trees).
The following conditions are equivalent:

� ���	�
� 
 �

 � � � � �

� Every fair SLD-tree for � with respect to � is finitely failed.

Note that in the last theorem we did not use default negation but classical negation
� because we just mapped all formulae into classical logic. We need the fairness
assumption to ensure that the selection of atoms is reasonably well-behaving: we
want that every atom or default-atom occurring in the list of preliminary goals will
eventually be selected.

6CET: Clark’s Equational Theory. CET( 
�� ) axiomatizes the equality theory of all Herbrand( 
�� )-
models. See [Mancarella et al., 1988; Shepherdson, 1992] for the problem of equality and the underly-
ing language.
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But even this result is still very weak—after all we want to handle not only
negative queries but programs containing default-atoms. From now on we consider
programs with default-atoms in the body. We usually denote them by

� ����� � � � � �
�
�

where � � contains all the positive body atoms and � � � �
�

all default atoms
“ ��� � � ”.

Our two motivating examples in Section 2.4 contain such default atoms. This
gives rise to an extension of SLD, called SLDNF, which treats negation as Finite-
Failure

SLDNF = SLD + � � ��� succeeds, if
�

finitely fails.

The precise definitions of SLDNF-resolution, tree, etc. are very complex: we refer
to [Lloyd, 1987; Apt, 1990]. Apt and Bol gave interesting improved versions of
these notions: see [Apt and Bol, 1994, Section 3.2]. In order to get an intuitive
idea, it is sufficient to describe the following underlying principle:

Principle 3 (A “Naive” SLDNF-Resolution).
If in the construction of an SLDNF-tree a default-atom � � ��� ��� is selected in the
list � � ��� � � 	 � � � � ��
�
�
 � , then we try to prove

� �	� .
If this fails finitely (it fails because the generated subtree is finite and failing), then
we take � � ��� ��� as proved and we go on to prove

� ��
�� � 	
� .
If
� �	� succeeds, then � � ��� �	� fails and we have to backtrack to the list � � � 	 of

preliminary subgoals (the next rule is applied: “backtracking”).

Does SLDNF-resolution properly handle Examples 2.4 on page 12 and 2.5 on
page 13? It does indeed:

Inheritance: The query � �  � ��" �


�%$&�'� � � 
 generates an SLD-tree with one main

branch, the nodes of which are:

�������'� 
 �%$&�'� � � 
 �
� � ��� 
 �%$ �	� � � 
 �$� � � � � 
 � 	 � �%$ �	� � � 
 �
� � � � � 
 � 	 � �%$ �	� � � 
 �

� ����� �'�'� 

The third node has a sibling-node ���	��� � ��� 
 �%$ �	� � � 
 ��� � � � � 
 � 	 � �&$&�'� � � 

which immediately fails because �%$&�'� � � does not unify with �

� � . The
� ����� ���	� -node is obtained from ��� � � � 
 � 	 � �%$&�'� � � 
 because the correspond-
ing SLD-tree for

� � 
 � 	 � �%$&�'� � � 
 fails finitely (this tree consists only of� � 
 � 	 � �&$&�'� � � 
 and � �	��� � ��� 
 �%$&�'� � � 
 ).
YSP: The crucial query is

?– ��� � � " � � � 
�� ��� � ��� �'��� 
 ����"�" � � ����� 
 $ � ��� � ����� 
 ��" � �(��� �

�
�
�


.

So we consider ?– ��" ��� � 
 � �#� � � � ����� 
 ��� "�" � � �'��� 
 $ � ��� � �'��� 
 � " � ����� �

�
�
�


. Again
the SLD-tree for this query consists mainly of one branch: the nodes are
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<-- p(x,c), ~q(x), r(f(x)

<-- ~q(c), r(f(c))

test

<-- r(f(c)

success

)

)

"Success"

<-- p(x,c), ~q(x), r(f(x)

test

)

<-- q(c)

fail

<-- q(x)

{x/b} 

successfail

"Fail"

Figure 2. The Floundering-Problem

obtained from the query by applying successively the first program rule
(law of inertia). By evaluation of the holds-predicate, we eventually ar-
rive at the fact ��" ��� � 
�� �#� � � ��� �



and the “ � � � � � ” predicates remain to be

solved. For any of these predicates we again have to consider separate SLD-
trees. But for

� � 
 � 	 ������"�" � � � ��� � � � ����� 
 $ � ��� � ����� 
 ��" � �(��� �

�
�


it is easy to see
that the associated tree already finitely fails (because it generates the sub-
goal “ � � � � � 
 ��	�� $ � ��� � ��" � � �	�(� ����� 
 � " � �(��� �


�

” the corresponding SLD-tree

of which immediately finitely fails) and therefore, since no backtracking is
possible, the tree for

?– ��" ��� � 
 � �#� � � �!����� 
 ��� "�" � � ���'� 
 $ � ��� � ���'� 
 ��" � ����� �

�
�
�


finitely fails and our original query succeeds: Fred is dead.

Up to now it seems that SLDNF-resolution solves all our problems. It handles
our examples correctly, and is defined by a procedural calculus strongly related to
SLD. There are two main problems with SLDNF:

� SLDNF can not handle free variables in negative subgoals,

� SLDNF is still too weak for knowledge representation.

The latter problem is the most important one. By looking at a particular example,
we will motivate in Section 3.2 the need for a stronger semantics. This will lead
us in the remaining sections to the wellfounded and the stable semantics.

For the rest of this section we consider the first problem, known as the floun-
dering problem. This problem will also occur later in implementations of the well-
founded or the stable semantics. We consider the program ��������� � 
 ��
 consisting of
the three facts

�

 � � � 
 � �


 � 
 � � 
 � 
 � 
�
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Our query is � � �

 � � � 
 � ��� � �


�� 
 � � 
 � 
���
�
 , that is, we are interested in instantia-
tions of

�
such that the query follows from the program. The situation is illustrated

in Figure 2 on the page before. Let us suppose that we always select the first atom
or default-atom: it is underlined in the sequel. The SLDNF-tree of this trivial
example is linear and has three nodes: the first node is the query itself

� � �

�� � � 
 � � � � �


 ��
 � � 
 � 
�� 
�
 ,

the second node is � � � � � �

 � 
 � � 
 � 
 � 
�
 . Now, we enter the negation-as-failure

mode and ask � � �

 � 
 . This query immediately fails (the generated tree exists, is

finite and fails) so that we give back the answer “yes, the default atom ��� � �

 � 


succeeds and can be skipped from the list”. The last node is � � � 
 � 
 � 
�
 which
immediately succeeds.

Note that in the last step, the test for � � �

 � 
 has to be finished before the tree

can be extended. If we get no answer, the SLDNF-tree simply does not exist: this
can not happen with SLD-trees.

So far everything was fine. But what happens if we select the second atom in
the first step

� � �

 � � � 
 � � � � �


���
 � � 
 � 
���
�
 ?
Example 3.1 (Floundering).
We again consider the program � ����� � � 
 ��
 consisting of the three facts

�

 � � � 
 � �


 � 
 � � 
 � 
 � 
�
 


Our query is � � �

 � � � 
 � ��� � �


�� 
 � � 
 � 
���
�
 , and in the first step we will select the
second default-atom, i.e. one with a free variable. Thus we enter the negation-as-
failure mode with the query � � � � � �


���

. In this case,

�
may be instantiated to � so

that we have to give back the answer “no, the default-atom � � � �

 ��


fails” and the
whole query will fail. This is because SLDNF treats the subgoal as “ � � � � � �


�� 

”

instead of “ �
� ��� � �


�� 

” which is intended. There exist approaches to overcome

this shortcoming by treating negation as constructive negation: see [Chan, 1988;
Chan and Wallace, 1989; Drabent, 1994].

In the classical SLDNF-resolution negation-as-finite-failure is only a test, no
bindings are produced. On the one hand this may be considered a shortcoming,
on the other hand, it makes the SLDNF procedure more tractable. Note that the
problem to decide if a given program flounders is undecidable [Börger, 1987]).
See also [Shepherdson, 1991] for more unsolvable problems related to SLDNF.

SLDNF is a procedural mechanism. It would be nice to have a modeltheoreti-
cal counterpart. In Theorem 3.1 on page 17 we already related a restricted form of
finite failure to Clark’s completion. We will see later that ������� 
 �



is inconsistent

even in cases where we would not expect it. Therefore Fitting [Fitting, 1985] in-
troduced a three-valued formulation ��������� 
 �



of the original completion. Kunen

([Kunen, 1987]) then proved in the propositional case SLDNF is sound and com-
plete with respect to ��������� 
 �



.
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In the predicate logic case, SLDNF is not complete but it is always correct [Shep-
herdson, 1988, Theorem 39]) with respect to ������� � 
 �



: given a query � ,

� if SLDNF succeeds with answer ! , then ��������� 
 �

 � � � � �"! , and

� if SLDNF fails, then ���	�
� � 
 �

 � � � � � � .

This correctness result is also the reason for the incompleteness of SLDNF with
respect to two-valued ������� 
 �



. It states that any formula derivable by SLDNF

is a three-valued consequence of ������� � 
 �


. But, since there are two-valued con-

sequences of a theory that are not three-valued ones (three-valued logic is weaker
than two-valued logic), SLDNF can not be complete. Extensions of the above
completeness result to certain subclasses of predicate logic programs require se-
vere restrictions on the syntactic form of � . To define these syntactic restrictions,
we need the notion of the dependency-graph:

Definition 3.2 (Dependency-Graph
���

).
For a logic program � with negation, the dependency graph � # is a finite directed
graph whose vertices are the predicate symbols from � . There is a positive (re-
spectively negative) edge from � to � � iff there is a clause in P with � in its head
and � � occurring positively (respectively negative) in its body.

We also say

� � depends on � � if there is a path in � # from � to � � (by definition, �
depends on itself),

� � depends positively (resp. negatively) on � � if there is a path in � # from �
to � � containing only positive edges (resp. at least one negative edge). (by
definition � depends positively on itself),

� � depends evenly (resp. oddly) on � � if there is a path in � # from � to � �
containing an even (resp. odd) number of negative edges (by definition �
depends evenly on itself).

The following properties of a program � turn out to be very important:

stratified: no predicate depends negatively on itself7,
strict: there are no dependencies that are both even and odd,
call-consistent: no predicate depends oddly on itself8,
allowedness: every variable occurring in a clause must occur in

at least one positive atom of the body of that clause.

Strictness and allowedness turn out to be the most important restrictions that imply
completeness results for SLDNF:

7or: there are no cycles containing at least one negative edge.
8or: there are no odd cycles.
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Prog. P Semantics Completeness

allowed + hierarchical ���	�
� 
 �



yes, no recursion at all
allowed + stratified ������� 
 �



yes, if ��� ��� � � strict

allowed � " � � �



�



yes, w.r.t. � �

allowed + call-consistent ���	�
� 
 �



yes, if ��� � � � � strict:
���	�
� 
 �



� � � iff

� " � � �



�


� � � �

Table 1. Completeness for SLDNF

While strictness excludes situations of the form �

�� 
 � �


�� 

, �


 � 
 � � �

 � 
 � � 
�
 ,

allowedness excludes constructs of the form � � � � � 
�� � ��
 � and also solves the
floundering-problem.

Strictness implies that ��������� 
 �



and ���	�
� 
 �



are equivalent [Kunen, 1989])

������� � 
 �

 � � � � ��! iff ���	�
� 
 �


 � ��� �"!�

Table 1 gives an overview of the different completeness results. Note that the query

� is always considered to be allowed.
Much work was done in LP (see [Decker and Cavedon, 1990; Barbuti and

Martelli, 1986; Stärk, 1994]) to find other syntactically characterizable classes,
for which SLDNF is also complete.

3.2 Negation-as-Failure

Let us first illustrate that SLDNF answers quite easily our requirements of a se-
mantics SEM (stated explicitly in Definition 2.4 on page 15). We can formulate
these requirements as two program-transformations (they will be used later for
computing a semantics). We call them reductions for obvious reasons.

Principle 4 (Reduction).
Suppose we are given a program � with possibly default-atoms in its body. If a
ground atom � does not unify with any head of the rules of � , then we can delete
in every rule any occurrence of “ � � � � ” without changing the semantics.

Dually, if there is an instance of a rule of the form “ � � ” then we can delete
all rules that contain “ � � � � ” in their bodies.

It is obvious that SLDNF “implements” these two reductions automatically. The
weakness of SLDNF for knowledge representation is in a sense inherited from
SLD. When we consider rules of the form “� � � ”, then SLD resolution gets
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into an infinite loop and no answer to the query ?- � can be obtained. This has
often the effect that when we enter into negation-as-failure mode, the SLD-tree to
be constructed is not finite, although it is not successful and therefore should be
considered as failed.

Let us discuss this point with a more serious example.

Example 3.2 (The Transitive Closure).
Assume we are given a graph consisting of nodes and edges between some of
them. We want to know which nodes are reachable from a given one. A natural
formalization of the property “reachable” would be

��� � � � � � � � 
���
 � �'��� � 
 � ��� 
 � ��� � � � � � � � 
 � 
 


What happens if we are given the following facts

�'� �!� 
 � ��� 
 � �'��� � 
 � � � 
 ���'� �!� 
 � ��� 


and �'� � � � � � ��� 
 � 
 ? Of course, we expect that neither
�

nor � are reachable because
there is no path from � to either

�
or � .

But SLDNF-Resolution does not derive “ � � � ��� � � � � � � � 
�� 
 ”!

How does this result relate to Theorem 3.1 on page 17? Note that our query has
exactly the form as required there. Clark’s completion of our program rule is

��� � � � � � � � 
���
 � 
 � 
� ��� � � 
 �'� � � � � � ��� 
 � 
 � �'��� � 
 � � ��
�
�


from which, together with our facts about the edge-relation, ����� � � � � � � � 
�� 
 is
indeed not derivable. This is due to the wellknown fact that transitive closure is
not expressible in first order predicate logic.

Note also that our Principle 2 on page 10 does not help, because it simply does
not apply. It turns out that we can augment our two principles by a third one,
that constitutes together with them a very nice calculus handling the above ex-
ample in the right way. This principle is related to partial evaluation, hence its
name GPPE9. Let us motivate this principle with the last example. The query
“ ��� � �'� � � � � � ��� 
 � 
 ” leads to “ ��� � � � � � ��� 
 � 
 � �'��� � 
 � ��� 
 � �'� � � � � � ��� 
 � 
 ” and
“ �'� � � � � � ��� 
 � 
 ” leads to “ ��� � � � � � � � 
 � 
 � �	���!� 
 � � � 
 � ��� � � � � � � � 
�� 
 ”. Both rules
can be seen as definitions for ��� � � � � � � � 
 � 
 and �'� � � � � � ��� 
 � 
 respectively. So it
should be possible to replace in these rules the body atoms of ��� � � � � � � � by their
definitions. Thus we obtain the two rules

��� � � � � � ��� 
�� 
 � �'��� � 
�� ��� 
 ���'� �!� 
 � � � 
 � ��� � � � � � � � 
 � 

��� � � � � � ��� 
 � 
 � �'� �!� 
 � � � 
 � �'��� � 
 � ��� 
 � �'� � � � � � ��� 
 � 


that can both be eliminated by applying Principle 2 on page 10. So we end up
with a program that does neither contain ��� � � � � � � � 
�� 
 nor ��� � � � � � ��� 
 � 
 in one

9Generalized Principle of Partial Evaluation
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of the heads. Therefore, according to Principle 1 on page 7 both atoms should be
considered false. The precise formulation of this principle is as follows:

Principle 5 (GPPE,[Brass and Dix, 1994; Sakama and Seki, 1994]).
We say that a semantics SEM satisfies GPPE, if the following transformation does
not change the semantics. Replace a rule � � � � ��� � � �

�
where � � contains

a distinguished atom � by the rules

� �
�
����� � � ��� � � �� � � � �

�
�
�
� �

�
� � 
 ��� � ��
�
�
�� � 


where � ��� �� � � � � �
�
� ( � � � ��
�
�
�� � ) are all rules with head � .

Note that any semantics SEM satsfying GPPE and Elimination of Tautolo-
gies can be seen as extending SLD by doing some Loop-checking. We will call
such semantics NMR-semantics in order to distinguish them from the classical LP-
semantics which are based on SLDNF or variants of Clark’s completion ���	�
� 
 �



:

� NMR-Semantics = SLDNF + Loop-check.

The following, somewhat artificial example illustrates this point.

Example 3.3 (COMP vs. NMR).

�����
	 � � � �
� � � � � �

���	�
� 
 ������	 
 � � � �
� � � �

?-q � No (COMP).
Yes (NMR).

� ��
�
	 � � � �
� � � � � �
� � � � � �

���	�
� 
 � ����
	 
 � � � �
� � � �
� � ���

?-p � Yes (COMP).
No (NMR).

For both programs, the answers of the completion-semantics do not match our
NMR-intuition! In the case of � ���
	 we expect � to be derivable, since we expect
� � � � to be derivable: the only possibility to derive � is the rule � � � which,
obviously, will never succeed. But ���� � � 
 � � � � � � 
 � ���	�
� 
 � �
�
	 
 ! In
the case of � ����
	 we expect � not to be derivable, for the same reason: the only
possibility to derive � is the rule � � � . But � � � � � � � �


 �	� � ��� � 
 �
������� 
 � ��
�
	



!

Note that the answers of the completion-semantics agree with the mechanism
of SLDNF: � � � represents a loop. The completion of � � is inconsistent: this
led Fitting to consider the three-valued version of ������� 
 �



mentioned at the end

of Section 3.1. This approach avoids the inconsistency (the query � � � is not
answered “yes”) but it still does not answer “no” as we would like to have.
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The last principle in this section is related to subsumption: we can get rid of
non-minimal rules by simply deleting them.

Principle 6 (Subsumption).
In a program � we can delete a rule ��� � � � � � � �

�
whenever there is another

rule ����� � � � � � � � �
�

with

� � �
�
� � and � �

� �
�
�



As a simple example, the rule � � � ������� � ��� � ��� ��� is subsumed by the 3
rules � � ����� � ��� ��� � ��� or � � � ����� ��� ��� and by ������� � � ��� .

3.3 The Wellfounded Semantics: WFS

The wellfounded semantics, originally introduced in [Van Gelder et al., 1988],
is the weakest semantics satisfying our 4 principles (see [Brass and Dix, 1999;
Brass and Dix, 1998; Dix, 1995b]). We call a semantics

SEM 	 weaker than SEM � � written SEM 	���� SEM � �
if for all programs � and all atoms or default-atoms � the following holds:

SEM 	 
 �

 � � � implies SEM � 
 �


 � � � 


I.e. all atoms derivable from SEM 	 with respect to � are also derivable from
SEM � . The notion � � refers to the knowledge ordering in three-valued logic.
This is a nice theorem and gives rise to the following definition:

Theorem 3.2 (WFS, [Brass and Dix, 1999]).
There exists the weakest semantics satisfying our four principles Elimination of
Tautologies, Reduction, Subsumption and GPPE. This semantics is called well-
founded semantics WFS.

It can also be shown, that for propositional programs, our transformations can
be applied to compute this semantics.

Theorem 3.3 (Confluent Calculus for WFS,[Brass and Dix, 1998]).
The calculus consisting of these four transformations is confluent, i.e. whenever
we arrive at an irreducible program, it is uniquely determined. The order of the
transformations does not matter.

For finite propositional programs, it is also terminating: any program � is there-
fore associated a unique normalform ����� 
 �



. The wellfounded semantics of � can

be read off from ����� 
 �



as follows

	 � �



�

 ��� ��� � � � ���'� 
 �


 � � � � � � � � � is in no head of ����� 
 �

 �

We note that the size of the residual program is in general exponential in the
size of the original program. Recently it was shown in [Brass et al., 2001b] how a
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small modification of the residual program, which still satisfies the nice character-
ization of computing WFS as given in Theorem 3.3 on the page before, results in
a polynomial computation.

Therefore the wellfounded semantics associates to every program � with nega-
tion a set consisting of atoms and default-atoms. This set is a 3-valued model of

� . It can happen, of course, that this set is empty. But it is always consistent, i.e. it
does not contain an atom � and its negation � � � � . Moreover, it extends SLDNF:
whenever SLDNF derives an atom or default-atom and does not flounder, then
WFS derives it as well. Therefore the two examples of Section 2.4 are handled in
the right way. But also for Example 3.2 on page 23 we get the desired answers.

Let us discuss whether every sequence of program transformations terminates,
i.e. if our calculus is strongly terminating. Already the simple program consisting
of just the loop “ � � � ” shows a problem. Applying GPPE leads to the same
program, so GPPE can be applied infinitely often without leading to the residual
program. Of course, in this particular case an application of the Elimination of
Tautologies immediately leads to the residual program. But still another problem
can occur10:

� ��� � � � � � �
� � �
� � �"��� �

If we apply GPPE � to the third clause, this clause is replaced by � ��� ��� � . We
can now apply GPPE 
 again to this clause and get the original program. So we
have an oscillation

� � � � 
�� � � � � �



� ��� � � 
 � � ��� � �

To summarize, not every sequence of transformations terminates. But a simple
additional property will ensure this.

Definition 3.3 (Fair Sequences).
We call a sequence of program transformations fair, if in the corresponding se-
quence of programs

1. every positive body-atom is eventually removed (either by removing the
whole clause using a suitable transformation or by an application of GPPE),
and

2. every tautology clause is eventually removed (either by applying Elimina-
tion of Tautologies or another suitable transformation).

Theorem 3.4 (Strong Termination for Fair Sequences).
Our calculus of transformations is strongly terminating for fair sequences of trans-
formations. Such fair sequences therefore always lead to the residual program.

10brought to our attention by Frieder Stolzenburg
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As we said above, loop-checking is in general undecidable. Therefore WFS
is in the most general case where variables and function-symbols are allowed,
undecidable. Only for finite propositional programs it is decidable. In fact, it is of
quadratic complexity (see Section 3.5).

Let us end this section with another example, which contains negation.

Example 3.4 (Van Gelder’s Example).
Assume we are describing a two-players game like checkers. The two players
alternately move a stone on a board. The moving player wins when his opponent
has no more move to make. We can formalize that by

����� � � 
 ��
 � � ��� � 
�
���� 	 � 
�� ��� 
 ��� � � ��� � � 
 � 


meaning that

� the situation x is won (for the moving player A), if he can lead over11 to a
situation y that can never be won for B.

Assume we also have the facts

� ��� � 
�
���� 	 � 
 � ��� 
 � � ��� � 
�
 �	� 	 � 
 � � � 
 and � ��� � 
�
 ��� 	 � 
 � � � 
 

Our query to this program ��� � � � is ?- ��� � � 
 � 
 . Here we have no problems with
floundering, but using SLDNF we get an infinite sequence of oscillating SLD-trees
(none of which finitely fails).

WFS, however, derives the right results

	 � �



� � � � � 
 � � � � � ��� � � 
 � 
 � ��� � � 
 � 
 � ��� � ��� � � 
�� 
 �

which matches completely with our intuitions.

3.4 The Stable Semantics: STABLE

We defined WFS as the weakest semantics satisfying our four principles. This
already indicates that there are even stronger semantics. One of the main compet-
ing approaches is the stable semantics STABLE. The stable semantics associates
to any program � a set of 2-valued models, like classical predicate logic. STA-
BLE satisfies the following property, in addition to those that have been already
introduced:

Principle 7 (Elimination of Contradictions).
Suppose a program � has a rule which contains the same atom � and � � � � in its
body. Then we can eliminate this rule without changing the semantics.

This principle can be used, in conjunction with the others to define the stable
semantics

11With the help of a regular move, given by the relation 	�

��� ����

	 ��
���� .
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Theorem 3.5 (STABLE,[Brass and Dix, 1997]).
There exists the weakest semantics satisfying our five principles Elimination of
Tautologies, Reduction, Subsumption, GPPE and Elimination of Contradictions.

If a semantics SEM satisfies Elimination of Contradictions it is based on 2-
valued models ([Brass and Dix, 1997]). The underlying idea of STABLE is that
any atom in an intended model should have a definite reason to be true or false.
This idea was made explicit in [Bidoit and Froidevaux, 1991a; Bidoit and Froide-
vaux, 1991b] and, independently, in [Gelfond and Lifschitz, 1988]. We use the
latter terminology and introduce the Gelfond-Lifschitz transformation: for a pro-
gram � and a model � � � # we define

� � �����	� � ��� � � � � ��� � � �

where � � ��� � � ��� � 	 ��
�
�
���� � � � � � � 	 ��
�
�
�� ��� � � � is transformed as follows


 � � ��� 
 � � �
�

� � �
	���
�
�
���� � � if ��� � � � ���� ,
t � otherwise.

Note that � � is always a definite program. We can therefore compute its least
Herbrand model � #�� and check whether it coincides with the model � with
which we started:

Definition 3.4 (STABLE).� is called a stable model12 of � iff � #�� ��� .

What is the relationship between STABLE and WFS? We have seen that they
are based on rather identical principles.

� Stable models � extend WFS: � � WFS



�



implies ���� � .
� If WFS( � ) is two-valued, then WFS( � ) is the unique stable model.

But there are also differences. We refer to Example 3.4 on the page before and
consider the program � consisting of the clause

$%��� � 
 ��
 � � " � � � ��" � ��" 
 � ��� 
 �"� � � $%��� � 
 � 


together with the following facts: � " � � � ��" � ��" 
 � ��� 
 , � " � � � ��" � ��" 
 ��� � 
 , as
well as � " � � � ��" � ��" 
 � � � 
 , and � " � � � ��" � ��" 
 � ��� 
 . In this particular case
we have two stable models: � $%��� � 
 � 
 �!$%��� � 
 � 
 � and �	$%��� � 
 � 
 �!$%��� � 
 � 
 � and
therefore

WFS



�

 � �	$%��� � 
 � 
 � ��� � $%��� � 
 � 
 � � 	


a stable model of #�� 


This means that the 3-valued wellfounded model is exactly the set of all atoms
or default-atoms true in all stable models. But this is not always the case, as the
program of � � � � �
� � � � � shows:

12Note that we only consider Herbrand models.
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Example 3.5 (Reasoning by cases).

� � � � �
� � � � � �
� � � � � �
� � � � � �

� � �
� � �

Although neither
�

, nor � can be derived in any semantics based on two-valued
models (as STABLE for example), the disjunction

� � � , thus also � , is true. In this
way the example is handled by the completion semantics, too. WFS( � ), however,
is empty; if the WFS cannot decide between

�
or � � � � , then

�
is undefined.

The main differences between STABLE and WFS are

� STABLE is not always consistent,

� STABLE does not allow for a goal-oriented implementation.

The inconsistency comes from odd, negative cycles

� � � � � � 

� � � � � �


 ��� 

The idea to consider 2-valued models for a semantics neccessarily implies its in-
consistency ([Brass and Dix, 1997]). Note that

	 � �



� � � � � �

 � ��� � which is

quite different! Sufficient criteria for the existence of stable models are contained
in [Dung, 1992; Fages, 1993].

That STABLE does not allow for a Top-Down evaluation is a more serious
drawback and has nothing to do with inconsistency. This behaviour led Dix to
define the notion of Relevance and Modularity (see Section 7.1 and[Dix, 1992a;
Dix, 1992b; Dix, 1995b]. Bry reinvented Modularity (he termed it compositional-
ity) and argued that a semantics should satisfy it.

Example 3.6 (STABLE is not Goal-Oriented).

� 
�� � 
 � � � � � � � � �
� � � � � �

� � � � � � � �
� � � � � �

� � � � � �
� � �

� 
�� � 
 � � is the subprogram of � that consists of all rules that are relevant to answer
the query ?-

�
. It has two stable models � � � and � � � — �

is not true in all of them.
But the program � has the unique stable model � � � � � , so

�
is true in all stable

models of � .

The last example shows that the truthvalue of an atom
�

also depends on atoms
that are totally unrelated with

�
! This is considered a drawback of STABLE by

many people. Note that a straightforward modification of STABLE is not possible
([Dix and Müller, 1994b; Dix and Müller, 1994c]).
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We end this section with another description of WFS and STABLE that will
be useful in later sections. It was introduced in [Baral and Subrahmanian, 1991;
Baral and Subrahmanian, 1992]:

Definition 3.5 (Antimonotone Operator ��# ).
For a program � and a set ��� ��# we define an operator � # mapping Herbrand-
structures to Herbrand structures:

� # 
 � 
 � � � #�� 

It is easy to see that � # is antimonotone. Therefore its twofold application �

�
is

monotone ([Tarski, 1955]).

Obviously, the stable models of a program � are exactly the fixpoints of � # .
This is just a reformulation of Definition 3.4 on page 28. WFS is related to � as
follows

Theorem 3.6 (WFS and �
�
).

A positive atom � is in WFS(P) iff � � � � �


�
�
#


. A default-atom � � � � is in

WFS(P) iff � �� � � �


�
�
#


:

	 � �



�

 � ��� �



�
�
#


��� ��� � ��� � �� � � �



�
�
#

 � 


Atom or default-atoms that do occur in neither of the two sets are undefined.

3.5 Complexity and Expressibility

In this section we collect some complexity results for the semantics considered
so far. The reason why NMR-semantics are in the general case (free variables
and function symbols) undecidable is strongly related to loop-checking. Let us
consider the program

�

�� 
 � �


 � 
���
�


or, equivalently, the infinite propositional program

� � � � 	 � � 	 � � � ��
�
�
�� �(� � �(� � 	 ��
�
�

Any NMR-semantics should derive “ � � � �



�


” (resp. “ � � � � � ”) for all terms � , but

a procedure to detect such infinite loops is impossible in general. Our principles
GPPE and Elimination of Tautologies can detect finite loops.

From a model theoretic point of view it is easy to define a semantics that de-
rives “ � � � �



�


”: we could just take all minimal Herbrand models as the intended

semantics. Of course, this does not change the general undecidability.
For the exact terminology, definitions and results presented in this section we

refer the interested reader to the following interesting overviews [Schlipf, 1990;
Schlipf, 1992; Cadoli and Schaerf, 1993]. Further results are contained in [Eiter
et al., 1993; Sacca, 1993; Chomicki and Subrahmanian, 1990; Eiter and Gottlob,
1993b].
While Table 2 on the next page treats the complexity Table 3 on page 33 treats the
expressibility problem. Some general explanations are appropriate.
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Complexity

1. ord. prog. prop. prog.

(with functions) (no variables)

MP

( � is Horn)

� : � 0
1-compl.

� � � � : � 0
1-compl.

linear in � � �
Msupp

P

( � is stratified)

arithm.-compl.

( � � � � �# is � 0
n)

linear in � � �
COMP � 1

1-compl. over � � co-NP-compl.

COMP3 � 1
1-compl. over � � linear in � � �

STABLE � 1
1-compl. over � � co-NP-compl.

REG-SEM � 1
1-compl. over � � co-NP-compl.

WFS � 1
1-compl. over � � linear in � � ����� � �

WFS � � 1
1-compl. over � � co-NP-compl.

WFS � � 1
1-compl. over � � co-NP-compl.

Table 2. Complexity of Non-Disjunctive Semantics

Table 2

We consider the complexity of deciding if a given ground atom or default-atom is
contained in the respective semantics (i.e. if it is true in all intended models).

For the first column, we consider arbitrary first-order programs with function
symbols. We therefore get undecidability results of varying strength. Since we
restrict to Herbrand models, we can assume (by standard recursive encoding tech-
niques, like Gödel-numberings) that all models have universes which are subsets
of the natural numbers � � . The completeness results mean that for every set of
the respective complexity class there is a program that defines this set under the
respective sceptical semantics. Unless indicated otherwise, there is no difference
between deciding ground atoms or ground negated atoms.

For the second column, we consider propositional programs. Hence we get de-
cidable problems of various degrees. We denote by � � � the total length of the pro-
gram and by � � � the number of distinct proposition letters in � . See also [Ben-
Eliyahu and Dechter, 1992; Schlipf, 1992; Imielinski, 1991; Marek et al., 1992;
Witteveen, 1991b] for more results on the complexity of propositional programs.
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Table 3

Here we consider the expressibility (or expressive power) of first order programs
without function symbols. The idea is to distinguish between EDB-relations (re-
lations that do not appear in the head of a program) and IDB-relations (which are
contained in some heads). For a given program � we can view any instance �
of the (finite) EDB-relations as an input argument and then compute the (finite)
IDB-relations (the output) under the respective sceptical semantics. So we are
asking

What are the relations expressible with logic programs under certain
semantics?

Roughly speaking, a relation � over finite EDB’s � (i.e. for every finite � is
associated a relation ��� on � ) is expressible if there is a program � containing an
IDB-symbol � s. t. for every relational database � and tuple � corresponding to � :

� 
 � 
 � � � � 

�����



if and only if � 


�



holds in � 

This is the classical notion of expressibility ([Schlipf, 1990; Eiter et al., 1993]).

We are in particular interested to express all relations of some complexity class
(note that the complexity is always with respect to the finite relational database
as input, the program is fixed). It is well-known that the relations inductively
definable over � , we denote them by IND( � ) (or simply IND to avoid the explicit
occurrence of the EDB), is a strict subclass of the relations that are polynomial
over � (see [Barwise, 1975; Moschovakis, 1974; Gurevich, 1988]).

It is worth noting that in the general predicate logic case, all semantics are
highly undecidable. The entries for comp and comp � are to be understood as
restricted to Herbrand models.

In the propositional case, WFS is of quadratic complexity (a folklore result—
for a proof see [Witteveen, 1991a]), while STABLE is co-NP-complete. The low
complexity of WFS can be traced back to Dowling and Gallier’s result whereby
satisfiability of Horn clauses can be tested in linear time ([Dowling and Gallier,
1984]). In Dowling and Gallier’s approach it is actually a minimal model of a Horn
theory that is computed in linear time. Since minimal models of Horn theories are
equivalent to closures of rules without negation the result is directly applicable to
well-founded semantics for logic programs with default-atoms.

As far as expressibility is concerned, STABLE is more expressive: all co-NP-
relations can be expressed, while WFS can only describe all inductively definable
relations. As an example, STABLE can express the satisfiability problem. WFS is
not able to do this (unless the polynomial hierachy collapses).

4 ADDING EXPLICIT NEGATION

So far we have considered programs with one special type of negation, namely de-
fault negation. Default negation is particularly useful in domains where complete
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Expressibility

1. ord. prog.

(no functions)

MP

( � is Horn)

�
IND (thus

�
P)

COMP � co-NP

COMP3 � IND (thus
�

P)

STABLE � co-NP

REG-SEM � � P
2

WFS � IND (thus
�

P)

WFS � � IND (thus
�

P)

WFS � � IND (thus
�

P)

Table 3. Expressibility of Non-Disjunctive Semantics

positive information can be obtained. For instance, if one wants to represent flight
connections from Budapest to the US it is very convenient to represent all existing
flights and to let default negation handle the derivation of negative information.
There are domains, however, where the lack of positive information cannot be as-
sumed to support (or support with enough strength) that this information is false.
In such domains it becomes important to distinguish between cases where a query
does not succeed and cases where the negated query succeeds. The following ex-
ample was used by McCarthy to illustrate the issue. Assume one wants to represent
the rule: cross the railroad tracks if no train is approaching. The straightforward
representation of this rule with default negation would be

� ��" �'� ��� � �  � � ��� � ��� � ���
It seems obvious that in many practical settings the use of such a rule would not
lead to intended behaviour, in fact it might even have disasterous consequences.
What seems to be needed here is the possibility of using a different negation sym-
bol representing a stronger form of negation. This new negation—we will call it
explicit negation—should be true only if the corresponding negated literal can ac-
tually be derived. We will use the classical negation symbol � to represent explicit
negation. The track crossing rule will be represented as

� �'" �'� ��� � �  �
� � ��� � ���
The idea is that this latter rule will only be applicable if � ��� � � � has been proved,
contrary to the first rule which is applicable whenever ��� � ��� is not provable.
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In the next subsection we will shortly discuss that explicit negation is not (or
should not be) classical negation and how it should interfere with default negation.
In the two following subsections we will generalize the semantics STABLE and
WFS, respectively, to programs with explicit negation.

4.1 Explicit vs. Classical and Strong Negation

First we define the language we are using more precisely.

Definition 4.1 (Extended Logic Program).
An extended logic program consists of rules of the form

� � � 	���
�
�
�� � � � ��� � ��	 ��
�
�
�� � � � ���
where the

� � ��� � and � are literals, i.e., either propositional atoms or such atoms
preceded by the classical negation sign. The symbol “ � � � ” denotes negation by
failure (default negation), “ � ” denotes explicit negation.

We have already motivated the need of a second kind of negation “ � ” different
from “ � � � ”. What should the semantics of “ � ” be? Should it be just like in
classical logic? Note that classical negation satisfies the law of excluded middle

� � � �"


The following example taken from [Alferes et al., 1996] shows that classical nega-
tion is sometimes inappropriate for KR-tasks.

Example 4.1 (Behaviour of Classical Negation).
Suppose an employer has several candidates that apply for a job. Some of them
are clearly qualified while others are not. But there may also be some candidates
whose qualifications are not clear and who should therefore be interviewed in order
to find out about their qualifications. If we express the situation by

� � 
 � 
�� 
 � ��� ��� � � ��� 
�� 

and 
 ��� � ��	 
�� 
 � ����� ��� � � ��� 
�� 


then, interpreting “ � ” as classical negation, we are forced to derive that every
candidate must either be hired or rejected! There is no room for those that should
be interviewed. Also, applying the law of excluded middle has a highly non-
constructive flavor.

Let us now consider again the example � �'" �'� ��� � �  �
� � ��� � ��� from the begin-
ning of this section. Suppose that we replace � ��� � ��� by � ���'� ��� � �  . We obtain

� ��" �	� ��� � �  �
� � ���'� ��� � �  

From this program, “ � � � � ��" �'� ��� � �  � ” will be derivable for any semantics. There-
fore we should make sure that “ ��� � � ��" �	� ��� � �  � ” is also derivable from

� �'" �'� ��� � �  �
� � ��� � ���
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After all, the second program is obtained from the first one by a simple syntactic
operation. This means we have to make sure that default negation “ � � � ” treats
positive and negated atoms symmetrically.

Such a negation, we will call it explicit will be introduced in the next two sub-
sections. Note that Gelfond/Lifschitz called the negation they introduced in their
stable semantics classical, although it is not classical in the sense that we just dis-
cussed. Sometimes explicit negation is also called strong negation and denotes still
a variant of our explicit negation. In [Alferes et al., 1996] the authors introduce
both a strong and explicit negation and discuss their relation with classical and
default negation at length.

4.2 STABLE for Extended Logic Programs

The extension of STABLE to extended logic programs is based on the notion
of answer sets which generalize the original notion of stable models in a rather
straightforward manner. Let us first introduce some useful notation. We say a rule
� � � � � 	 ��
�
�
�� � � � � � � ��	 ��
�
�
�� � � � � � � � is defeated by a literal � iff � � � �
for some � � � � ��
�
�
�� � � . We say � is defeated by a set of literals

�
if
�

contains
at least one literal that defeats � . Furthermore, we call the rule obtained by deleting
default negated antecedents from � the monotonic counterpart of � and denote it
with Mon


 � 
 . We also apply Mon to sets of rules with the obvious meaning.

Definition 4.2 (
�

-reduct).
Let � be an extended logic program,

�
a set of literals. The

�
-reduct of � is the

set of rules
��� � � � Mon


 � 
 � � not defeated by
� � 


Note that the only difference between the definition of � � in Section 3.4 and
this definition is that the new one handles literals and not only than atoms.

The definition of stable models (Definition 3.4) was based on the minimal model
of the reduct. Since the reduct now may contain explicit negation we need a dif-
ferent notion here, namely a notion of consequence:

Definition 4.3 (Consequences of Rules).
Let � be a set of rules without default negation.

� � 
 � 

denotes the smallest set of

literals that is

1. closed under � , and

2. logically closed, i.e., either consistent or equal to the set of all literals.

Definition 4.4 ( � # ).
Let � be a logic program,

�
a set of literals. Define an operator � # as follows:

� # 
�� 
 � � � 
 ���



�
is an answer set of � iff

� � � # 
�� 

.
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A literal � is a consequence of a program � under the new semantics, denoted
� � � � � � � � 


�


, iff � is contained in all answer sets of � .

It is not difficult to see that for programs without explicit negation stable models
and answer sets coincide. Here is an example involving both types of negation.
The example describes the strategy of a certain college for awarding scholarships
to its students. It is taken from [Baral and Gelfond, 1994]:

� � � � 
 � 
 � �#� � � � � � 
���
 � � � � � � � �

�� 



���
 � �#� � � � � � 
���
 � � ��� "'�'��� � 
���
 � � � ��� � � �

�� 



 ��
 � � �#� � � � � � 
���
 � � � � � � � � �

���
 ��� � � � � � � �


 ��


�� 
 ��� ��� � � ��� $ 
���
 � � � � � �#� � � � � � 
���
 � � � � � � �#� � � � � � 
���


Assume in addition to the rules above the following facts about Anne are given:

� � ��� � � �



�&� � � 
 ��� � � � � � � �



�%� � � 


We obtain exactly one answer set, namely

� � � ��� � � �



�&� � � 
 ��� � � � � � � �



�%� � � 
 � ��� ��� � � ��� $ 

�%� � � 
 �

Anne will thus be interviewed before a decision about her eligibility is made. If
we use the above rules together with the facts

� ��� "'�	��� � 
 � �  � 
 � � � ��� � � �

 � � �  	


then the program entails � �#� � � � ��� 
 � �  � 
 .
The following results are taken from [Lifschitz, 1996]:

Lemma 4.1 (Program Types).
Let � be an extended logic program. � satisfies exactly one of the following
conditions:

� � has no answer sets,

� the only answer set for � is ıLit,

� � has an answer set, and all its answer sets are consistent.

A program is consistent if the set of its consequences is consistent, and inconsistent
otherwise. The former corresponds to the first two cases listed in the proposition,
the latter to the third case.

We say that a set
�

of literals is supported by � if, for each literal � � �
, there

exists a rule � � � 	 ��
�
�
�� � � ��� � � � 	 ��
�
�
�� � � � � � in � such that

1. � � 	 ��
�
�
�� � � � � �
, and

2. � ��	���
�
�
������ ��� � ��� 
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Lemma 4.2 (Properties of answer sets).
Let � be an extended logic program. The following properties hold:

� Any consistent answer set for � is supported by � .

� If
�

and � are answer sets of � and
� �

� then
� ��� .

� Each element of a consistent answer set of � is a head literal13 of � .

From the last property it follows immediately that every consequence of � is a
head literal of � whenever � is consistent. We would finally like to mention the
following theorem:

Theorem 4.3 (Head Consistency).
If the set of head literals of an extended program � is consistent then every answer
set of � is consistent.

Note that a program satisfying the conditions of the last theorem can still be
inconsistent since it may have no answer set at all.

It should be noted that extended logic programs under answer set semantics can
be reduced to general logic programs as follows: for any predicate � occurring in a
program � we introduce a new predicate symbol � � of the same arity representing
the explicit negation of � . We then replace each occurrence of � � in the program
with � � , thus obtaining the general logic program � � . It can be proved that a
consistent set of literals � is an answer set of � iff the set � � is a stable model of

� � , where � � is obtained from � by replacing � � with � � .

4.3 WFS for Extended Logic Programs

We now show how the second major semantics for general logic programs, WFS,
can be extended to logic programs with explicit negation. For our purposes the
characterization of WFS given in Theorem 3.6 on page 30 will be useful. WFS
is based on a particular three-valued model. To simplify our presentation in this
section we will restrict ourselves to the literals which are true in this three-valued
model. The literals which are false will be left implicit. They can be added in
a canonical way as follows: let � , the set of true literals, be defined as the least
fixpoint of a monotone operator composed of two antimonotone operators " � 	 " � � .
Then the literals which are false in the three-valued model are exactly those which
are not contained in " � � 
 � 
 . Given this canonical extension to the full three-valued
model we can safely leave the false literals implicit from now on.

We will first present a formulation which can be found in various papers, e.g.
[Baral and Gelfond, 1994; Lifschitz, 1996]. We then slightly modify this formula-
tion to obtain stronger results. We finally discuss a further modification by Pereira
and Alferes.

13A head literal of a program � is the head of a rule of � (see also Principle 1 on page 7 and
Definition 6.3 on page 51).
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Like answer set semantics well-founded semantics for extended logic programs
can be based on the operator � # . However, the operator is used in a totally different
way. Since � # is anti-monotone the operator � # � 


� # 
 � is monotone. According
to the famous Knaster-Tarski theorem [Tarski, 1955] every monotone operator has
a least fixpoint. We can thus define

Definition 4.5 (WFS for extended programs).
Let � be an extended logic program. The set of well-founded conclusions of � ,
denoted

	 � �



�


, is the least fixpoint of � # .

The fixpoint can be approached from below by iterating ��# on the empty set.
In case � is finite this iteration is guaranteed to actually reach the fixpoint.

The intuition behind this use of the operator is as follows: whenever �(# is
applied to a set of literals

�
known to be true it produces the set of all literals

that are still potentially derivable. Applying it to such a set of potentially derivable
literals it produces a set of literals known to be true, often larger than the original
set

�
. Starting with the empty set and iterating until the fixpoint is reached thus

produces a set of true literals.
We first want to illustrate this using an example without explicit negation:

� � 
 � 
 � � � � � �
���
 � � � � � �
 ��
 � � � � � �
�� 
 � � � � � �
In the beginning we know nothing about derivable literals, i.e., we start with empty
set

�
. The

�
-reduct of the program is


 � 
 �
���
 �

 ��
 �
�� 
 �

The set of consequences of this program, or in other words, the literals still consid-
ered to be potentially derivable, is thus � ��� � ������� � . If we now reduce the program
with this set we obtain 
 ��
 �
that is, the first iteration of the two-fold application of � # tells us that � is provable.

If we now use
� � � � � to continue the iteration we obtain the reduced program


 � 
 �
 ��
 �
�� 
 �
that is � � ������� � is the current set of potential conclusions. Using this set to reduce
the program gives us again 
 ��
 �
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We thus have reached the least fixpoint of �
�
# and � is the single literal provable

under WFS.
It can be shown that every well-founded conclusion is a conclusion under the

answer set semantics. Well-founded semantics can thus be viewed as an approxi-
mation of answer set semantics.

Unfortunately it turns out that for many programs the set of well-founded con-
clusions as defined in Definition 4.5 is extremely small and provides a very poor
approximation of answer set semantics. Consider the following program � � which
has also been discussed by Baral and Gelfond [Baral and Gelfond, 1994]:

� � �

 ��
 � � � � � ���
���
 � � � � � � �
 ��
 � � � � � � �

The set of well-founded conclusions is empty since ��#�� 
 � 
 equals
� ��� , the set of

all literals, and the
� ��� -reduct of � � contains no rule at all. This is surprising since,

intuitively, the conflict between (2) and (3) has nothing to do with ��� and � .
This problem arises whenever the following conditions hold:

1. a complementary pair of literals is provable from the monotonic counterparts
of the rules of a program � , and

2. there is at least one proof for each of the complementary literals whose rules
are not defeated by

� � 
 � �


, where � � consists of the “strict” rules in � , i.e.,

those without negation as failure.

In this case well-founded semantics concludes � iff �(� � � 
 � �


. It should be

obvious that such a situation is not just a rare limiting case. To the contrary, it
can be expected that many commonsense knowledge bases will give rise to such
undesired behaviour. Let us consider again our Example 2.4 on page 12 from
Section 2.

(1) ����� 
�� 
 � � � � � ��� � 
 ��
 ��������� 
 ��

(2) � ����� 
 ��
 � � � � ��� � 
 ��
 � ���	��� � ��� 
 ��


Assume further that the knowledge base contains the information that Tweety is a
penguin bird. Now if neither ����� 
 �&$&�'� � � 
 nor � ����� 
 �&$&�'� � � 
 follows from strict
rules in the knowledge base we are in the same situation as with � � : well-founded
semantics does not draw any “defeasible” conclusion, i.e. a conclusion derived
from a rule with default negation in the body, at all.

We want to show that a minor reformulation of the fixpoint operator can over-
come this weakness and leads to better results. Consider the following operator

�
�

#

�� 
 � � � 
 � �




where � � 
 � 

denotes the minimal set of literals closed under the (classical) rules

� . � � 
 � 

is thus like

� � 
 � 

without the requirement of logical closedness. Now
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define
�
�

#

�� 
 � � # 
 � �# 
�� 
�


Again we iterate on the empty set to obtain the well-founded conclusions of a
program � which we will denote

	 � � � 
 �


.

Consider the effects of this modification on our example � � :

�
�

# �

 � 
 � � � ��� � ��� � 


Rule (1) is contained in the � � ��� � ��� � -reduct of � � and thus �
�

# �

 � 
 ��� � � . Since �

is also the only literal contained in all answer sets of � � our approximation actually
coincides with answer set semantics in this case.

In the Tweety example both ��� � 
 �%$&�'� � � 
 and � ��� � 
 �%$&�'� � � 
 are provable
from the � -reduct of the knowledge base. However, this has no influence on
whether a rule not containing the default negation of one of these two literals in
the body is used to produce �

�

#

 � 
 or not. The effect of the conflicting information

about Tweety’s flying ability is thus kept local and does not have the disastrous
consequences it has in the original formulation of well-founded semantics.

It is not difficult to see that the new monotone operator is equivalent to the
original one whenever � does not contain negation as failure. In this case the�

-reduct of � , for arbitrary
�

, is equivalent to � and for this reason it does not
make any difference whether to use � # or �

�

# as the operator to be applied first
in the definition of � # . The same is obviously true for programs without classical
negation: for such programs

� � can never produce complementary pairs of literals
and for this reason the logical closedness condition is obsolete.

In the general case the new operator produces more conclusions than the origi-
nal one:

Lemma 4.4. Let � be an extended logic program. For an arbitrary set of literals�
we have

� # 
�� 
 �
�
�

#

�� 
 


It can also be shown that the new operator produces no unwanted results, i.e.,
that our new semantics can still be viewed as an approximation of answer set se-
mantics.

Lemma 4.5. Let � be an extended logic program.
	 � � �

is correct wrt. � � �&� � � ,
i.e., � � 	 � � � 
 �



implies � � � � � � � � 


�


.

An alternative, somewhat stronger approach, was developed by Pereira and
Alferes [Pereira and Alferes, 1992; Alferes and Pereira, 1995; Alferes and Pereira,
1996], the semantics WFSX. This semantics implements the intuition that a lit-
eral with default negation should be derivable from the corresponding explicitly
negated literal. The authors call this the coherence principle. To satisfy the prin-
ciple they use the seminormal version of a program � , denoted �



�


, which is

obtained from � by replacing each rule

� � � 	���
�
�
�� � � � ��� � ��	 ��
�
�
�� � � � ���
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by the rule
� � � 	���
�
�
�� � � � � � � ��	 ��
�
�
�� � � � � �"� � � � � �

where � � is the complement of � , i.e. � � if � is an atom and
�

if � � � � . Based
on this notion Pereira and Alferes consider the following monotone operator:

� # 
�� 
 � � �# � �� 
 # � 
�� 


The use of the seminormal version of the program in the first application of �
�

guarantees that a literal � is not considered a potential conclusion whenever the
complementary literal is already known to be true. In the general case �



�


�

contains fewer rules than � � . Therefore, fewer literals are considered as poten-
tial conclusions and thus more conclusions are obtained in each iteration of the
monotone operator. Here is an example [Baral and Gelfond, 1994]:

����� � � �

���
 � � � � � �
���
 � � � � � �
���
 � � �

The original version of WFS does not conclude � . In WFSX the set
� � � � � �

is obtained after the first iteration of the monotone operator. Since rule (1) is not
contained in the

�
-reduct of the seminormal version of the program the monotonic

counterpart of (2) produces � after the second iteration.

5 ADDING PREFERENCES

In this section we describe how preferences among rules can be taken into account
in logic programs with two types of negation. The basic idea is the following:
in case of a conflict between rules preferences are used to break ties wherever
possible. For programs under answer set semantics this means that some of the
answer sets are preferred, the others disregarded. The conclusions of a prioritized
logic program are then defined as the intersection of all preferred answer sets. In
the general case this leads to a larger set of conclusions.

For well-founded semantics we will take preferences into account by modifying
the monotone operator whose least fixpoint defines the well-founded conclusions.
Again more well-founded conclusions will be generated than without preferences.

We first give some motivation in Section 5.1. We then describe how preferred
answer sets can be defined on the basis of preferences among rules. Our presen-
tation of this subsection is based on [Brewka and Eiter, 1999]. Section 5.3 adds
preferences to well-founded semantics and is based on [Brewka, 1996b] as well
as [Brewka, 2001]. Subsection 5.4 illustrates the expressiveness of our approach
using a decision making example.

Note that we use � 	�� � � to express that ��	 is preferred over � � , that is the
smaller rules are the better ones in this section.
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5.1 Motivation

Preferences among defaults play a crucial role in nonmonotonic reasoning. One
source of preferences that has been studied intensively is specificity[Poole, 1985;
Touretzky, 1986; Touretzky et al., 1991]—we already discussed it in Example 2.4
on page 12. In case of a conflict between defaults we tend to prefer the more
specific one since this default provides more reliable information. E.g., if we know
that students are adults, adults are normally employed, students are normally not
employed, we want to conclude “Peter is not employed” from the information that
Peter is a student, thus preferring the student default over the conflicting adult
default.

Specificity is an important source of preferences, but not the only one, and at
least in some applications not necessarily the most important one. In the legal
domain it may, for instance, be the case that a more general rule is preferred since
it represents federal law as opposed to state law [Prakken, 1993]. In these cases
preferences may be based on some basic principles regulating how conflicts among
rules are to be resolved.

Also in other application domains, like model based diagnosis or configuration,
preferences play a fundamental role. Model based diagnosis uses logical descrip-
tions of the normal behaviour of components of a device together with a logical
description of the actually observed behaviour. One tries to assume normal be-
haviour for as many components as possible. A diagnosis corresponds to a set of
components for which these normalcy assumptions lead to inconsistency. Very of-
ten a large number of possible diagnoses is obtained. In real life some components
are less reliable than others. To eliminate less plausible diagnoses one can give the
normalcy assumptions for reliable components of higher priority.

In configuration tasks it is often impossible to achieve all of the design goals.
Often one can distinguish more important goals from less important ones. To
construct the best possible configurations goals then have to be represented as
defaults with different preferences according to their desirability.

Preferences also turn out to be relevant for reasoning about action. For instance,
Kakas, Miller and Toni developed an approach where preferences between differ-
ent types of rules (inertia rules, effect rules etc.) are used to model commonsense
reasoning involving actions [Kakas et al., 2001].

Prioritized versions for most of the existing nonmonotonic formalisms have
been proposed, e.g., prioritized circumscription [Lifschitz, 1994], hierarchic au-
toepistemic logic [Konolige, 1988], prioritized default logic [Marek and Truszczyński,
1993; Brewka, 1994; Baader and Hollunder, 1995], prioritized theory revision
[Benferhat et al., 1993; Nebel, 1998], or prioritized abduction [Eiter and Gottlob,
1995]. Somewhat surprisingly, at least for some time preferences have received
less attention in logic programming. This may be explained by the fact that for a
long period, logic programming was mainly conceived as a logical paradigm for
declarative programming, and to a less extent as a tool for knowledge representa-
tion and reasoning. However, it has become evident that logic programming can
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serve as a powerful framework for knowledge representation, cf. [Gelfond, 1994;
Baral and Gelfond, 1994]. If logic programming wants to successfully stand this
challenge, it must provide the features which have been recognized as indispens-
able in the context of knowledge representation. One such feature is the possibility
to handle specificity and priority of knowledge.

5.2 Preferred Answer Sets

In this section we will briefly describe the approach developed in [Brewka and
Eiter, 1999]. For a more general treatment, more detail and more motivation con-
sult the original paper.

Let us first define what we mean by a prioritized logic program. For simplicity
we consider only propositional programs in this and the following section, i.e. we
assume that programs are ground and finite:

Definition 5.1 (Prioritized Program).
A (propositional) prioritized logic program is a pair

� � 
 � � � 


where � is a finite set of ground rules and � is a strict partial order on � .

The treatment of partially ordered prioritized programs is reduced to that of
totally ordered programs as follows:

Definition 5.2 (Preferred Answer Set).
Let

� � 
 � � � 
 be a prioritized logic program. � is a preferred answer set of
�

iff � is a preferred answer set of
� ��� 
 � � � � 
 , where � � is an arbitrary total order

on � extending � .

What remains to be defined then are preferred answer sets for totally ordered
programs. The approach presented here was originally introduced using a new
reduct which can be viewed as dual to the Gelfond-Lifschitz reduct. Rather than
eliminating negation based on a given set of literals, as the Gelfond-Lifschitz
reduct, the new reduct eliminates prerequisites. The idea is that the treatment
of preferences can thus be reduced to prerequisite-free programs which can be
handled much easier.

The exact definitions are somewhat involved. For the purposes of this overview
it is sufficient to give a characterization of preferred answer sets which is based
on Proposition 5.1 in [Brewka and Eiter, 1999]. We use the following notation:

���'� 
 � 
 denotes the set of antecedents of the rule � are which are not default negated
(called prerequisites of � ), � � � � 
 � 
 denotes the head of � , and a literal � defeats a
rule � if � " � � appears in the body of � . � is said to be a generating rule of answer
set � iff � ��� 
 � 
 � � and � is not defeated by any literal in � .

PROPOSITION 1 (Preferred Answer Sets and Generating Rules).
Let

� � 
 � � � 
 be a totally prioritized logic program and let � be an answer set
of � . � is a preferred answer set of

�
if and only if for each rule � � � such that
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���'� 
 � 
 � � and � � � � 
 � 
 �� � there is a generating rule � � � � such that � ��� �
and ��� � � 
 � � 
 defeats � .

Here is a simple example illustrating this characterization of preferred answer
sets: 
 ��
 � � � � � �
���
 � � � � � �
Aussume


 � 

�


���

. The program has two answer sets, ��	 � � � � and � � � � � � ,

the former generated by rule (1), the latter by (2). Rule (2) was not applied in �"	
although its prerequisites are in � 	 . This is perfectly ok since rule (1) which is a
generating rule of higher priority defeats (2). ��	 is thus a preferred answer set.

Now consider � � . Rule (1) was not applied, yet there is no generating rule of
� � defeating (1) which is of higher priority than (1). For this reason, � � is not a
preferred answer set.

In [Brewka and Eiter, 1999] it was proven that the approach presented here,
contrary to several competing approaches, satisfies two natural principles of pref-
erence handling in rule based systems. The paper also contains a discussion of
many alternative approaches found in the literature. A more recent comparison of
some of these approaches can be found in [Schaub and Wang, 2001].

5.3 Prioritized WFS

We now show how preferences can adequately be added to well-founded seman-
tics. We will use the variant of WFS for extended logic programs which is based
on the operator �

�

as described in Section 4.3.
For this section a minor reformulation turns out to be convenient. Instead of us-

ing the monotonic counterparts of undefeated rules we will work with the original
rules and extend the definitions of the consequence operator

� � and the closure
operator � � accordingly. We simply require that default negated preconditions be
neglected, i.e., for an arbitrary set of rules � possibly containing default nega-
tion we define

� � 
 �

 � � � 
 Mon



�

�


and
��� 
 �


 � ��� 
 Mon



�

�


. We can now
equivalently characterize � # and �

�

# by the equations

� # 
�� 
 � � � 
 � �



�
�

#

�� 
 � ��� 
 � �




where � � denotes the set of rules not defeated by
�

.
As mentioned earlier, the intuition behind well-founded semantics can be de-

scribed as follows: given a set of literals � already known to be derivable, ���



�



produces a set of potential conclusions which still might defeat rules in � . The
conclusions of rules not defeated by any of the potential defeaters are clearly deriv-
able. Starting with the empty set, we thus generate larger and larger sets � until
a fixpoint is reached. The following terminology - somewhat influenced by argu-
mentation theory - reflects this intuition:
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Definition 5.3 (Defeated Rules).
Let � be an extended logic program.

� A literal � is an � -potential defeater iff � is in the closure of the rules in �
not defeated by � .

� A rule � is � -undefeatable iff � is not defeated by any � -potential defeater.

� A literal � is � -derivable iff � is a consequence of the � -undefeatable rules
in � .

It is obvious that � is � -derivable iff � � � 
 � � 
 �

�


. The least fixpoint of � � � ,	 � �



�


, can thus equivalently be characterized as the least fixpoint of the oper-

ator which, given a set � , produces the set of � -derivable literals. It turns out that
this reformulation is most adequate for introducing preferences.

To take preferences into account we first introduce a notion of dominance. Intu-
itively, a rule � dominates a rule � � in the context of a set of literals � if � has higher
priority and if the application of � in context � actually defeats � � . As pointed out
in [Brewka, 1996a] the second condition is necessary to guarantee that prioritized
well-founded semantics is an extension of well-founded semantics. Here is the
formal definition

Definition 5.4 ( � -dominates � � ).
Let � and � � be rules, � a set of literals. We say � � -dominates � � iff

1. � � � � , and

2.
��� 
 �	� � �
���#��� ��� � -undefeatable � 
 defeats � � .

For the case of prioritized programs Definition 5.3 becomes

Definition 5.5 (Potential Defeater).
Let



�$� � 
 be a prioritized logic program.

� A literal � is an � -potential � -defeater iff � is in the closure of rules in �
which are (1) not defeated by � and (2) not � -dominated by � .

� A rule � is � -safe iff � is not defeated by any � -potential � -defeater.

� A literal � is � -derivable iff � is a consequence of the set of � -safe rules in
� .

The definition for prioritized logic programs differs from the one for non-prioritized
programs in two respects. Firstly, there is not a single set of potential defeaters for
all rules but each rule � has its own set of potential defeaters. Secondly, the rules
which are used to derive potential defeaters must satisfy an additional condition:
to potentially defeat � a rule must not be dominated by � in context � . Since fewer
rules can be used to derive potential defeaters for a rule the safe rules are a superset
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of the undefeatable rules. We thus obtain more derivable literals. For the special
case where � is empty the two definitions of � -derivable clearly coincide.

The set of � -derivable literals grows monotonically with � . We thus can start
as usual with the empty set of literals and iterate the computation of � -derivable
formulae until a fixpoint is reached.

Here is a small example illustrating the definition.


 � 
 � � � � � � � � �
���
 � � � � � � �
 ��
 �

Let (1) � (2). Clearly, rule (3) is � -safe since there is no way of defeating a rule
without default negation. But also (1) is � -safe since the closure of (1) together
with the � -undefeatable rule (3) defeats (2) and thus (1) � -dominates (2). There-
fore, the set of � -derivable literals is � � � � � . This set is already the least fixpoint.
Note that � is not a well-founded conclusion of the program without priorities.

5.4 An Application: Qualitative Decision Making

In this section we want to discuss a somewhat more realistic example and show
how prioritized logic programs can be used for qualitative decision making. Al-
though we considered finite propositional programs only in the last two subsec-
tions we will, for simplicity, use rules with variables in this subsection. Since we
do not need functions the Herbrand universe is finite and we clearly do not go
beyond finite propositional programs. Note that � 	 � � � for rules with variables
means that all ground instantiations of � 	 are preferred over all ground instantia-
tions of � � . We also write � 	 � � � for sets of rules � 	 and � � to express that
each element of � 	 is preferred over each element of � � .

Assume you want to buy a car. You have collected the following information
about different types of cars:

��� � � � � � � � 
�� � � � 
 ��� � 	 
 ��� � 
 � 
�� � � � 
���� � 	 
 ��� � 
 � 
�� ��� � � 
 �
� � � � 
�� ��
�� � � � 
 ��
�� ��	 
�� ��
�� � � � 


Your decision which car to buy is based on different criteria. We can use rules
corresponding to normal defaults [Reiter, 1980] in order to represent the properties
which you consider relevant. Let’s assume you like fast and nice cars. On the other
hand, your budget does not allow you to purchase a very expensive car. Moreover,
you have to take your wife’s wishes into account, and she insists on a car which is
known to be safe.

(1) �
	 ��� 
���
 � � � � 	 ��� 
 ��
 � ��� � � � � � � � 
 ��

(2) 	 ��� 
���
 � � � � �
	 ��� 
 ��
 � � � 
 � 
 ��

(3) 	 ��� 
���
 � � � � �
	 ��� 
 ��
 � � � � � 
�� 
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(4) 	 ��� 
 ��
 � � � � �
	 ��� 
 ��
 � 
�� ��	 
 ��


Since buying more than one car is out of the question these different decision
criteria may obviously lead to conflict, and a preference ordering is necessary.
Since there is not much you can do about your restricted budget, rule


 � 

gets

highest preference. Moreover, since your wife is very concerned about safety you
better give


���

higher priority than


���

and


 ��

. Since there is tremendous traffic

on highways in your area,

 ��


is more important to you than

 ��


. This means we
have


���

�


���

�


 ��

�


 ��


We still have to represent that you cannot afford more than one car. A straight-
forward idea would be to use the rule

(0) �
	 ��� 
 � 
 � 	 ��� 
 ��
 � � �� �
with highest priority. Unfortunately, this does not work. The reason is that the high
priority of the instances of this rule would allow us to defeat instances of


���

,

 ��


and

�� 


even if this is not intended. In our example we would obtain two preferred
answer sets, the intended one containing 	 ��� 
 � ��� � � 
 , but also an unintended one
(at least from your wife’s point of view) containing 	 ��� 
�� ��
�� � � � 
 . In the latter,
the instance of


���

with

� � � ��� � � would be defeated by the instance of

 � 


with� � � ��
�� � � � and � � � ��� ��� .
To represent our problem adequately, we have to make sure that the conse-

quences of a certain decision, namely that certain cars are not purchased, do not
have higher priority than the decision itself, that is, the decision to buy a specific
car. Instead of adding the single rule


 � 

we therefore represent our criteria for

buying a car as pairs of rules. To each rule of the form

(r) 	���� 
�� 
 � � � � �
	���� 
�� 
 � � 	 
�� 
 � 
�
�
�� � � 
�� 


we add a second one of the form

(r’) �
	 ��� 
 � 
 � � 	 
�� 
 � 
�
�
�� � � 
�� 
 � 	���� 
���
 � � �� �
with the same priority as


 � 
 . In our example we have to add

(2’) �
	 ��� 
 � 
 � � � 
 � 
 ��
 � 	���� 
�� 
 � � �� �
(3’) �
	 ��� 
 � 
 � � � � � 
�� 
 � 	���� 
���
 � � �� �
(4’) �
	 ��� 
 � 
 � 
�� ��	 
 ��
 � 	���� 
�� 
 � � �� �

and use the following preferences

���

�)� 
���
 � 
�� � 
 � � � 
���
 � 
 � � 
 � �)� 
���
 � 
 � � 
 �

Given this information we obtain a single preferred answer set containing 	 ��� 
 � ��� ��� 
 .
This leaves you somewhat dissatisfied since you really like the Porsche. You

might try to convince your wife that in case a car is both nice and fast you would
have heard about any safety problems. That is, you would like to add the following
pair of rules:
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(1.5) 	 ��� 
���
 � � � � �
	 ��� 
 ��
 � � � � � � � 
 � 
 ��
 � � � � � 
�� 
 ��
�����	 
�� 

(1.5’) �
	 ��� 
 � 
 � � � � � � � 
 � 
���
 � � � � � 
 ��
 � 
�� ��	 
 ��
 � 	���� 
�� 
 � � �� �

If your wife accepts this rule with preferences � 
 � 
 � 
 � 
 � 
�� � 
 � �)� 
���
 � 
�� � 
 � you
are happy since now the single preferred answer set contains 	 ��� 
�� ��
�� � � � 
 .

6 ADDING DISJUNCTION

In this section we will extend our programs to disjunctive statements. In Knowl-
edge Representation it often occurs that we know � � � � � without being sure
which of these propositions hold. In fact, such a disjunction leaves it open: there
might be states in the world where � holds or � or � or any combination thereof.
Nevertheless, we can have information that � implies

�
and � implies

�
and �

implies
�

from which we would like to derive that
�

holds for sure. We will see in
Section 6.5 that even with disjunctive programs without negation we can already
express relations which belong to the second level of the polynomial hierarchy.

Concerning the right semantics for such programs, we are in the same situation
as in Section 3—for positive programs there is general agreement while for dis-
junctive programs with default-negation there exist several competing approaches.

We present in Section 6.1 the generalized closed world assumption introduced
by Minker. In Section 6.2 we show that our definition of WFS from Section 3.3
immediately carries over to the disjunctive case. The original definition of STA-
BLE (Definition 3.4 on page 28) also carries over—we present it in Section 6.3.
We mention some other attempts to define disjunctive semantics in Section 6.4.
Finally we discuss complexity and expressibility in Section 6.5.

6.1 GCWA

GCWA was defined by Minker ([Minker, 1982]) and can bee seen as a refined
version of the CWA introduced by Reiter ([Reiter, 1978]):

Definition 6.1 (CWA).

����� 
��	� 
 � �	�
�
� � �



�

 � �
� �� � �



�

 � �

where �


�



is a ground predicate instance.

That is, if a ground term cannot be inferred from the database, its negation is
added to the closure. A weakness of CWA is that already for very simple theories,
like � � � it is inconsistent. Since neither � � nor � � is derivable, we have to add
them both which makes the whole set inconsistent.

GCWA is defined for positive disjunctive programs consisting of rules of the
form

� 	 � 
�
�
 � � � � � 	 ��
�
�
���� �
by declaring all the minimal models to be the intended ones:
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Definition 6.2 (GCWA).
The generalized closed world assumption GCWA of � is the semantics given by
the set of all minimal Herbrand models of � :

GCWA



�

 ��� Min-MOD



�



Originally, Minker denoted by GCWA(P) a set of negated atoms with the prop-
erty that � � � � 	 �



�

 � � � � � � if and only if MinMOD(P) � � � � � � but we

prefer here to denote by GCWA a semantics in the sense of Definition 2.4 on
page 15.

GCWA is very important because it plays the same role for positive disjunctive
programs as the least Herbrand model � # does for definite programs. In addition
it turns out that some semantics SEM defined for arbitrary disjunctive programs
(i. e. with default-negation) can be characterized, sometimes even implemented,
by reducing them to positive programs and then applying recursively GCWA. Thus
an appropriate procedure iterating GCWA can “implement” such semantics SEM.

Note also that as far as we consider deriving positive disjunctions, we stay en-
tirely within classical logic—a positive disjunction is true in GCWA if and only if
it follows from the program considered as a classical theory. Therefore this task
can be accomplished be methods and techniques developed in theorem proving in
the last 30 years. In fact this was one of the main starting points of the ��� �����	� -
project in Koblenz (see Section 7.2).

Of course, GCWA is nothing else than Circumscription (see Section A.4) for
a special class of theories. Methods developed for CIRC can be used to compute
GCWA. For recent approaches that work in polynomial space see [Niemelä, 1996a;
Niemelä, 1996b].

In Sections 2 and 3 we have introduced the general notion of a semantics and
various principles. Do they carry over to the disjunctive case? Fortunately, the
answer is yes. In addition, GCWA not only satisfies all these properties, it is also
uniquely characterized by them as the next theorem shows (we will introduce these
properties in the next section).

Theorem 6.1 (Characterization of GCWA, [Brass and Dix, 1997]).
Let SEM be a semantics satisfying GPPE and Elimination of Tautologies.

a) Then: SEM



�

 �

Min-MOD ����� � � 
 �



for positive disj. programs � .

I.e. any such semantics is already based on 2-valued minimal models. In
particular, GCWA is the weakest semantics with these properties.

b) If SEM is non-trivial and satisfies in addition14 Isomorphy and Relevance, then
it coincides with GCWA on positive disjunctive programs.

We end this section with the discussion of a well-known example that can not
be handled adequately by Circumscription:

14See Section 7.1 for the precise definitions of Relevance and Isomorphy.
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Example 6.1 (Poole’s Broken Arm).
Usually, a person’s left arm is useable. But if the left arm is broken, it is an
exception. The same statement holds for the right arm. Suppose that we saw Fred
yesterday with a broken arm but we do not remember if it was the left or the right
one. We also know that Fred can make out a cheque if he has at least one useable
arm (he is ambidextrous) but that he is completely disabled if both arms are broken.
Here is the natural formalization:

� � 
�	 � � � 
 ��
 � � � � � � 
 � � 
�	�� ��
� � 
 � � 
�	�� � 
 � � � 
�	 	 
 ��� 
�� 


 ��� � 	 � � � 
 ��
 � � � � � � 
 
 ��� � 	�� � 
� � 
 
 ��� � 	�� ��
 � 
 ��� � 	 	 
 ��� 
�� 

� � 
�	 	�
 ��� 
 � ���	� 
 � 
 ��� � 	 	 
 ��� 
 � ���'� 
 �
� ��� � � � � � � � 
 ��
 � � � 
�	 � � � 
���

� ��� � � � � � � � 
 ��
 � 
 ��� � 	 � � � 
�� 
� � � � 	 � ��� 
 ��
 � � � 
�	 	 
 ��� 
�� 
 � 
 ��� � 	 	�
���� 
���


Of course, we expect that Fred is able to make out a cheque even without know-
ing which arm he is actually using. Also we derive that he is not (completely)
disabled.

For general Circumscription, the problem is to rule out the unintended model
where both arms are broken and Fred is disabled. As we will see later, both D-
WFS and DSTABLE derive that Fred is not disabled but only DSTABLE is strong
enough to also conclude that Fred can make out a cheque.

6.2 D-WFS

Before we can state the definition of D-WFS we have to extend our principles to
disjunctive programs with default-negation. We abbreviate general rules

� 	 � 
�
�
 � � � � � 	 ��
�
�
���� � � � � � � 	 ��
�
�
�� ��� � � � �

by �
� � � � � � � �

�

where
�
��� � � 	 ��
�
�
�� � � � , � � � � ��� 	 ��
�
�
���� � � , � � ��� ��� 	 ��
�
�
�� � � � . We

also generalize our notion of a semantics slightly:

Definition 6.3 (Operator � � , Semantics � � � ).
By a semantic operator � � we mean a binary relation between logic programs and
pure disjunctions which satisfies the following three arguably obvious conditions:

1. Right Weakening: If ��� � � and � � � � 15, then � � � � � .
2. Necessarily True: If

�
� 	�
�� � � � for a disjunction

�
, then � � �

�
.

15I. e. � is a subdisjunction of �
	 .
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3. Necessarily False: If � ���� � � � �
��" � � 
 �



16 for some � -ground atom � ,

then � � � � � � � .

Given such an operator � � and a logic program � , by the semantics � � �



�



of �
determined by � � we mean the set of all pure disjunctions derivable by � � from � ,
i.e., � � �



�

 ��� �	�)� ��� � � � .

In order to give a unified treatment in the sequel, we introduce the following
notion:

Definition 6.4 (Invariance of � � under a Transformation).
Suppose that a program transformation Trans � � �� Trans



�



mapping logic
programs into logic programs is given. We say that the operator � � is invariant
under Trans (or that Trans is a � � -equivalence transformation) iff

� � � ����� Trans



�

 � � �

for any pure disjunction � and any program � .

All our principles introduced below can now be naturally extended.

Definition 6.5 (Elimination of Tautologies, Non-Minimal Rules).
Semantics � � � satisfies a) the Elimination of Tautologies, resp. b) the Elimination
of Non-Minimal Rules iff � � is invariant under the following transformations:

a) Delete a rule
�
��� � � ��� � �

�
with

�
� � � �� � .

b) Delete a rule
�
��� � � ��� � �

�
if there is another rule�

� ��� � � � � � � �
� � with

�
�
� �

, � � �
�
� � , and �

� � � �
�

.

Our partial evaluation principle has now to take into account disjunctive heads.
The following definition was introduced independently by Sakama/Seki and Brass/Dix
([Brass and Dix, 1994; Brass and Dix, 1997; Sakama and Seki, 1994]):

Definition 6.6 (GPPE).
Semantics � � � satisfies GPPE iff it is invariant under the following transformation:
Replace a rule

�
��� � � � � � �

�
where � � contains a distinguished atom � by

the rules
�
�
� �
� � � � ��� � �

� � � ��� ��� � � �� � � � �
�
�
�
� �

�
� � 
 � � � ��
�
�
�� � 


where
�
� � � �� � � � � �

�
� ( � � � ��
�
�
�� � ) are all the rules with � �

�
� .

Note that we are free to select a specific positive occurrence of an atom � and
then perform the transformation. The new rules are obtained by replacing � by
the bodies of all rules � with head literal � and adding the remaining head atoms
of � to the head of the new rule.

16We denote by ���
	�� 	 ��

����
 � � the set of all (instantiations of) atoms ocurring in some rule-head
of � .



52 KNOWLEDGE REPRESENTATION WITH LOGIC PROGRAMS

Here is the analogue of Principle 4 on page 22:

Definition 6.7 (Positive and Negative Reduction).
Semantics � � � satisfies a) Positive, resp. b) Negative Reduction iff � � is invariant
under the following transformations:

a) Replace
�
��� � � � � � �

�
by

�
� � � � ��� �

�
�
� � � � � � �

��" � � 
 �

 � .

b) Delete
�
��� � � � � � �

�
if there is a rule

�
�(��	�
�� � with

�
�
�
�
�

.

Now the definition of a disjunctive counterpart of WFS is straightforward:

Definition 6.8 (D-WFS).
There exists the weakest semantics satisfying positive and negative Reduction,
GPPE, Elimination of Tautologies and non-minimal Rules. We call this semantics
D-WFS.

As it was the case for WFS, our calculus of transformations is also confluent
([Brass and Dix, 1998]).

Theorem 6.2 (Confluent Calculus for D-WFS).
The calculus consisting of our four transformations is confluent and terminating
for propositional programs. I.e. we always arrive at an irreducible program, which
is uniquely determined. The order of the transformations does not matter.

Therefore any program � is associated a unique normalform ���'� 
 �


. The dis-

junctive wellfounded semantics of � can be read off from �'��� 
 �



as follows

� � D-WFS



�



��� there is
� � � with

�
� 	�
�� � � �'��� 
 �



or

there is ��� � ��� � and � �� � � � � �
��" � � 
 ����� 
 �


�
 


Note that the original definition of WFS, or any of its equivalent characteriza-
tions, does not carry over to disjunctive programs in a natural way.

Let us see how Example 6.1 on page 51 is handled by D-WFS. Applying GPPE
and Reduction gives us the following residual program (we consider just the � ���'� -
instantiations):

� � 
�	 � � � 
 � 
 � � � � � � 
 � � 
�	���� 

� � 
 � � 
�	���� 
 � 
 ��� � 	 	�
 ��� 
 � 
 �

 ��� � 	 � � � 
 � 
 � � � � � � 
 
 ��� � 	���� 

� � 
 
 ��� � 	���� 
 � � � 
�	 	�
 ��� 
 � 
 �
� � 
�	 	�
 ��� 
 � 
 � 
 ��� � 	 	 
 ��� 
 � 
 �
� ��� � � � � � � � 
 � 
 � � � � � � 
 � � 
�	���� 

� ��� � � � � � � � 
 � 
 � � � � � � 
 
 ��� � 	���� 


Therefore we derive � � � � � ��� 	�� ��� 
 � 

, because it does not appear in any head of

the residual program. All the remaining atoms are undefined.
Two properties of D-WFS are worth noticing
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� For positive disjunctive programs, D-WFS coincides with GCWA.

� For non-disjunctive programs with negation, D-WFS coincides with WFS.

6.3 DSTABLE

Unlike the wellfounded semantics, the original definition of stable models carries
over to disjunctive programs quite easily:

Definition 6.9 (DSTABLE).� is called a stable model17 of � iff � � Min-Mod



� � 

.

In the last definition � � is the positive disjunctive program obtained from � by
applying the Gelfond/Lifschitz transformation (as introduced before Definition 3.4
on page 28—its generalization to disjunctive programs is obvious).

Analogously to D-WFS the following two properties of DSTABLE hold:

� For positive disjunctive programs, DSTABLE coincides with GCWA.

� For non-disjunctive programs with negation, DSTABLE coincides with STA-
BLE.

What about our transformations introduced to define D-WFS? Do they hold
for DSTABLE? Yes, they are indeed true. The most difficult proof is the one for
GPPE. It was proved in [Brass and Dix, 1999; Sakama and Seki, 1994] indepen-
dently that stable models are preserved under GPPE. Moreover, Brass/Dix proved
in [Brass and Dix, 1997] that STABLE can be almost uniquely determined by
GPPE:

Theorem 6.3 (Characterization of DSTABLE).
Let SEM be a semantics satisfying GPPE, Elimination of Tautologies, and Elimi-
nation of Contradictions. Then: SEM



�

 �

STABLE



�


.

Moreover, DSTABLE is the weakest semantics satisfying these properties.

DSTABLE is stronger than D-WFS as can be seen from Example 6.1 on page 51.
There we have exactly two stable models

1. � � 
�	 � � � 
 � 

, � � � � � 
 � � 
�	���� 


,
� � 
 
 ��� � 	���� 


, � � � 
 ��� � 	 � � � 
 � 

,

� � 
�	 	�
 ��� 
 � 

, ��� � 
 ��� � 	 	 
 ��� 
 � 


, � ��� � � � � � � � 
 � 

, � � � � � � � 	�� ��� 
 � 


,

2. 
 ��� � 	 � � � 
 � 

, � � � � � 
 
 ��� � 	���� 


,
� � 
 � � 
�	���� 


, � � � � � 
�	 � � � 
 � 

,


 ��� � 	 	 
 ��� 
 � 

, � � � � � 
�	 	 
 ��� 
 � 


, � ��� � � � � � � � 
 � 

, � � � � � � � 	�� ��� 
 � 


.

In all of them, Fred is not disabled and can make out a cheque.
Of course, DSTABLE inherits the shortcomings of STABLE such as inconsis-

tency and no goal-orientedness.

17Note that we only consider Herbrand models.
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6.4 Other Semantics

In this section we just want to mention some other disjunctive semantics proposed
in the last years. First, there are semantics differing from GCWA in that they
interpret “ � ” inclusively, rather than exclusively (like GCWA does).

The corresponding semantics is called WGCWA (see [Rajasekar et al., 1989])
and is equivalent to the disjunctive database rule DDR considered in [Ross and
Topor, 1988]. WGCWA has been considered as a more tractable (weaker) vari-
ant of GCWA (from the procedural point of view developed in [Rajasekar et al.,
1989]).

Example 6.2 (Inclusive versus Exclusive).

� � ��� � � ���'� � � � � �
� � � ���

Under an exclusive interpretation, � � � � should be derivable. Indeed, we have
GCWA



� � ��� � � ���	� � 
 ��� � � � � � .

Under an inclusive interpretation however, � � � � should not be derivable. This
is the case for WGCWA: � #�����	��

��������
 ��� � ����� � � . The set of positive derivable
literals is in both cases the same! If we replace the first clause with

�
or � , then

� � � � is derivable.

There are extensions of WGCWA to disjunctive programs with negation: [Sakama
and Inoue, 1993; Ross, 1989; Dix, 1992b; Dix and Müller, 1994a].

There is also the book [Lobo et al., 1992]—the first in-depth-study of dis-
junctive semantics with negation. However, we feel that these semantics have a
drawback in that they are based on rather technical, complicated and not-easy-to-
understand fixpoint definitions. These definitions leave a lot of room for modifica-
tions. But small modifications usually have a tremendous impact on the outcoming
semantics. In addition these semantics do not allow for a proper treatment of defi-
nitional extensions (see Example 7.1 on page 60).

Let us discuss one more time the inclusive/exclusive meaning of � . Chiaki
Sakama noted that inclusive vs. exclusive is not always fully determined by the
underlying semantics. For example in the program � � � , � � � , � � � , GCWA
derives both � and � so it is better to say that GCWA tends to interpret � exclu-
sively unless specified otherwise. But weaker semantics cannot specify exclusive
� . Therefore Sakama proposed in [Sakama, 1989] to consider programs with two
different kinds of semantics: one for inclusive and one for exclusive behaviour.
He defined a corresponding semantics, called possible model semantics PMS (see
also [Sakama and Inoue, 1993; Sakama and Inoue, 1994]). Chan introduced this
same idea under the name possible world semantics in [Chan, 1993]. PMS has the
nice feature that it lies on the first level of the polynomial hierarchy (see[Eiter and
Gottlob, 1993a]).

Other approaches are due to Przymusinski: stationary-semantics ��� � and
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Complexity

1. ord. prog. prop. prog.

(with functions) (no variables)

GCWA

( � is positive)

� : � 0
1-compl.

� � � � : � 0
2-compl.

� : co-NP-compl.

� � � � : � P
2 -compl.

WGCWA

( � is positive)

� : � 0
1-compl.

� � � � : � 0
1-compl.

� : co-NP-compl.

� � � � : linear in � � �
PERFECT

( � is stratified)
arithm.-compl. � P

2 -compl.

PMS not yet studied co-NP-compl

WPERFECT

( � is stratified)
arithm.-compl. � P

2 -compl.

D-WFS � 1
1-compl. over � � � P

2 -compl.

DSTABLE � 1
1-compl. over � � � P

2 -compl.

Table 4. Complexity of Disjunctive Semantics

static-semantics STATIC (see [Przymusinski, 1995; Brass et al., 1999; Brass et
al., 2001a]. STATIC is an improvement of his former stationary semantics that
is very close to D-WFS: in fact it coincides with D-WFS if it is restricted to a
common sublanguage ([Brass et al., 2001a]). This approach also allows us to con-
sider a larger class of programs, namely those that contain � � � 
 �"	$� 
�
�
 � � � 

in their bodies. Such programs are more expressible and therefore turn out to be
even better suited for representation tasks.

Another approach differing from GCWA and WGCWA is considered in [Dix et
al., 1994; Dix et al., 1996a; Bonatti, 1993].

6.5 Complexity and Expressibility

From the complexity point of view GCWA lies between CWA (which is ��� 	 -
complete, see [Apt and Blair, 1990] and general Circumscription ( � 		 -complete,
see [Cadoli et al., 1992]): GCWA is � � � -complete. For propositional programs
we have to distinguish between deriving an atom or a literal. The first problem is
co-NP-complete while the second is even � #� -complete (see [Imielinski, 1991]).

For deriving negated literals � � � � , WGCWA is � � 	 -complete (like CWA) and
therefore “better” than GCWA ( � � � -complete). In the propositional case, WGCWA
is polynomial while GCWA is � � � -complete (both for the derivation of literals of
the form ��� � � ).
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Expressibility

1. ord. prog.

(no functions)

GCWA

( � is positive)

� � P
2

WGCWA

( � is positive)

� � P
2

PERFECT

( � is stratified)
� � P

2

WPERFECT

( � is stratified)
� � P

2

D-WFS � � P
2

DSTABLE � � P
2

Table 5. Expressibility of Disjunctive Semantics

7 WHAT DO WE WANT AND WHAT IS IMPLEMENTED?

In this part we first consider the question Is there an optimal semantics? (Sec-
tion 7.1) and give in Section 7.2 an overview of all the existing implementations
we are aware of. We also describe theoretical approaches that have not yet been
implemented.

7.1 What is the Best Semantics?

Most probably there is no definite answer to the question in the title. Different
knowledge representation tasks may ask for different semantics. Some might be
better suited in special domains than others. What are reasonable properties that
semantics should be checked against?

While many people defined in the last years new semantics by considering only
few examples and appealing to their own personal intuitions they had about how
these few examples should be handled, Dix tried to adjust and investigate abstract
properties known in general nonmonotonic reasoning to semantics of logic pro-
grams ([Dix, 1991; Dix, 1992b; Dix, 1995a; Dix, 1995b]). He showed for example
that WFS is cumulative and rational and that a semantics defined independently by
Schlipf and Dix is the weakest extension of WFS satisfying Cut and Supraclassi-
cality. Figure 3 on the following page illustrates the properties and the relationship
between many semantics (note that � � refers to the knowledge ordering discussed
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PPE

WFS

MP
supp

MP

WGCWA

GWFS,  GDWFS,  WF3

STABLE 

STN

GCWA

:

:

:

DSTABLE

Relevance

Modularity does  not  hold

does  not  hold

does  not  holdDSTABLE ,

<k

ORConverse  of holds 

(inclusive "v")

OR holds 

(exclusive "v")

3WFGDWFS <k

STN

PERFECT

<k <k

GWFS

<k

WD-WFS

REG-SEM

=~ GPPEcumulative  and  rational =~

DWFSD-WFS<k <kWDWFS

WD-WFS
str

=~ cumulative

<k

STABLE

< k

WFS+< k

<
k

WPERFECT<k

Figure 3. Semantics for Disjunctive Programs

in the beginning of Subsection 3.3: a semantics is strictly weaker, i.e. � � , than an-
other semantics if it derives strictly less literals). The distinction between inclusive
and exclusive semantics is perhaps a bit misleading. We refer to the discussion in
Subsection 6.4.

In Figure 4 on the next page normal programs are considered.
Besides such properties (which he calls strong) he defined also weak properties—

these are conditions that any reasonable semantics should satisfy ([Dix, 1992a;
Dix, 1995b]). The principles we have introduced in Sections 2, 3 belong to this
sort. Let us take a closer look into some weak properties already mentioned (but
not yet defined). We start with a property that is satisfied for any semantics we
know:

Definition 7.1 (Isomorphy).
A semantics SEM satisfies Isomorphy, iff

SEM

 � 
 �


�
 � � 
 SEM



�

�


for all programs � and isomorphisms � on the Herbrand base ��# .
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MP

MP
supp

< k

WFS

<
k

<
k

STABLE

< k
rel

STABLE<k
REGÿSEM

WFS+

=~ GPPEcumulative  and  rational =~

WFS ' 

STABLE +<k

<k

Figure 4. Semantics for Normal Programs

Isomorphy formalizes the intuition that a renaming of the program should have
no influence on the semantics, as long as we also apply this same renaming to the
semantics.

The next property gives a formal definition of the notion Goal-Orientedness. To
state this conditions, we need the notion of the Dependency-Graph (Definition 3.2
on page 21) and the two definitions

� ��� ���	� � �	� � ���'� " � 
�� 
 ��� � ��� � depends on � � , and

� �'� � � � � 
 �$� � 

is the set of relevant rules of � with respect to

�
, i.e. the set

of rules that contain an ��� ��� � � � � �	� � ����� " � 
�� 

in their head.

Given any semantics SEM and a program � , it is perfectly reasonable that the
truthvalue of a literal

�
, with respect to SEM(P), only depends on the subprogram

formed from the relevant rules of � with respect to
�

.18 This idea is formalized
by:

Definition 7.2 (Relevance).
The principle of Relevance states:

� � � � � 

�



iff
� � � � � 
 ��� � � � � 
 �$� � 
�
 .

18Let � ��� ��� � ������� �
� 
 	�
	��

��� � " ' � ��� ��� � ������� � � 
 	�
�� � , and � ��� �
��� 
 � ����

��� � " '
� ��� ����� 
 � ��� � .
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Note that the set of relevant rules of a program � with respect to a literal
�

con-
tains all rules, that could ever contribute to

�
’s derivation (or to its nonderivability).

In general,
�

depends on a large set of atoms: � � ���	� � � � � ����� " � 
 � 
 ��� � � � �
depends on � � . But rules that do not contain these atoms in their heads, will never
contribute to their derivation or non-derivation. Therefore, these rules should not
affect the meaning of

�
in � . STABLE does not satisfy this principle. This is due

to the nonexistence of stable models by adding a clause “ � � � � � � ” to a program.
We have already introduced GPPE above. It is an extension of the following

property for non-disjunctive programs:

Definition 7.3 (PPE).
Let � be an instantiated program and let the atom � occur positively in � . Let
� � � � � 	 ��
�
�
 � � � � � � � be all the rules of � with � in their heads.

Any program clause of the form “ ��� � �"� � ��� "���� ” can be replaced by the rules

��� � � � � ��� 	 ��� "����
...

��� � � � � ��� � ��� "����

Note that the rules � � � ��� 	 � 
�
�
 � � � ��� � are not removed (in contrast to the
weak version of PPE). We call the program obtained in this way � � .

The principle of partial evaluation is: � � � 

� �


 � � � � 

�


.

GPPE is obtained from PPE by weakening the assumption that � only occurs
positively. We note that most semantics defined by Minker and his group do not
satisfy this condition:

Example 7.1 (Extension-by-Definition, [Dix, 1991]).
We consider the following two programs:

��� ��� � � � � � � � �� � � � � �
� � �
� � � � ��� � �

��� � � � � � � � � � � �� � � � � �
� � � � ��� � �
� � � � ��� � �

GWFS( ��� � � � ) entails � � � � , because Min-MOD



��� � � � 
 � � � � � � � � � � � �
and thus also (by simple negation-as-failure reasoning) ��� � � , � and

�
. Also Min-

MOD( ��� � � � � )= � � � � � � � � � � � but negation-as-failure can not be applied like
before. Therefore GWFS( ��� � � � � ) does not entail ��� � � , nor � nor

�
.

��� � � � � partial evaluates ��� � � � : the last but one clause was transformed
into another one by expanding the definition of � . Obviously, a semantics should
assign the same meaning to these programs: unfortunately GWFS does not!

The next principle, Modularity, has some similarities with PPE. It enables us
to compute a semantics by modularizing it into certain “subprograms” (formed of
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the relevant rules). The semantics of these modules can be computed first and the
semantics of the whole program can be determined by reducing this program with
literals that were already determined.

Definition 7.4 (Modularity).
Let � � � 	 � � � and for every ��� �
#�� : ��� � � � � 
 �$� �


 �
� � .

The principle of Modularity is: � � � 

�

 � � � � 


� 	 ��� � 
 #�� � � � � 
 .
To illustrate this property, we compare the program

� 	 � � � �
� � �
� � �� � � ���(���
� � � � � �

with the union of the following two programs

� �	 � � � �
� � � �
� � � �
� � � ���(���
� � � � � �

� � � � � � � ��� � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � �

� � is a stratified program and ��� � derives
�
. Concerning � 	 , different in-

tuitions seem possible. One can argue, that � � � � should be derivable, since the
only way to derive � is by using the fourth clause, which means deriving � , which
means deriving � which excludes deriving

�
or � . This is the way, ��	 is handled by

the first version of ��� � . The second (final) version ��� � does not derive � � � � .
But if we apply ��� � to � �	 � � � , then � � � � is derivable. This shows that weak
Modularity is not satisfied: we consider this to be a serious shortcoming.

Typical results of Dix are
� WFS is the weakest semantics satisfying some of these weak properties,

� WFS can be uniquely characterized if some strong properties are added.

We conclude with Table 6 on the next page: an overview of the properties of some
semantics mentioned above.

The bad properties of the PMS (failure of Relevance) stem from the fact that it
was originally based on stable models. But the underlying idea of PMS is to trans-
form disjunctive programs into non-disjunctive ones and then applying a seman-
tics for non-disjunctive programs. By choosing semantics different from STABLE,
PMS inherits other properties (see [Sakama and Inoue, 1994]).

7.2 Query-Answering Systems and Implementations

In this section we give a rough overview of what semantics have been implemented
so far and where they are available. As already explained in Sections 3.5, 6.5,
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Properties of Logic-Programming Semantics

Semantics Reference Domain Taut. GPPE Red. NMin. Rel.
comp Cla78 Nondis. — � � � —
GCWA Min82 Pos. � � � � �
WGCWA RosTop88 Pos. — � � — �
DSTABLEGelLif91 Dis. � � � � —
WFS vGeld. etal88 Nondis. � � � � �
��� � Prz91 Dis. � � � � �
STATIC Prz95 Dis. � � � � �
D-WFS BraDix95 Dis. � � � � �
DWFS Dix92 Dis. � � � � �
Str. WFS Ros92 Dis. — — � — �
WD-WFS BraDix95 Dis. — � � — �
WDWFS Dix92 Dis. — � � — �
PMS SakIno94 Dis. — — � — —

Table 6. Semantics and Their Equivalence-Transformations

our NMR-semantics are undecidable in general. Nevertheless we think it is very
important to have running systems that

1. can handle programs with free variables, and

2. are Goal-Oriented.

To ensure completeness (or termination) we need then additional requirements like
allowedness (to prevent floundering, see Section 3.1) and no function symbols.

Although these restrictions ensure the Herbrand-universe to be finite (and thus
we are really considering a propositional theory) we think that such a system has
great advantages over a system that can just handle ground programs. For a lan-
guage � , the fully instantiated program can be quite large and difficult to handle
effectively. The goal-orientedness (or Relevance as introduced in Section 7.1) is
also important—after all this was one reason of the success of SLD-Resolution.
As noted above, such a goal-oriented approach is not possible for STABLE.

LP-Semantics

Various commercial PROLOG-systems perform variants of SLDNF-Resolution.
Chan’s constructive negation has also been implemented as part of the master-
theses [Ludäscher, 1991; Vorbeck, 1991].

Currently, a library of implemented logic programming systems and interesting
test-cases for such systems is collected as a project of the artificial intelligence
group at Koblenz. We refer to

���������	����
�
�

�������������������������������� "!����#�$�"%"&���'
.
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Non-Disjunctive NMR-Semantics

There are many theoretical papers that deal with the problem of implementation
([Bol and Degerstedt, 1993; Kemp et al., 1991; Degerstedt and Nilsson, 1995;
Fernández et al., 1993]) but only few running systems. The problem of handling
and representing ground programs given a non-ground one has also been adressed
[Kagan et al., 1994; Kagan et al., 1995; Eiter et al., 1997a].

In [Bell et al., 1993; Bell et al., 1994] the authors showed how the problem of
computing stable models can be transformed to an Integer-Linear Programming
Problem. This has been extended in [Dix and Müller, 1993] to disjunctive pro-
grams.

Inoue et. al. show in [Inoue et al., 1992] how to compute stable models by trans-
forming programs into propositional theories and then using a model-generation
theorem prover.

In Berne, Switzerland, a group around G. Jäger has built a non-monotonic rea-
soning system which incorporates various monotonic and non-monotonic logics.
We refer to

���������	������
���
�
�

� ����� ��� � � �
������������%��	��� ��
�� �����
�#� .

Extended logic programs under the well-founded semantics are considered by
Pereira and his colleagues: [Pereira et al., 1993; Alferes and Pereira, 1996]. The���	�������

system, which deals with contradiction removal for paraconsistent pro-
grams in this semantics, can be found in � �������
�	����
�
�

� ������������� ������� � ������ "!����#���%�&���'

too.

In [Niemelä and Simons, 1996], an implementation of STABLE with a special
eye on complexity is described. The resulting system, ��� �����
� � , is publicly avail-
able (see � ���������	����
�
�

��� ��� � ��������
 ��������
���
� � ���� � �#�"����� � �"' ) and seems to out-
perform most other approaches to implementing STABLE. More references can be
found in [Dix et al., 2001a]. Many problems in model checking, planning, diag-
nosis and various other areas can be translated into logic programs in such a way,
that stable models of these programs correspond exactly to solutions of the original
problems.

The most advanced system, ! �#" , has been implemented by David Warren and
his group in Stony Brook based on OLDT-algorithm of [Tamaki and Sato, 1986].
They first developed a meta-interpreter (SLG, see [Chen and Warren, 1996]) in
PROLOG and then directly modified the WAM for a direct implementation of
WFS (XSB). They use tabling-methods and a mixture of Top-Down and bottom-
up evaluation to detect loops. The XSB system is complete and terminating for
non-floundering DATALOG. It also works for general programs but termination is
not guaranteed. This system is described in [Chen and Warren, 1993; Chen et al.,
1995; Chen and Warren, 1995; Swift, 1999], and is available by anonymous ftp
from


����
� �	� � � ����$ � �
� �"��� � ����� �
%&����� . We also refer to [Apt et al., 1999].
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Disjunctive NMR-Semantics

There are theoretical descriptions of implementations that have not yet been im-
plemented: [Fernández and Minker, 1995; Minker and Ruiz, 1995; Costantini and
Lanzarone, 1995]. Also Sakama and Seki describe an approach for first-order dis-
junctive programs ([Sakama and Seki, 1997]).

Here are some implemented systems. Inoue et. al. show in [Inoue et al., 1992]
how to compute stable models for extended disjunctive programs in a bottom-up-
fashion using a theorem prover.

The approach of Bell et. al. ([Nerode et al., 1991]) was used by Dix/Müller to
implement versions of the stationary semantics of Przymusinski ([Przymusinski,
1991]): [Müller and Dix, 1993; Dix and Müller, 1992].

Brass/Dix have implemented both D-WFS and DSTABLE for allowed DATA-
LOG programs ([Brass and Dix, 1995]). An implementation of static semantics is
described in [Brass et al., 1999].

Seipel has implemented in his ��� � ����� -system various (modified versions of) se-
mantics of Minker and his group (

�������
� ��� � ����
�
�

� � ��
��� �# "� � ��� ���#���������$��� ��!����
�
��� � �	�������"� � � ���"!���� � � ����!����� � ��� ).

The ��� � ��� � project (1995–2000, see [Aravindan et al., 1997]) aimed at ex-
tending certain theorem proving concepts, such as restart model elimination and
hyper tableaux calculi, for disjunctive logic programming. This system can be
extended to handle non-monotonic semantics such as D-WFS, STATIC etc. In
particular, an implementation of D-WFS for general disjunctive programs which
works in polynomial space is available ([Brass et al., 2001a]). An extension to
first-order programs is proposed in[Dix and Stolzenburg, 1998]. Information on
the DisLoP project and related publications can be obtained from the WWW page
� �������
�	���$
�
�

��������������� �"����� � ������� � �����	��%"&���' .

The most advanced system however is � � 
 ([Eiter et al., 1997b; Eiter et al.,
1998]). It constitutes a knowledge representation system, based on disjunctive
logic programming, which offers front-ends to several advanced KR formalisms
(developed since the end of 1996). Major emphasis has been put on advanced
knowledge modelling features. The kernel language, which extends disjunctive
logic programming by true negation and integrity constraints, allows for repre-
senting complex knowledge based problems in a highly declarative fashion [Eiter
et al., 1998]. The system runs in polynomial space and single exponential time,
and is able to efficiently recognize and process syntactical subclasses of disjunc-
tive logic programs which have lower computational complexity than the general
case (like, e.g., programs with head-cycle free disjunction or stratified negation).

An important outcome of the Dagstuhl Seminar 9627 ([Dix et al., 1996b])
was to construct a web page to collect and disseminate information on various
logic programming systems that concentrate on non-monotonic aspects (different
kinds of negation, disjunction, abduction etc.). This web page is actively main-
tained at the URL � �������
� ����
�
�
��������������$� ������� � ������ �!����#����%�&��"' . In addition
the Logic Programming and Nonmonotonic Reasoning-conference 1997 ([Dix et



64 KNOWLEDGE REPRESENTATION WITH LOGIC PROGRAMS

al., 1997a]) contained for the first time a special track on implementations and
working systems. Various LP-systems were also demonstrated at NMR 2000
� �������
�	���$
�
�

� �	� � ����!	 �� ����$�� �"�"� � ���  ��	������' .

OUTLOOK

Currently, a new logic programming paradigm seems to emerge: answer set pro-
gramming. The idea is to take the credulous viewpoint under the stable semantics
seriously: the set of all stable models of a program really is the main object de-
scribed by this program. Viewed in this way, even propositional programs can
encode second order objects. Thus when a problem is translated into a logic pro-
gram under the stable semantics, the program itself can be seen as a compact en-
coding of the set of solutions of the original problem. We refer to [Dix, 1998;
Apt et al., 1999; Niemelä, 1999].

Recently, methods of logic programming have also been successfully applied
in the area of multi agent systems [Eiter et al., 2000; Eiter et al., 1999; Dix et al.,
2000b; Dix et al., 2000a; Dix et al., 2001b; Subrahmanian et al., 2000; Dix, 2001].
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[Brass and Dix, 1999] Stefan Brass and J ürgen Dix. Semantics of (Disjunctive) Logic Programs
Based on Partial Evaluation. Journal of Logic Programming, 38(3):167–213, 1999.
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proximations of the Stable Semantics. In Z.W. Ras and M. Zemankova, editors, Proceedings of the
8th Int. Symp. on Methodologies for Intelligent Systems, Charlotte, NC, 1994, LNAI 869, pages
511–520, Berlin, 1994. Springer.
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Eiter, M. Truszczy ński, and W. Faber, editors, Logic Programming and Non-Monotonic Reasoning,
Proceedings of the Sixth International Conference, LNCS, Berlin, September 2001. Springer.

[Dowling and Gallier, 1984] W.F. Dowling and J.H. Gallier. Linear Time Algorithms for Testing the
Satisfiability of Propositional Horn Formulae. Journal of Logic Programming, 1:267–284, 1984.

[Drabent, 1994] Wlodzimierz Drabent. What is failure? A constructive approach to negation. Acta
Informatica, 32(1):27–29, 1994.

[Dung, 1992] P. M. Dung. On the relations between stable and wellfounded semantics of logic pro-
grams. Theoretical Computer Science, 105:7–25, 1992.

[Eiter and Gottlob, 1993a] T. Eiter and G. Gottlob. Complexity Aspects of Various Semantics for
Disjunctive Databases. In Proceedings of the Twelth ACM SIGACT SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS-93), pages 158–167, June 1993.

[Eiter and Gottlob, 1993b] Thomas Eiter and Georg Gottlob. Propositional Circumscription and Ex-
tended Closed World Reasoning are � �� -complete. Theoretical Computer Science, 144(2):231–
245, Addendum: vol. 118, p. 315, 1993, 1993.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob. The complexity of logic-based abduction.
Journal of the ACM, 42(1):3–42, 1995.

[Eiter et al., 1993] Thomas Eiter, Georg Gottlob, and Heikki Mannila. Expressive Power and Com-
plexity of Disjunctive DATALOG. In Proceedings of Workshop on Logic Programming with In-
complete Information, Vancouver Oct. 1993, following ILPS’ 93, pages 59–79, 1993.

[Eiter et al., 1997a] T. Eiter, J. Lu, and V. S. Subrahmanian. Computing Non-Ground Representations
of Stable Models. In J. Dix, U. Furbach, and A. Nerode, editors, Logic Programming and Non-
Monotonic Reasoning, Proceedings of the Fourth International Conference, LNAI 1265, pages
198–217, Berlin, July 1997. Springer.

[Eiter et al., 1997b] Thomas Eiter, Nicola Leone, Cristinel Mateis, Gerald Pfeifer, and Francesco
Scarcello. A Deductive System for Nonmonotonic Reasoning. In J ürgen Dix, Ulrich Furbach,
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Kraus, Fatma Özcan, and Robert Ross. Heterogenous Active Agents. MIT-Press, 2000.

[Swift, 1999] Terry Swift. Using Tabling for nonmonotonic Programming. Annals of Mathematics
and Artificial Intelligence, Special Issue on Logics in Artificial Intelligence, edited by J. Dix and J.
Lobo, 25(3–4):201–240, 1999.

[Tamaki and Sato, 1986] H. Tamaki and T. Sato. OLD Resolution with Tabulation. In Proceedings of
the Third International Conference on Logic Programming, London, LNAI, pages 84–98, Berlin,
June 1986. Springer.

[Tarski, 1955] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal
of Mathematics, 5:285–309, 1955.

[Touretzky et al., 1988] David S. Touretzky, Jeff Horty, and Richmond Thomason. A Clash of Intu-
itions: The current State of Nonmonotonic Multiple IHS. In Proceedings IJCAJ, 1988.

[Touretzky et al., 1991] D. S. Touretzky, R. H. Thomason, and J. F. Horty. A skeptic’s menagerie:
Conflictors, preemptors, reinstaters, and zombies in nonmonotonic inheritance. In Proc. 12th IJCAI,
Sydney, 1991.

[Touretzky, 1986] D. S. Touretzky. The Mathematics of Inheritance. Research Notes in Artificial
Intelligence. Pitman, London, 1986.

[Ullman, 1989a] J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer
Science Press, 1989.

[Ullman, 1989b] Jeffrey D. Ullman. Bottom-up Beats Top-down for Datalog. In Proc. of the Eight
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Philadelphia,
Pennsylvania, pages 140–149. ACM Press, March 1989.

[van Emden and Kowalski, 1976] M.H. van Emden and R.A. Kowalski. The semantics of predicate
logic as a programming language. JACM, 23:733–742, 1976.

[Van Gelder et al., 1988] Allen Van Gelder, Kenneth A. Ross, and J. S. Schlipf. Unfounded Sets and
well-founded Semantics for general logic Programs. In Proceedings 7th Symposion on Principles
of Database Systems, pages 221–230, 1988.

[Vorbeck, 1991] Martin Vorbeck. CNF-Prolog: A Meta-Interpreter for Chan’s Constructive Negation,
Theory. Technical report, Master Thesis, Karlsruhe University (in german), 1991.

[Witteveen, 1991a] Cees Witteveen. Partial Semantics for Truth Maintenance. In J. van Eijck, editor,
Logics in AI, LNAI 478, Berlin, 1991. Springer.

[Witteveen, 1991b] Cees Witteveen. Skeptical Reason Maintenance is Tractable. In J. Allen, R. Fikes,
and B. Sandewall, editors, Proceedings of the second Conference on Principles of Knowledge Rep-
resentation and Reasoning, Cambridge, Massachusetts, pages 570–581. Morgan Kaufmann, 1991.

A APPENDIX

A.1 Predicate Logic

We assume the reader is familiar with the basic notions of predicate logic such as
models, formulae, satisfiability � � and derivability � . There exist several calculi
for first-order predicate logic like Hibert-style, Resolution-style, Gentzen-style or



KNOWLEDGE REPRESENTATION WITH LOGIC PROGRAMS 73

natural deduction-style calculi. One of the main theorems states the completeness
of such calculi with respect to the semantics given by models:

Theorem A.1 (Completeness).
A formula � follows semantically from a theory � (is true in all models of � ) iff
� is derivable from � by means of a particular calculus.

� ��� iff ������
This theorem tells us that we can enumerate all the theorems of a theory, but it

does not provide us with a decision-method to do so. In fact, as we will explain
now, such a method does not exist.

Before turning to undecidability, let us emphasize that in the whole paper we are
dealing with predicate logic without equality “


� ”. But we can try to simulate “

� ”

as follows. We introduce a binary relation-symbol � � and require that it satisfies
the following axioms with respect to an underlying language � :

� � � �

�� � ��


for all function-symbols � of suitable arity:
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for all predicate-symbols � of suitable arity:
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This set, is denoted by EQ % . It can be shown that transitivity and symmetry of
� � follow from these axioms. Let us consider the language of Arithmetic � � 

which contains:

�
(a constant), � (a unary function-symbol), � � (a two-ary relation-

symbol) and � , � (ternary relation-symbols).
We have in mind to axiomatize the theory of natural numbers. Before we do so

we introduce the following abbreviation. The formula � ! � � 
 � 
 stands for

� � 
 � 
 � 
 ����� � 
 � 
 � � �

 � ��� 
�
 


Definition A.1 (Arithmetic Ar ��� � ).
Ar ��� � is the finite set consisting of EQ%���� and the following axioms:
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The set of natural numbers � ��� 
 � ��� � 
 ��� 
 � � 
 � � 
 � � �

 


is a model of
Ar ��� � . Here

� 

is the “true”

�
, �



is the successor-function, �



is addition and
�



is multiplication (viewed as relations), � �



is identity. We note the following
facts:

1. The set � � � �%� ��� � � � � � is recursively enumerable but not recursive.

2. The set � � � � � � � � is not even recursively enumerable.

We even have

Theorem A.2 (Gödel).
No set of formulae containing �%� ��� � and having � as model, is recursive.

Every recursively enumerable set of formulae
�

that contains �&� ��� � and has �as a model, is incomplete, i.e. there is � with: � � � � but
� �� � � . Therefore no

complete axiomatization of � is possible.

Note that, although � formally is not a Herbrand model, it is isomorphic to such
a model. In fact, the axioms immediately imply that there is, up to isomorphy, only
one single Herbrand-model of Ar ��� � with respect to � � 
 . Therefore to determine
if a formula is true in all Herbrand-models of Ar ��� � is just as complicated as the
theory of � itself. � contains, for example, famous statements (or there negation)
from number theory like Goldbach-conjecture or Fermat’s last theorem.

A.2 Complexity Theory

We assume some familiarity with the classes P(problems solvable in determinis-
tic polynomial time) and NP(problems solvable in nondeterministic polynomial
time). The class co-NPis the complement of NP, i.e. a problem is in co-NPif its
complement is in NP. From these sets we can build larger classes by considering
problems solvable in deterministic (resp. nondeterministic) time where we allow
to ask queries to an NP-oracle: i.e. whenever we come up with a subproblem that
lies in NP, we just ask an oracle which immediately gives us the answer (we count
this as just one step). This gives rise to the polynomial hierarchy:

Definition A.2 (Polynomial Hierarchy).
For a complexity class � we denote by P

�
(resp. NP

�
) the class of problems solv-

able in deterministic polynomial (resp. nondeterministic polynomial) time using
� -oracles. Let � � ��� � � ��� P and

� � � 	 ��� NP
���

� � � 	 � � co-NP
���

�
� � 	 ��� P

���

Thus � 	 is NPwith queries to a P-oracle, i.e. � 	�� NP. Similarly we have
�
	 � co-NP and

� 	 � P. A problem is in
� � � P �
	 if it can be solved in

deterministic polynomial time with subcalls to an NP-oracle. Although the index
is 2,

� � is considered to belong to the first level of the polynomial hierarchy.
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The second level of this hierarchy consists of � � , � � and
� � . Here � � � �

NP �
	 : nondeterministic polynomial time with queries to an NP-oracle. � � � �
co-NP ��	 and

� � ��� P
�
�
	

�����

.

It is immediate that

� � � � �
� � � � 	

�
� � � 	

� � � � 	

but it has not yet been proved that the inclusions are proper. That is, it is not known
if the hierarchy collapses at some point or not.

The polynomial hierarchy classifies a subclass of all decidable problems, namely
those that are NP-hard. A problem is called NP-hard if any other problem in NPcan
be polynomially reduced to it. Of particular interest are those problems in a class
� � or � � that are the hardest ones: they are called complete. This means that all
problems in the respective class can be polynomially reduced to such a complete
problem and the problem itself belongs to this class. As an example, to determine
if a formula is valid is co-NP-complete. Thus, satisfiability of a propositional for-
mula is NP-complete.

An analogue hierarchy exists (in fact it was the prototype of the polynomial
hierarchy) for undecidable problems. The notation is analog to the one just intro-
duced. Therefore one often adds a superscript � to the � � and � � which stands
for polynomial (but not for an oracle) to denote the polynomial hierarchy.

To introduce the arithmetical hierarchy we consider the model � of the natural
numbers and � � 
 -formulae. We call such formulae for short arithmetical. We
classify arithmetical formulae according to their quantifier-alternations:

Definition A.3 (Arithmetical Hierarchy).
We call an arithmetical formula ��� � (resp. � � � ) if it is of the form � � 
�
�
 � (resp. � ��
�
�
 � )
where � is quantifier-free and there are at most

 � �
alternations of quantifier-

blocks.
We call a set � of natural numbers � � � -definable, if � is definable by a � � � -

formula. This means that there is a � � � -formula � 
�� 
 with one free variable
�

such
that

� � � � 
 � 
 iff � �(� 

Note that the � �� -definable sets coincide with the � �� -definable ones: they are

exactly the recursive sets. The recursive enumerable sets are the � � 	 -definable ones,
the � � 	 -definable sets are their complements. The set corresponding to the famous
Halting Problem, i.e. the set of all Gödel numbers of those Turing-machines that
stop on their own Gödel number, is � � 	 , so this problem is located very low in the
hierarchy.

The higher a problem lies in the hierarchy, the more undecidable it is. For
example a problem located at the second level, say � � � , can be thought of as being
recursively enumerable using an oracle which solves � � 	 -problems (like the halting
problem).
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Analogously to the polynomial hierarchy we have the notions of � � � -complete
and � � � -complete. As an example, the halting problem is � � 	 -complete.

In contrast to the polynomial hierarchy, the arithmetical hierarchy is strict. We
denote by

�
� � the intersection of � � � � 	 and � � � � 	 . We have

� � � � � � � �
� � � � � � � � 	

� � � � � 	 

Are there more undecidable problems, not yet captured by our hierarchy? Yes,

take for example the theory of � considered in Section A.1. Obviously, the general
problem to determine if an arbitrary formula is true or not in � can not be captured
at a certain level, because the class of formulae in question can have unlimited
alternations of quantifiers. The careful reader may have asked himself what the
superscript

�
means in ��� � ? It just means that we consider just first-order formulae

and we do not allow our arithmetical formulae to contain second-order quantifiers.
This remark gives rise to the analytical hierarchy, denoted by � 	� , � 	� , where

we consider second-order arithmetical formulae. We only count the alternations
of the quantifiers over sets. So any � � � -formula is in � 	� .

Note that for the arithmetical hierarchy the identity � �� � � � 	 � � � 	 holds. The
analogue for the analytical hierarchy does not hold. A counterexample is given
by the theory of the natural numbers � : the set of true sentences in arithmetic is
in � 		 � � 		 but not in � 	� . This set is also called hyperarithmetical for obvious
reasons.

For a more detailed treatment of the topics in this section we refer the reader to
the standard literature: [Balcázar et al., 1988; Garey and Johnson, 1979; Johnson,
1990] and [Papadimitriou, 1994; Odifreddi, 1989] for undecidability.

A.3 Default Logic

Reiter’s default logic [Reiter, 1980] is one of the most prominent nonmonotonic
logics. Default logic assumes knowledge to be represented in terms of a default
theory. A default theory is a pair


 � � 	 

.
	

is a set of first order formulae
representing the facts which are known to be true with certainty.

�
is a set of

defaults the form
� � �
	���
 
 
 ��� �

�
where �"����� and � are classical formulae. We will also frequently use the alterna-
tive, less space consuming notation � : � 	 ��
�
�
���� � / � for this default. The default
has the intuitive reading: if � is provable and, for all � 
 �

� � � � 
 , � � � is not
provable, then derive � . � is called the prerequisite, � � a consistency condition or
justification, and � the consequent of the default. For a default � we use � ��� 
 � 
 ,� � � � 
 � 
 , and � "'� � 
 � 
 to denote the prerequisite, the set of justifications, and the
consequent of � , respectively. Open defaults, i.e., defaults with free variables, are
usually interpreted as schemata representing all of their closed instances.19

19Reiter treats open defaults somewhat differently and uses a more complicated method to define
extensions for them.
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Default theories induce so-called extensions which represent acceptable belief
sets a reasoner may adopt based on the available information. A formula � is called
a skeptical consequence of


 � � 	 

iff � is contained in all extensions of


 � � 	 

.

� is called a credulous consequence of

 � � 	 


iff � is contained in at least one
extension of


 � � 	 

.

We will first present a definition of extensions which is slightly different from
(but equivalent to) Reiter’s original definition. We have found that this definition
is somewhat easier to digest. The original definition will be presented later.

Intuitively,
�

is an extension of

 � � 	 


iff
�

is a deductively closed (in the
sense of classical logic) superset of

	
satisfying the following two properties

1. all defaults that are “applicable” with respect to
�

have been applied,

2. every formula in
�

has a “derivation” from
	

and applicable defaults.

To make the two requirements more precise we introduce the following notion:

Definition A.4 (Default Proof).
Let


 � � 	 

be a default theory, � a set of formulae, and � a formula. A


 � � 	 

-

default proof for � is a finite sequence � � 
 � 	 ��
�
�
���� � 
 of defaults in
�

such
that:

1.
	 � � � "'� � 
 � 	 
 ��
�
�
�� � "'� � 
 � � � 	 
 � � � ��� 
 � � 
 , for �+� � � ��
�
�
 � � � ,

2.
	 � � � "'� � 
 � 	 
 ��
�
�
�� � "'� � 
 � � 
 � � � .

� is valid in � iff � does not contain the negation of a justification of a default in
� .

As usual � denotes classical provability. We now can state the definition of
extensions formally:

Definition A.5 (Extension 1).
Let


 � � 	 

be a default theory.

�
is an extension of


 � � 	 

iff
�

is a deductively
closed superset of

	
satisfying the conditions

1. if � : � 	 ��
�
�
���� � / � � � , � � � and for all i

��
� � � � 
 � �
�
�� � , then �

in
�

, and

2. �
� � implies there is a

 � � 	 


-default proof for � valid in
�

.

Reiter’s equivalent original definition is more compact. It defines extensions as
fixpoints of a certain operator.

Definition A.6 (Extension 2).
Let


 � � 	 

be a default theory, � a set of formulae. Let �



�



be the smallest set
such that:

1.
	 �

�



�


,
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2. � �



�



�

�
 � �



�


,

3. if � : � 	 ��
�
�
���� � / � � � , ��� �



�


, � � � �� �


��
� � � � 
 , then � � �



�


.

�
is an extension of


 � � 	 

iff
� � �


 � 

, that is, if

�
is a fixpoint of � .

We finally give a third, quasi-inductive characterization of extensions, also due
to Reiter. This version is often used in proofs about default logic and makes the
way in which formulae have to be grounded in the premises more explicit. Let

�
be a set of formulae and define, for a given default theory


 � � 	 

, a sequence of

sets of formulae as follows:

�
� �

	
, and for ��� �

� � � 	 � � �

 � � 
 � � � � � : � 	 ��
�
�
���� � / � � � � ��� � � ��� � � �� � � 


It can be shown that
�

is an extension of

 � � 	 


iff
� �������� �

� � . The appear-
ance of

�
in the definition of

� � � 	 is what renders this alternative definition of
extensions non-constructive.

Default theories may have an arbitrary number of extensions (including zero).
Extensions are always consistent if

	
is and if there are no degenerate defaults

without consistency conditions. If
	

is inconsistent then the single extension of
 � � 	 

is the set of all formulae. Extensions are maximal in the following sense:

if
�

is an extension then there is no extension
� � such that

� � � � .

A.4 Circumscription

Circumscription is a method of computing the closure of a theory by restricting
its models to those that have minimal extensions of some of the predicates and
functions. Since its first formulation by McCarthy[McCarthy, 1980], it has taken
on several different forms, including domain circumscription [McCarthy, 1979]
(minimizing the elements in the universe of models), and the most popular and use-
ful version, parallel predicate circumscription [McCarthy, 1980; McCarthy, 1986;
Lifschitz, 1985] which we present here.

Although circumscription was originally presented as a schema for adding more
formulae to a theory (just as Clark’s completion does), here we describe it in terms
of restricting the models of the theory. This view leads to the generalization of cir-
cumscription by model preference theories, and is more useful analytically in relat-
ing circumscription to other nonmonotonic formalisms. More detailed references
to circumscription can be found in Lifschitz’ excellent survey article [Lifschitz,
1994].

Choose a language � , and let
�

be the set of predicate symbols that we are
interested in minimizing, and � another set of predicate symbols whose inter-
pretation we allow to vary across compared models. For example, if we wish to
minimize the number of cannibals, we would let

� � � � � , and � be all other
predicate symbols (the importance of � will be indicated later). Suppose � is a
theory containing the statements � 


� 	 
 , � 

� � 
 , and � 


� �


, but no other assertions
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e1

e2

e3

e4

p1 −> e1
p2 −> e2
p3 −> e3
p4 −> e4

Model M1 Model M2

Figure 5. Two Models of a Theory with the Same Valuation.

using � . Then every model of � will have at least the individuals referred to by
� 	 , � � , and � � with property � . Now consider two models with the same valuation
function from terms to individuals, as in Figure 5. In model � 	 , the extension of
the predicate � includes just the three individuals � 	 , � � , and � � . In model � �
there is a fourth individual, ��� , who is a cannibal. Circumscription would prefer
� 	 to � � , since the extension of � in � 	 is a proper subset of its extension in
� � . Under appropriate assumptions (that these terms refer to different individu-
als), circumscription would yield the result � � 


��� 
 , which is not present in the
original theory.

Let �

�� � � 
 be a first-order sentence containing the symbols

�
and � . Cir-

cumscription prefers models of �

�� � � 
 that are minimal in the predicates

�
,

assuming that these models have the same interpretation for all symbols not in
�

or � . � may contain predicates other than
�

and � ; these are called the fixed
symbols.

To state this more formally, let � 	 and � � be two models of �

�� � � 
 . � � � is

the universe of model � , and � � � � � � is the interpretation of the symbol
�

in � .
Then

Definition A.7 (Minimal Models).

� 	�� ��� � � � iff

�	 
 � 
 � � 	���� � � � � .� 
 � 	 � � � � ���)� � � � � � � for all
�

not in
� � � .� 
 � 	 � � � � � � � � � � � � � � � for all � � � �

.

�
��� �

is a preorder relation (reflexive and transitive) on models, but not nec-
essarily a partial order, since it is not antireflexive. We define the strict order
� 	 � 
 ��� � � � � as � 	 � ��� � � � and not � � � ��� � � 	 . The preferred models of

�

�� � � 
 are those that are minimal according to the strict ordering.


