Skip to main content

Irregularity of prime numbers over real quadratic fields

  • Conference paper
  • First Online:
  • 178 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1423))

Abstract

The concept of regular and irregular primes has played an important role in number theory at least since the time of Kummer. We extend this concept to the setting of arbitrary totally real number fields k o, using the values of the zeta function ζk0 at negative integers as our “higher Bernoulli numbers”. Once we have defined k 0-regular primes and the index of k 0-irregularity, we discuss how to compute these indices when k 0 is a real quadratic field. Finally, we present the results of some preliminary computations, and show that the frequency of various indices seems to agree with those predicted by a heuristic argument.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eric Bach. The complexity of number-theoretic constants. Information Processing Letters, 62:145–152, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Batut, D. Bernardi, H. Cohen, and M. Olivier. User's Guide to PARI-GP. Laboratoire A2X, Université Bordeaux I, version 1.39 edition, January 14, 1995. ftp://megrez.math.u-bordeaux.fr.

    Google Scholar 

  3. J. Buhler, R. Crandall, R. Ernvall, and T. MetsÄnkylÄ. Irregular primes and cyclotomic invariants up to four million. Mathematics of Computation, 59:717–722, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  4. Henri Cohen. Variations sur un thème de Siegel et Hecke. Acta Arithmetica, 30:63–93, 1976.

    MATH  MathSciNet  Google Scholar 

  5. Henri Cohen. A Course in Computational Number Theory, volume 138 of Graduate Texts in Mathematics. Springer-Verlag, 1993.

    Google Scholar 

  6. Pierre Deligne and Kenneth Ribet. Values of abelian L-functions at negative integers over totally real fields. Inventiones Mathematicae, 59:227–286, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  7. Reijo Ernvall. Generalized Bernoulli numbers, generalized irregular primes, and class number. Annales Universitatis Turkuensis. Series A. I., 178, 1979. 72 pp.

    Google Scholar 

  8. Reijo Ernvall. Generalized irregular primes. Mathematika, 30:67–73, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  9. Reijo Ernvall. A generalization of Herbrand's theorem. Annales Universitatis Turkuensis. Series A. I., 193, 1989. 15 pp.

    Google Scholar 

  10. Sandra Fillebrown. Faster computation of Bernoulli numbers. Journal of Algorithms, 13:431–445, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  11. Ralph Greenberg. A generalization of Kummer's criterion. Inventiones Mathematicae, 21:247–254, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  12. Fred H. Hao and Charles J. Parry. Generalized Bernoulli numbers and m-regular primes. Mathematics of Computation, 43:273–288, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  13. David Hayes. Brumer elements over a real quadratic field. Expositiones Mathematicae, 8:137–184, 1990.

    MATH  MathSciNet  Google Scholar 

  14. Joshua Holden. On the Fontaine-Mazur Conjecture for Number Fields and an Analogue for Function Fields. PhD thesis, Brown University, 1998.

    Google Scholar 

  15. Kenneth Ireland and Michael Rosen. A Classical Introduction to Modern Number Theory, volume 84 of Graduate Texts in Mathematics. Springer-Verlag, second edition, 1990. Second Corrected Printing.

    Google Scholar 

  16. Kenneth Ribet. Report on p-adic L-functions over totally real fields. Asterisque, 61:177–192, 1979.

    MATH  MathSciNet  Google Scholar 

  17. Michael Rosen. Remarks on the history of Fermat's last theorem 1844 to 1984. In Gary Cornell, Joseph H. Silverman, and Glenn Stevens, editors, Modular Forms and Fermat's Last Theorem, pages 505–525. Springer-Verlag, 1997.

    Google Scholar 

  18. Carl Ludwig Siegel. Bernoullische Polynome und quadratische Zahlkörper. Nachrichten der Akademie der Wissenschaften in Göttingen, Mathematisch-physikalische Klasse, 2:7–38, 1968.

    Google Scholar 

  19. Carl Ludwig Siegel. Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachrichten der Akademie der Wissenschaften in Göttingen, Mathematisch-physikalische Klasse, 10:87–102, 1969.

    Google Scholar 

  20. Lawrence C. Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate Texts in Mathematics. Springer-Verlag, second edition, 1997.

    Google Scholar 

  21. Don Zagier. On the values at negative integers of the zeta-function of a real quadratic field. L'Enseignement Mathématique II Série, 22:55–95, 1976.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joe P. Buhler

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holden, J. (1998). Irregularity of prime numbers over real quadratic fields. In: Buhler, J.P. (eds) Algorithmic Number Theory. ANTS 1998. Lecture Notes in Computer Science, vol 1423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054884

Download citation

  • DOI: https://doi.org/10.1007/BFb0054884

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64657-0

  • Online ISBN: 978-3-540-69113-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics