Audio System for
Technical Readings

T. V. Raman
Ph.D Thesis

TR 94-1408
January 1994

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

AUDIO SYSTEM FOR TECHNICAL READINGS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

T. V. Raman
May 1994

© T. V. Raman 1994
ALL RIGHTS RESERVED

AUDIO SYSTEM FOR TECHNICAL READINGS

T. V. Raman, Ph.D.
Cornell University 1994

The advent of electronic documents makes information available in more than its
visual form —electronic information can now be display-independent. We describe
a computing system, ASTFR, that audio formats electronic documents to produce
audio documents. ASTER can speak both literary texts and highly technical docu-
ments (presently in (IA)TEX) that contain complex mathematics.

Visual communication is characterized by the eye’s ability to actively access
parts of a two-dimensional display. The reader is active, while the display is passive.
This active-passive role is reversed by the temporal nature of oral communication:
information flows actively past a passive listener. This prohibits multiple views —
it is impossible to first obtain a high-level view and then “look” at details. These
shortcomings become severe when presenting complex mathematics orally.

Audio formatting, which renders information structure in a manner attuned to
an auditory display, overcomes these problems. AGTFR is interactive, and the ability
to browse information structure and obtain multiple views enables active listening.

Biographical Sketch

T.V. Raman was born and raised in Pune, India. He was partially sighted (sufficient
to be able to read and write) until he was 14. Thereafter, he learned with the help
of his brother, who spent a great deal of time as his first reader/tutor.

Three years later, in 1982, he learned Braille. No Braille textbooks were avail-
able, however, so the only source of reading material was his own class notes and
notes prepared from recordings made by his readers. He developed his own sys-
tem for writing math in Braille, since he could not locate the standard Braille
math-codes in India.

One of his first uses of Braille was to mark a Rubik’s cube. He had solved the
first two layers of the cube by pointing to each square and having someone tell him
the color, but the last layer was too difficult to solve in this manner. So his brother
coded the cube colors in Braille. It took him four days to solve the cube the first
time; later, he could solve it in under 30 seconds. Working with the Braille cube
yielded interesting insights. For example, he soon realized that one color should
stay unmarked, since that was easiest to identify. This point can be rephrased in
terms of cues: the absence of a cue is itself a very good cue!

Raman received his B.A. in Mathematics at Nowrosjee Wadia College in Pune
and his Masters in Math and Computer Science at the Indian Institute of Tech-
nology, Bombay. For his final-year project, he developed CONGRATS, a program
that allowed the user to visualize curves by listening to them. In his final year, he
had 13 readers recording texts for three hours per week each. Raman would para-
phrase the recordings to prepare his own notes before recycling the cassette tapes.
This took time, but when exams came around, he would have nothing more to
study. Recording, paraphrasing, and revising is an excellent way to imbibe study
material, and he recommends it to all.

Many of the ideas on audio formatting mathematics come from his experiences
in having math read to him, in dictating math exams and having them written by
a writer, and in listening to RFB (Recordings for the Blind) books on tape.

Raman was introduced to computing in 1987 with an introductory course on
programming in Fortran77. He did his computing with someone behind him to
read the display. A major reason for his desire to do graduate study in the U.S.

111

was the lack of adaptive equipment in India.
Raman joined the PhD program in Applied Math at Cornell in Fall 1989. He

obtained his first talking computer and his guide dog, Aster, in early 1990, both of
which have enriched his life. His own research, which is described in this thesis, has
already made learning and doing PhD research easier for him, and he hopes that
it will open new possibilities for the visually handicapped throughout the world.

iv

ing eyes, ASTER

To my guid

Acknowledgements

I thank my adviser, David Gries, for his help and guidance in turning a collection of
useful ideas into a practicable thesis. His insight into defining a language for audio
formatting proved crucial in realizing my ultimate goal of producing a system that
does for audio documents what systems like (IA)TEX have achieved in the world of
printed documents. I also acknowledge the help and support of the other members
of my committee, John Hopcroft, Dan Huttenlocher, Dexter Kozen, Keith Dennis
and John Guckenheimer.

My former office-mate, M. S. Krishnamoorthy (RPI), was the first to spot the
potential presented by my prototype, TEXTALK. He, along with John Hopcroft,
Keith Dennis and Brian Kernighan (ATT), encouraged me to take up the problem
of producing audio renderings from electronic markup source for my dissertation.
Tim Teitelbaum and Anne Neirynck helped in the initial phase when I was defining
the problem. Bruce Donald was my adviser during the first phase of the project.
We had many useful discussions, and I am grateful to him for convincing me
to implement my system in Lisp-CLOS. Bruce Donald and CSRVL (Computer
Science Robotics and Vision Lab) supported my work with a research assistantship
and equipment.

My summer experience at the Xerox Palo Alto Research Center (PARC) helped
me crystalize many ideas. Dennis Arnon of Xerox PARC pointed out the impor-
tance of working with document logical structure. Xerox Corp. also supported my
work with an equipment grant in spring 1992. Jim Davis (Cornell DRI) advised
me on lexical choice when producing spoken mathematics, helped improve my Lisp
programming skills, and also contributed some Lisp code used to communicate with
the speech synthesizer.

Intel Corp. supported my work with a one-year fellowship for the academic year
1992-93 and a research grant for fall 93. I acknowledge the help and support of my
Intel mentor, Murali Veeramoney, and the other members of his group. Jim Larson
(Intel Architecture Labs) helped me crystalize some of my ideas on user-interface
design during the many stimulating discussions we had over the summer of 1993.

I implemented ASTFR and wrote this thesis using an Intel-486 PC from CSRVL
running IBM Screen Reader. I thank the Center for Applied Mathematics (CAM)

vi

for opening up the world of computing to me by acquiring an Accent speech syn-
thesizer and IBM Screen Reader —Screen Reader, designed by Jim Thatcher (IBM
Watson Research Center), is one of the most robust screen-reading programs avail-
able today. I acknowledge the support of our systems administrators for their
untiring help in my efforts to adapt my setup to use the software available.

I also thank the USENET community for their support in helping configure
the various pieces of software that I use. The Emacs editor and Screen, a public-
domain window manager for ASCII terminals, have together provided a powerful
computing environment that has enabled me to be fully productive. Lack of online
documentation for Lisp was overcome with help from the USENET (comp.lang.lisp)
community. I also thank Nelson Beebee for his invaluable help on (TA)TEX through-
out the writing of this thesis. I thank the authors and publishers of the texts listed
in Table B on page 119 for providing me online access to the electronic sources
—these proved invaluable both as online references as well as test material for
ASTFR.

Taking classes at Cornell was an enjoyable experience, and I thank all the
faculty for their help. Every effort was made to provide online lecture notes —
ASTFR was motivated by the availability of online notes for CS681 taught by Dexter
Kozen. Talking books from Recording for the Blind (RFB) proved invaluable. I
was also ably assisted by a dedicated group of readers. Anindya Basu, Bill Barry
(ORST), Jim Davis, Harsh Kaul and Matthai Phillipose proof-read this thesis and
suggested many useful improvements. I also thank Holly Mingins, Dolores Pendell
(CAM) and the rest of the administrative staff of the CS department for their help
and support. I thank Bert Adams of the Cornell Physical Education program for
helping me stay fit during the last four years and Mike Dillon (NYSCBVH) for
orienting me around the Cornell campus.

Finally, I thank my family for their love and support throughout.

vii

Table of Contents

Audio system for technical readings

1.1 Motivation . . . o« v v v i e e e e e e e e e
1.2 Whatis ASTER? o oo
1.3 Renderingdocumentso
1.4 Extending AGTER o oo oo
1.5 Producing different audio views
1.6 Using the full power of AGTERo v
Recognizing high-level document structure
91 Documentmodels« . oL
2.2 Representing mathematical content
2.3 Constructing high-level representations
2.3.1 Lexical analysis and recognition
2.3.2 Constructing the quasi-prefix form
9.4 Macros introduce new object typeso
2.4.1 How define-text-object works
2.4.2 Rendering instances of user-defined macros
2.5 Unambiguous document encodingso

AFL: Audio Formatting Language

31 OVEIVIEW . « o o o e e e e e e e e e e e e e e e e
3.2 The speech component oo
3.3 Combining different spaces in AFL
3.4 Audio formatting using non-speech audio
3.5 The pronunciation componento
3.6 Some concluding remarkson AFL

Rendering rules and styles

4.1 Rendering rulesandstyleso
4.2 Rendering document content e
4.3 Rendering mathematics. oo e
4.4 Processing the quasi-prefixform
4.5 Descriptive renderingso e

4.6 Variable substitution oo 69

4.7 TFloatingobjects 74

5 Browsing audio documents 78
51 Introduction « v v v i b e 78
5.2 How does browsing work?o 79
5.3 Traversing high-level document structure 82
5.4 Rendering the current selection 85
5.5 Cross-references and bookmarkso 86

6 Related work 89
6.1 Electronicdocuments oo 89
6.2 Summary of work in audio interfaces 93

A Documentation 97
Al Settingup ASTER . . . - - v o o o oo 97
A.2 Therecogmizer.« v o oo v v v i i oo e 98
A.3 AFL . . o e e e e e e e 99
A.3.1 The total audiospace v oo oo 100

A.3.2 The speech component 100

A.3.3 The non-speech audio component 105

A.4 Rendering information structureo 106
A.4.1 Processing the quasi-prefix form 106

A.4.2 Rendering rules and styles 107

A5 The BIOWSET . » o v v v v v e e e e e e e e e e et e e e e e e e e 109
A.6 Some CLOS terminology vt 113

B Accessibility 116
Bibliography 120

ix

List of Tables

2.1

3.1
3.2

B.1

Precedence table for mathematical operators. 32
Implemented MultiVoice parameters 37
AFL statements for generating speech events. 40
Online books read using AGTFR.« oo 119

List of Figures

2.1

2.2

4.1
4.2
4.3
4.4
4.5
4.6

A math object .with attributes. Each of the attributes themselves

contain math objects. oo 18
Extending the recognizer to handle user-defined macros. 25
Rendering only displayed math. 54
Audio dimension used for rendering subtrees. 60
Audio dimension used for rendering superscripts. 60
Audio dimension used for rendering subscripts. 61
Rendering rule for fractions. 64
Descriptive rendering rule for integrals.. 7

xi

Chapter 1

Audio system for technical
readings

1.1 Motivation

Documents encapsulate structured information. Visual formatting renders this
structure on a two-dimensional display (paper or a video screen) using accepted
conventions. The visual layout helps the reader recreate, internalize and browse
the underlying structure. The ability to selectively access portions of the display,
combined with the layout, enables multiple views. For example, a reader can first
skim a document to obtain a high-level view and then read portions of it in detail.

The rendering is attuned to the visual mode of communication, which is char-
acterized by the spatial nature of the display and the eye’s ability to actively access
parts of this display. The reader is active, while the rendering itself is passive.

This active-passive role is reversed in oral communication: information flows
actively past a passive listener. This is particularly evident in traditional forms of
reproducing audio, e.g., cassette tapes. Here, a listener can only browse the audio
with respect to the underlying time-line —by rewinding or forwarding the tape.
The passive nature of listening prohibits multiple views —it is impossible to first
obtain a high-level view and then “look” at portions of the information in detail.

Traditionally, documents have been made available in audio by trained readers
speaking the contents onto a cassette tape to produce “talking books”. Being non-
interactive, these do not permit browsing. They do have the advantage that the
reader can interpret the information and convey a particular view of the structure
to the listener. However, the listener is restricted to the single view present on
the tape. In the early 80’s, text-to-speech technology was combined with OCR
(Optical Character Recognition) to produce “reading machines”. In addition to
being non-interactive, renderings produced from scanning visually formatted text
convey very little structure. Thus, the true audio document was non-existent when
we started our work.

We overcome these problems of oral communication by developing the notion of
audio formatting —and a computing system that implements it. Audio formatting
renders information structure orally, using speech augmented by non-speech sound
cues. The renderings produced by this process are attuned to an auditory display
—audio layout present in the output conveys information structure. Multiple audio
views are enabled by making the renderings interactive. A listener can change how
specific information structures are rendered and browse them selectively. Thus,
the listener becomes an active participant in oral communication.

In the past, information was available only in a visual form, and it required a
human to recreate its inherent structure. Electronic information has opened a new
world: Information can now be captured in a display-independent manner —using,
e.g., tools like SGML!and (IA)TEXz. Though the principal mode of display is still

1Gtandard Generalized Markup Language (SGML) captures information in a layout indepen-
dent form.
2IATEX, designed by Leslie Lamport, is a document preparation system based on the TEX

visual, we can now produce alternative renderings, such as oral and tactile displays.
We take advantage of this to audio-format information structure present in (IA)TEX
documents. The resulting audio documents achieve effective oral communication
of structured information from a wide range of sources, including literary texts and
highly technical documents containing complex mathematics.

The results of this thesis are equally applicable to producing audio renderings
of structured information from such diverse sources as information databases and
electronic libraries. Audio formatting clients can be developed to allow seamless
access to a variety of electronic information, available on both local and remote
servers. Thus, the server provides the information, and various clients, such as
visual or audio formatters, provide appropriate views of the information. Our work
is therefore significant in the area of developing adaptive computer technologies.

Today’s computer interfaces are like the silent movies of the past! As speech
becomes a more integral part of human-computer interaction, our work will become
more relevant in the general area of user-interface design, by adding audio as a new
dimension to computer interfaces.

1.2 What is ASTER?

ASTER is a computing system® for producing audio renderings of electronic doc-
uments. The present implementation works with documents written in the TEX
family of markup? languages: TgX, IATEX and AmS-TEX. We were motivated by
the need to render technical documents, and much effort was spent on design-
ing audio renderings of complex mathematical formulae. However, ASTFR works
equally well on structured documents from non-technical subjects. Finally, the de-
sign of ASTER is not restricted to any single markup language —all that is needed
to handle documents written in another markup language is a recognizer for it.
AGTER recognizes the logical structure of a document embodied in the markup
and represents it internally. The internal representation is then rendered in audio
by applying a collection of rendering rules written in AFL, our language for au-
dio formatting. Rendering an internalized high-level representation enables AGTFR
to produce different views of the information. A user can either listen to an en-
tire document, or browse its internal structure and listen to portions selectively.

typesetting system developed by Donald Knuth.

31n real life, ASTER is a guide-dog, a big friendly black Labrador.

4To most people, markup means an increase in the price of an article. Here, “markup” is a term
from the publishing and printing business, where it means the instructions for the typesetter,
written on a typescript or manuscript copy by an editor. Typesetting systems like (IA)TEX
have these commands embedded in the electronic source. A markup language is a set of means
(constructs) to express how text (i.e., that which is not markup) should be processed, or handled
in other ways.

The rendering and browsing components of AGTER can also work with high-level
representations from sources such as OCR-based document recognition.

This chapter gives an overview of ASTFR, which is implemented in Lisp-CLOS
with an Emacs front-end. The recommended way of using it is to run Lisp as a
subprocess of Emacs. Throughout this chapter, we assume familiarity with basic
Emacs concepts.

Section 1.3 introduces AGTER by showing how documents can be rendered and
browsed. Section 1.4 explains how ASTER can be extended to render newly defined
document structures in (IA)TEX. Section 1.5 gives some examples of changing be-
tween different ways of rendering the same information. Section 1.6 presents some
advanced techniques that can be used when listening to complex documents such
as text-books. AGTER can render information produced by various sources. We
give an example of this by demonstrating how AGTER can be used to interact with
the Emacs calculator, a full-fledged symbolic algebra system.

1.3 Rendering documents

This section assumes that ASTER has been installed and initialized. (See Ap-
pendix A.1 for details of the software and hardware configuration.) At this point,
text within any file being visited in Emacs (in general, text in any Emacs buffer)
can be rendered in audio. To listen to a piece of text, mark it using standard
Emacs commands and invoke read-aloud-region®. This results in the marked text
being audio formatted using a standard rendering style. The text can constitute
an entire document or book; it could also be a short paragraph or a single equation
from a document —AGTER renders both partial and complete documents. This is
the simplest and also the most common type of interaction with ASTER.

The input may be plain ASCIl text; in this case, ASTER will recognize the
minimal document structure present —e.g., paragraph breaks and quoted text.
On the other hand, (IA)TEX markup helps ASTER recognize more of the logical

structure and, as a consequence, produce more sophisticated renderings.

Browsing the document

Next to getting ASTER to speak, the most important thing is to get it to stop speak-
ing. Audio renderings can be interrupted by executing reader-quit-reading®. The
listener can then traverse the internal structure by moving the current selection,
which represents the current position in the document (e.g., current paragraph),
by executing any of the browser commands reader-move-previous, reader-move-next,
reader-move-up or reader-move-down.

5This is an Emacs Lisp command, and in the author’s setup, it is bound to C-z d.
5Bound to C-b q.

To orient the user within the document structure, the current selection is sum-
marized by verbalizing a short message of the form “<contest> is <type>”, e.g.,
moving down one level from the top of the equation

Y - n(n2+ 1) (1.1)
l1<=1<=n
ASTFR speaks the message “left hand side is summation”. The user has the option
of either listening to just the current selection (reader-read-current) or listening to
the rest of the document (reader-read-rest). Chapter 5 gives a detailed overview of
the browser.

Examples of use

ASTER can be used to:

e Read technical articles and books. The files for such documents may be avail-
able on the local system or on the global Internet’. Resources retrieved over
the network can be audio formatted by AJTER, since they are just text in
Emacs buffers. The author has listened to this thesis as well as 10 textbooks
using ASTFR. In addition, ASTER has rendered a wide collection of techni-
cal documents available on the INTERNET, including technical reports and
AMS bulletins.

e Entertain. About 200 electronic texts are available on the INTERNET, includ-
ing the complete works of Shakespeare. The majority of these documents are
in plain ASCII, but the quality of audio renderings produced by ASTER, based
on the minimal document structure that can be recognized, still surpasses
the output of conventional reading machines. Increased availability of elec-
tronic texts marked up in (IA)TgX and SGML will enable better recognition
of document structure and, as a consequence, better audio renderings.

e Proof-read partial and complete documents under preparation. This feature
is specially useful when typesetting complex mathematical formulae. This
thesis has been proof-read using ASTER and the system helped the author lo-
cate several minor errors, including bad punctuation. Thus, though designed
as a system for rendering documents, the flexible design, combined with the
power afforded by the Emacs editor, turns AGIFR into a very useful document
preparation aid.

7ANGE-FTP, an Emacs utility written by Andy Norman, allows seamless access to remote
files. In addition, Emacs clients are available for networked information retrieval systems like

GOPHER, WWW and WAIS.

1.4 Extending ASTER

The quality of audio renderings produced by ASTER depends on how much of the
document logical structure is recognized. Authors of (IA)TEX documents often use
their own macros® to encapsulate specific logical structures. Of course, ASTER does
not initially know of these extensions. User-defined (I#)TEX macros are initially
rendered in a canonical way; typically, they are spoken as they appear in the
running text. Thus, given a document containing

$A \kronecker B$
ASTER would say

cap a kronecker cap b

In this case, this canonical rendering is quite acceptable.

In general, how ASTER renders such user-defined structures is fully customizable.
The first step is to extend the recognizer to handle the new construct, in this case,
\kronecker. Section 2.4 explains the principles on which such extensions are
based. Here, we give the reader a brief example of how this mechanism is used in
practice.

The recognizer is extended by calling Lisp macro define-text-object as follows:

(define-text-object :macro-name "kronecker" :number-args 0
:processing-function kronecker-expand

:object-name kronecker

:supers (binary-operator) :precedence multiplication)

This extends the recognizer; instances of macro \kronecker are represented by
object kronecker. The user can now define any number of renderings for instances
of object kronecker.

AFL (see Chapter 3), our language for audio formatting, is used to define ren-
dering rules (see Chapter 4). Here is one such rendering rule for object kronecker:

(def-reading-rule (kronecker simple)

"Simple rendering rule for object kronecker."
(read-aloud "kronecker product of ")
(read-aloud (first (children kronecker)))
(read-aloud " and ")

(read-aloud (second (children kronecker))))

ASTFR would now speak $A \kronecker B$ as

kronecker product of cap a and cab b.

8Macros permit an author to define new language constructs in TEX and specify how these
constructs should be rendered on paper.

Notice that the order in which the elements of A ® B are spoken is independent of
the order in which they appear on paper. AGTER derives its power from representing
document content as objects and by allowing multiple user-defined rendering rules
for individual object types. These rules can cause any number of audio events
(ranging from speaking a simple phrase, to playing a digitized sound). Once the
recognizer has been extended by an appropriate call to define-text-object, user-
defined macros in (IA)TEX can be handled just as well as any standard (I0)TEX

construct.

To give an example of this, the logo that appears on the first page of this chapter
is produced by (IA)TEX macro \asterlogo. After extending the recognizer with
an appropriate call to define-text-object, we can define an audio rendering rule that
produces a bark when rendering instances of this macro.

1.5 Producing different audio views

ASTER can render a given object in more than one way. The listener can switch
among any of several predefined renderings for a given object to produce different
views, or add to these by defining new rendering rules.

Activating a rendering rule is the simplest way of changing how a given object
is rendered. Statement

(activate-rule <object-name> <rule-name>)
activates rule <rule-name> for object <object-name>. Thus, executing
(activate-rule 'paragraph ’summarize)

activates rule summarize for object paragraph.
Suppose we wish to skip all instances of verbatim text in a ATEX document.
We could define and activate the following quiet rendering rule for object verbatim:

(def-reading-rule (verbatim quiet) nil)

Later, to hear the verbatim text in a document, the previously activated rule quiet
can be deactivated by executing

(deactivate-rule ’verbatim)

Notice that at any given time, only one rendering rule is active for any object.
Hence, we need only specify the object name when deactivating a rendering rule.

Activating a new rule is a convenient way of changing how instances of a specific
object are rendered. Rendering styles enable the user to make more global changes
to the renderings. Activating style style-1 by executing

(activate-style ’style-1)

activates rendering rule style-1 for all objects for which this rendering rule is defined.
All other objects continue to be rendered as before. This is also true when a
sequence of rendering styles is successively activated. Thus, activating rendering
styles is a convenient way of progressively customizing the rendering of a complex
document.

The effect of activating a style can be undone at any time by executing

(deactivate-style <style-name>)
ASTER provides the following rendering styles:

e Variable-substitution: Use variable substitution to render complex mathemat-
ical expressions —see Section 4.6.

o Use-special-pattern: Recognize special patterns in mathematical expressions
to produce context-specific renderings. For example, this enables ASTFR to
speak AT as “cap a transpose”.

o Descriptive: Produce descriptive renderings for mathematical expressions. —
see Section 4.5.

e Simple: Produce a base-level audio notation for mathematical expressions
—see Section 4.3.

o Default: Produce default renderings.
e Summarize: Provide a summary.
o Quiet: Skip objects.

When ASTRR is initialized, the following styles are active, with the leftmost
style being the most recently activated style.

(use-special-pattern descriptive simple default)

Defining a new rendering style is equivalent to defining a collection of rendering
rules having the same name. Note that a rendering style need not provide rules
for all objects in the document logical structure. As explained earlier, activating
a style only affects the renderings of those objects for which the style provides a
rule.

1.6 Using the full power of AGTER

This section demonstrates some advanced features of AGTER that are useful when
rendering complex documents. ASTER recognizes cross-references and allows the
listener to traverse these as hypertext links. Cross-referenceable objects can be

labeled interactively, and these labels can be used when referring to such objects
within renderings. The ability to switch among rendering rules enables multiple
views and allows the listener to quickly locate portions of interest in a document.
By activating rendering rules, all instances of a particular object can be floated
to the end of the containing hierarchical unit, e.g., all footnotes can be floated to
the end of a paragraph. This is convenient when getting a quick overview of a
document. ASTER also provides a simple bookmark facility for marking positions
of interest to be returned to later. Finally, ASTFR can be interfaced with sources
of structured information other than electronic documents. Later, we demonstrate
this by interfacing AGTER to the Emacs calculator.

Cross-references

Cross-reference tags that occur in the body of a document are represented inter-
nally as instances of object cross-reference and contain a link to the object being
referenced. Of course, how such cross-reference tags are rendered depends on the
currently active rule for object cross-reference. The default rendering rule for cross-
references presents the user with a summary of the object being cross-referenced,
e.g., the number and title of a sectional unit. This is followed by a non-speech
audio prompt. Pressing a key at this prompt results in the entire cross-referenced
object being rendered at this point —rendering continues if no key is pressed within
a certain time interval. In addition, the listener can interrupt the rendering and
move through the cross-reference tags. This is useful in cases where many such
tags occur within the same sentence.

Labeling a cross-referenceable object
Consider a proof that reads:
By theorem 2.1 and lemma 3.5 we get equation 8 and hence the result.

If the above looks abstruse in print, it sounds meaningless in audio. This is a
serious drawback when listening to mathematical books on cassette, where it is
practically impossible to locate the cross-reference. AGTER is more effective, since
these cross-reference links can be traversed, but traversing each link while listening
to a complex proof can be distracting.

Typically, we only glance back at cross-references to get sufficient information
to recognize theorem 2.1. AGTER provides a convenient mechanism for building in
such information into the renderings. When rendering a cross-referenceable object
such as an equation, ASTER verbalizes an automatically generated label (e.g., the
equation number) and then generates an audible prompt. By pressing a key at this
prompt, a more meaningful label can be specified, which will be used in preference
to the system-generated label when rendering cross-references.

10

To continue the current example, when listening to theorem 2.1, suppose the
user specifies the label “Fermat’s theorem”. Then the proof shown earlier would
be spoken as:

By Fermat’s theorem and lemma 3.5 we get equation 8 and hence the
result.

Of course, the user could have specified labels for the other cross-referenced objects
as well, in which case the rendering produced almost obviates the need to look back
at the cross-references.

Locating portions of interest

Printed books allow the reader to skim the text and quickly locate portions of
interest. Experienced readers use several different techniques to achieve this. One
of these is to locate an equation or table and then read the text surrounding it.
ASTER provides this functionality to some extent.

We explained in Section 1.5 that different rules can be activated to change the
type of renderings produced. Using this mechanism, we can activate a rendering
rule (see Figure 4.1 on page 54) that speaks only the equations of a document.
When a specific equation is located, rendering can be interrupted and a different
rule activated. Using the browser, the listener can now move the current selection
to the enclosing hierarchical unit (e.g., the containing paragraph or section) and
listen to the surrounding text.

Getting an overview of a document

Rendering rules can be activated to obtain different views of a document. For
instance, activating rendering rule quiet for an object is a convenient way of tem-
porarily skipping over all occurrences of that object —activating quiet for object
paragraph provides a thumb-nail view of a document by skipping all content. This
is similar to skipping complex material when first reading a printed document.

We may skip instances of some objects entirely, e.g., source code; in other
cases, we may merely defer the reading. This notion of delaying the rendering
of an object is aptly captured by the concept of floating an object to the end of
the enclosing unit. Typesetting systems like (I#)TEX permit the author to float
all figures and tables to the end of the containing section or chapter. However,
only specific objects can be floated, and this is exclusively under the control of the
author, not the reader of the document.

AGTER provides a much more general framework for floating objects. Any object
can be floated to the end of any enclosing hierarchical unit —instances of object
footnote can be floated to the end of the containing paragraph. The ability to
float objects is useful when producing audio renderings, since audio takes time,
and delaying the rendering of some objects provides an overview.

11

Rendering using variable substitution

When reading complex mathematics in print, we first get a high-level view of an
equation and then study its various subexpressions. For example, when presented
with a complex equation, an experienced reader of mathematics might view it as
an equation with a double summation on the left-hand side and a double integral
on the right-hand side, and only then attempt to read the equation in full detail.
In a linear audio rendering, the temporal nature of audio prevents a listener from
getting such a high-level view. We compensate by providing a variable-substitution
rendering style. When it is active, ASTER replaces sub-expressions in complex /
mathematics with meaningful phrases. Having thus provided a top-level view,
AGTFR then renders these sub-expressions.

Bookmarks

The browser provides a simple bookmark facility for marking positions of interest to
be returned to later. Browser command mark-read-pointer prompts for a bookmark
name and marks the current selection. Later, the listener can move to the object
at this marked position by executing browser command follow-bookmark with the
appropriate bookmark name.

Interfacing ASTER with other information sources

ASTFR has been presented as a system for rendering documents in audio. More
generally, AGTER is a system for speaking structured information. This fact is
amply demonstrated by the following example, where we interface AGIER to the
Emacs calculator.

The Emacs calculator, a public domain symbolic algebra system, provides an
excellent source of examples for trying out the variable-substitution rendering style.
Creating such an audio interface could be challenging, since the expressions pro-
duced are quite complex. However, the flexible design of ASTFR and the power of
Emacs makes this interface easy. A collection of Emacs Lisp functions encodes the
calculator output in IATEX and places it in an Emacs buffer, which ASTER then
renders.

A user of the Emacs calculator can execute command read-previous-calc-answer
to have the output rendered by ASTER. The expression can be browsed, summa-
rized, transformed by applying variable substitution, and rendered in any of the
ways described in the context of documents.

Chapter 2

Recognizing high-level document
structure

This chapter describes high-level models for document structure and the extraction
of such structure from electronic markup. Our recognizer, a recursive descent
parser written in Lisp, handles documents encoded in the (IA)TEX family of markup
languages: TEX, KTEX and ApmS-TEX.

We present the recognizer as follows. Section 2.1 describes the high-level models
used to capture general document content. Section 2.2 presents the models used to
capture written mathematics. Section 2.3 gives a brief overview of the techniques
used to extract structure from documents conforming to our model. (I#)TEX al-
lows the author of a document to extend the markup language by introducing
user-defined macros. These are modeled as introducing new object types into the
logical structure. Using this model, we describe a flexible method for extending
the recognizer to handle (IA)TEX macros in Section 2.4. Section 2.5 formulates a
few guidelines for unambiguous document encodings based on our experience in ex-
tracting structure from current-day markup documents. Appendix A.2 documents
the external interface to the recognizer.

2.1 Document models

All information has high-level structure, and any physical rendering of a document
is a projection of this structure onto a particular medium, e.g., printed paper. This
high-level structure is itself independent of any particular mode of displaying the
information. We have developed high-level models to represent document structure
as a first step in audio rendering such structured information. The amount of
structural information that can be extracted from the electronic source depends
entirely on how the logical structure is marked up. In the context of OCR-based
document recognition, this is a function of the quality of the visual rendering

12

13

being recognized. In the case of both markup-based and OCR-based document
recognition, the type of structure that can be extracted varies widely.

Intuitively, there is a hierarchy of document types ordered by the amount of
structural information captured, and the ease with which such structure can be
recognized. The amount of structural information varies from plain paragraphs
and sentences marked up with normal punctuation, all the way up to highly tech-
nical documents with footnotes, equations and references. The ease with which the
structure can be extracted ranges from the bitmap on a low-resolution fax, through
to a postscript file, on upward to a highly marked up SGML file. Given a docu-
ment instance, the amount of markup information determines which of these logical
structures we can extract. Given a plain ASCII document, structural information
has to be inferred from the layout of the text, e.g., spacing, vertical alignment and
centering. In the case of encodings in markup languages like (IA)TEX, much of the
logical structure is explicitly present in the markup. Structure based document
encoding systems like SGML provide the potential for extracting the richest pos-
sible logical structure, since they separate the layout process from the encoding of
the document structure.

Our recognizer captures logical structure present in electronic documents en-
coded in the TEX family of languages. An important feature of this recognizer is
that it works on the entire gamut of encodings, ranging from plain ASCII doc-
uments, i.e., no markup, up to documents containing completely unambiguous
encodings of the logical structure. Recognition of document structure is an im-
portant step in producing audio renderings, since the quality of such renderings is
directly determined by the richness of the available structural information.

Our basic document model is the attributed tree. Each hierarchical level of
the document is modeled as a node in this tree. Each node can have content,
children and attributes. In this respect, our document model is no different from
the ones used by SGML!. We now introduce the hierarchy of objects used to
model documents belonging to the article style of IATEX. Since our recognizer is
implemented in CLOS, an object-oriented language, we will use object-oriented
terminology throughout this chapter. Thus, the term object typically refers to a
CLOS object. Further, the terms subclass and subtype are used synonymously.

Class article

An object of class article has attributes such as title, author, abstract and date.
The children of object article represent hierarchical structure, e.g., sectional units.
The prologue of an article is its initial body, i.e., any text occurring before the first
sectional unit. Though it would be cleaner to model such initial text as the first
child, it is more convenient to handle it as an attribute. This is because (IA)TEX

1The sense in which we use the terms content and attributes does not always conform to the
SGML notion of attributes. Children are analogous to the nested element types of SGML.

14

does not specify a complete document type definition (DTD) for articles. This lack
of a fully specified DTD results in many of the objects not being well-defined. All
objects that capture document content have the same basic model as described
above for articles. Note also that JATgX provides separate book and report styles.
These styles differ from the article style mostly in the kind of layout achieved. The
only structural difference is that books and reports in IATEX can have chapters,
while articles cannot. Chapters, sections and subsections are all structures that
capture hierarchical document content and are modeled as sectional units. The
article class of documents defined here therefore encompasses books and reports.

The leaves in the tree structure for documents represent actual content. Plain
text is represented as a list of word objects, and inline mathematics is represented
by object inline math. Each node in the document model is linked to its parent
and siblings, enabling sophisticated browsing. These links are provided by the
document base class.

Thus, class document provides the following slots:

e Parent: Points to parent.
e Next: Next sibling.

e Previous: Previous sibling.

The following is a brief overview of some of the document objects in our model.
All of the following objects inherit from base class document.

¢ Sectional-unit:

— Attributes: Title, section number, sectional unit name, e.g., section,
subsection.

— Children: List of subsectional units.

— Prologue: List of document objects containing text before first sec-
tional unit.

o Paragraph:

— Attributes: None?.
— Children: None.

— Contents: The paragraph contents as a list of document objects.

e Word:

— Attributes: Footnote markers, if any.

2Though we could model centering etc. as attributes, this is inconsistent with the BTpX model
where such attributed paragraphs are more conveniently treated as new object types.

15

— Children: None.
— Contents: String that is the word.

Centered paragraph: subtype of paragraph.
Lists:

— Attributes: None. Enumerated and bulletted lists are subtypes.
— Children: A list of items.

— Contents: None.
Item:

— Attributes: Item number, type of bullet, etc.
— Children: None.

— Contents: Contents of the item as a list of document objects.

Tables:

— Attributes: Footnote markers, captions, etc.
— Children: None.
— Contents: The table elements as a doubly linked list.

Text block: A block of text.

— Attributes: Font information, e.g., emphasized text.
— Children: None.

— Contents: A list of document 6bjects.
Math equation: A numbered mathematical equation.

— Attributes: Equation number, cross reference tags, etc.
— Content: A math object —see Section 2.2.
— Children: None.

Math: Captures both displayed and inline math.

— Attribute: Footnote markers, if any.
— Content: A math object representing content.

— Children: None.

16

Extending document logical structure
IATEX allows the basic model described above to be extended in two ways:

¢ By introducing user-defined macros.

¢ By introducing user-defined environments.

User-defined macros and environments add new object types to the model de-
scribed above. This will be covered in detail in Section 2.4. Suffice it to say for
the present that these new objects will extend the basic model outlined above.

The document model is an attributed tree. Cross references are represented by
object cross reference that contains a pointer to the object being cross-referenced,
and this link can be used to traverse the model. The label of a cross-referenceable
object is represented as an attribute of that object.

2.2 Representing mathematical content

We have designed an internal representation, called the quasi-prefiz form, for han-
dling mathematical content. It captures the full prefix form of mathematical ex-
pressions with operators and simple variables. The tree corresponding to z + y has
root + and children z and y and is represented as such internally.

In addition to linearizing the underlying tree structure, mathematical notation
uses visual attributes such as superscripts and subscripts. We extend the prefix
form to capture such visual attributes —hence the name quasi-prefix.

The key feature of the quasi-prefix form is that it delays the assignment of
semantic interpretation to instances of ambiguous written mathematics. For ex-
ample, the superscripts in an expression are represented not as exponents but as
attribute superscript. This is because the meaning of these visual attributes is con-
text dependent. Assigning one of the several possible interpretations at the recog-
nition step is unduly restrictive in a fully flexible rendering system. For example,
interpreting the superscript as an exponent would result in z? being recognized
correctly, but AT being incorrectly recognized. Further, it would be impossible
to later distinguish between the correct and incorrect interpretations. The quasi-
prefix form captures the mathematical notation itself, leaving the assignment of
semantic interpretation to a later step. By doing so, we can represent content
where we do not have sufficient semantic information. Thus, D;u might denote
the first derivative of u with respect to z in a specific context. The superscript
and subscript might mean something entirely different in another context, e.g., as
in Dpa,. If more contextual information is available at the rendering step, ASTER
can speak AT as “cap a transpose”. In the absence of such contextual information,
the system can still produce an audio notation that maps different features of the
written notation to unique audio dimensions.

17

At the same time, the quasi-prefix form is sufficiently rich to permit renderings
that are independent of the order in which the written symbols appear on paper.
Linear renderings with the rendering-order hard-coded into the system can be
produced with a simpler representation, e.g., a linear list, or even the TEX encoding
itself. This was shown by TEXTALK, a string-substitution based program that
directly transformed TEX source to produce linear renderings [Ram91,Ram92].

As an example, assume for the present that \kronecker? is defined as an infix
binary operator. Given the expression a ® b encoded as $a\kronecker b$, we can
write a rendering rule for object kronecker represented in the quasi-prefix form to
produce “a kronecker product b”. This rendering can be produced by TEXTALK
as well, but a simpler list-like representation restricts the system to this one form
of rendering. Using the quasi-prefix form, AGTFR can also produce “the kronecker
product of a and b”.

Thus, even though the quasi-prefix form captures only the information present
in the TEX encoding, it is still flexible enough to permit more sophisticated pro-
cessing.

This power is necessary in overcoming the passive nature of listening. In pro-
ducing printed output, it is sufficient to produce one view; once the information
has been presented visually, a person reading the material can access it in any
desired order. TEX itself therefore never builds up an internal representation like
the quasi-prefix form; its purpose is to typeset the input according to a fixed set of
rules, and the TgX encoding directly reflects the linear order? in which expressions
appear on paper. Thus, here, the displayed information is passive while the person
reading it is active. The situation in presenting information orally is exactly the
opposite; the information flows past a passive listener. In order to achieve effective
oral communication, it is therefore important to be able to present multiple views
of the information.

Math object encapsulates quasi-prefix form

To represent the quasi-prefix form, we extend the attributed tree model defined
in the previous section with object math object. We define six such attributes
in Figure 2.1 on page 18. A math object may have any or all of these attributes.
An attribute can have a math object as content.

Here are the basic object types in this representation:

e Math object: Basic representation for mathematical content. It is a sub-
type of document.

3TEX does not provide this operator, and it will have to be defined as a macro. We describe
how ASTER is extended to handle such macros in Section 2.4.

4TEX does not itself impose this; one can always write a macro\reverse that displays its
arguments in reverse order.

18

left-superscript accent superscript
N T 7
math object
S LN
left-subscript underbar subscript

Figure 2.1: A math object with attributes. Each of the attributes themselves
contain math objects.

— Attributes: A list of math attribute objects.
— Content: String representing the content.

— Children: List of children. Each child is a math object.

e Math attribute: Captures visual annotations. Superscript, subscript, etc.
have the same structure and are subclasses of class math attribute.

— Name: Attribute name, e.g., superscript, accent.

— Content: Contents of this attribute as a math object.

The structure is recursive. For example, a:'f is represented by the math object
e Content: “x”.
e Children: None.

e Attributes: A list of attribute objects:

— Superscript: Subtype of math attribute.

* Name: Superscript.
* Content: “k”.

— Subscript: subtype of object math attribute.

* Name: Subscript.
*» Content: “1”.

The representation can capture mathematical expressions with arbitrarily com-
plex visual attributes. Let M denote the math object shown above. Then
z

T
z

[kl o

would be represented by math object M ! shown below:

19

e Content: “x”.
e Superscript: M.
. Subscript:’M.

Refining the quasi-prefix form

In Section 2.1, we mentioned that all objects in our document model are linked.
This is true of the objects appearing in the quasi-prefix representation. Each node
in the tree is linked to its parent, as well as to its previous and next siblings. Math
attributes have their parent link set to the object being attributed.

We refine the quasi-prefix form by adding the following subtypes. This makes
recognizing and handling complex mathematical content cleaner.

We first introduce object math subformula, which is used to capture subexpres-
sions appearing within the { and } of (I#)TEX. Object math subformula can be
thought of as being the math equivalent of object text block described in Section 2.1.
It has the following structure:

e Attribute: Visual attributes.

e Content: The mathematical content represented as a math object.

Object math subformula can be intuitively thought of as a dummy object that

encapsulates an expression.
We need object math subformula to represent expressions of the form:

k times
e e
1:+"'+.'L'

z+y+z
N
>0
In representing each of the above examples, object math subformula is essential in
capturing the expression to which the overbrace/underbrace applies.
To enable recognition of written mathematics, tokens have to be appropriately

classified. Our classification of tokens when processing written mathematics is
inspired by appendix F of the TEX Book, [Knu84].

The symbols divide naturally into groups based on their mathematical
class (Ord, Op, Bin, Rel, Open, Close, or Punct), ...

We introduce subtypes of object math object to correspond to each token type:

e Ordinary: TEX ord. Letters, numbers and some miscellaneous symbols.

e Big operator: TEX Op. The large operators that typically appear as unary
operators, e.g., [, 2, U.

20

¢ Binary operator: TEX Bin. The binary operators, e.g., +, U.

¢ Relational operator: TEX Rel, e.g., <, >. We subdivide the TEX Rel class
into relational and arrow operators.

e Arrow operators: Arrows such as /, —.

¢ Mathematical function: Plain TEX and IATEX define sin etc. as macros.
We introduce an object type, mathematical function to represent these.

e Open delimiter: TEX Open, e.g., (, {.
¢ Close delimiter: TEX Close, e.g.,), }.

¢ Math punctuation : TgX Punct —punctuation marks.

Written mathematical notation uses juztaposition as an infix operator. Jux-
taposition, as in a(b + c¢), mostly denotes multiplication, but can mean function
application in certain contexts —f(z +y). We introduce a new operator to repre-
sent juxtaposition, and to define it precisely, we also assert that all mathematical
variables are single letters. Thus, cab is represented as the juxtaposition of three
ordinary objects. This assertion is not specific to our internal representation,
rather, it specifies the concrete syntax used in the electronic markup and reflects
the choice made in the design of TEX. We do allow mathematical variables made
up of more than one character, but these should be clearly marked up as such, e.g.,
as cab = cab, by using \mbox as in $\mbox{cab}=cab$.

The classification of a math object is defined using the following command:

(define-math-classification <token> <classification>)

In certain special cases, the predefined classification shown above can be modified.
A good example of this is recognizing a mathematical text that consistently uses
the letters f, g and h to denote functions. Using the predefined classification, the
recognizer would treat f as object ordinary, leading to f(z) being represented as
the juxtaposition of two objects, namely, f and (z). Declaring f to be a mathe-
matical function by executing

(define-math-classification { mathematical-function-name)

results in occurrences of f being treated as a function. Hence, f(z) is correctly
recognized as a function application. Note that the correct interpretation of such
notation is more important for browsing than for speaking the expression.

2.3 Constructing high-level representations

This section describes the techniques used to extract high-level models from the
(TA)TEX source. A recursive descent parsing algorithm is used to construct the tree

21

structure for document content conforming to the model described in Section 2.1.
This algorithm is modified to construct the quasi-prefix form. These refinements
enable our recognizer to correctly handle ambiguous mathematical notation, as in
the expression sin2z = 2sinzcosz. We use a modified version of the conven-
tional operator-precedence approach for constructing the quasi-prefix form. With
the refinements and heuristics outlined in this section, our algorithm successfully
recognizes written mathematical notation from a wide variety of sources.

2.3.1 Lexical analysis and recognition

Lisp-CLOS was chosen to implement ASTERbecause of its powerful development
environment and object-oriented features. However, Lisp-CLOS lacks tools such
as lexical analyzers and parser generators, e.g., LEX and YACC. As a convenient
way of getting the best of both worlds, we designed a lexical analyzer called lispify
in LEX that outputs the input (IA)TEX source in a canonical list representation.
This list is then read in by a recursive descent parser written in Lisp. The general
form of this list is (token <body>), where <token> identifies the type of content
encapsulated by the list and <body> represents the content. The recognizer returns
a document object that encapsulates the document instance being recognized. For

example, given the (I#)TEX input

\begin{center}
This is a sample document.
* \end{center}
LISPIFY produces
(center "This" "is" "a" "sample" '"document" ".")

LISPIFY handles all of (IA)TEX concrete syntax.

The recursive descent parser examines the token at the front of the input list
and calls a token-specific processing function on the rest of the list. Thus, given
the input (token <body>), the recognizer executes

(funcall (get-parser token) <body>)

The technique described so far is sufficient for handling sections, enumerated
lists and other textual content.

2.3.2 Constructing the quasi-prefix form

The recognizer processes the mathematical content to construct the quasi-prefix
form described in Section 2.2. For example, given the input $a+b$, LISPIFY pro-
duces

(inline-math nan ([Fel} "b")

22

Converting a list as shown above to prefix form is a simple exercise and can be
found in most programming language texts. Our implementationis based on the in-
fix to prefix converter in the text on Common Lisp by Winston and Horn® [HW89).

Function inf-to-pre performs the infix-to-prefix conversion. The input to this
function is a list of math objects that have been processed using the classification
given in Section 2.2. Each element of this list is a math object with content
and attributes but no children. Note that the contents of the attributes are first
converted to quasi-prefix form. For example, when recognizing zx_1 + Tk + ZTk+1,
the input is first converted to a list of five math objects containing the quasi-
prefix representation for rx_y, +, Tk, + and T4 respectively. This is achieved
by collecting the attributes that appear on each math object and processing their
content recursively. Converting such a list to prefix form is now no different than
processing a + b.

We now extend this algorithm to handle ambiguous mathematical notation.
Conventional parsing techniques fail, since written mathematics does not adhere
to a rigorous set of precedence rules. For example, the expression sin 2nT means
sin(2n7) rather than sin(2) * nm, even though function application is normally
assigned the highest precedence. Moreover, sina cosb means sina * cos b rather
than sin(a cos). We have taken many such anomalies into account.

The precedence table for operators Table 2.1 on page 32 lists operators in
ascending order of precedence. Only one operator is shown at each level.

Functions define-precedence and remove-precedence allow the user to modify the
precedence table. These, however, are not for use by a casual user of AGTER, since
changes to the precedence table without a clear understanding of the recognition
algorithm can cause unexpected behavior.

As pointed out earlier, precedence rules alone are not sufficient to handle written
mathematics. We adapt the algorithm by using the following heuristics:

¢ The big operators, e.g., [and ¥, are treated as unary. Everything up to the
next operator of lower precedence than the operator in question is considered
part of the operand of the big operator. Thus, in the expression

Y aijbjkeri =1

1<i<p

1<5<¢

1<k<r
everything up to the = sign is treated as the summand. This technique is
particularly useful in recognizing expressions like z + Y;a; = 0. By our
heuristic, the summation is correctly recognized as the second argument to
the + sign. Further, the summand is terminated by the = sign. The expres-
sion is now equivalent to recognizing a 4+ ¢ = 0, which can be handled by the

standard algorithm.

SWe would like to thank the authors for providing electronic access to the IWTgX source for
their book. It proved an invaluable online Lisp reference while implementing ASTER.

23

e The integral operator can have an optional delimiter, as in fi° fdz. If the dz
is present and is recognizable i.e., has been marked up as \d{x} as opposed
to dx, it is recognized as the closing delimiter; the variable of integration®
is inferred. However, this closing delimiter may not always be available —it
may be encoded ambiguously, as in $\int £ dx$, or the integral itself may
not require a closing dz, as in [f. In the former case, our recognizer treats
the juxtaposition fdz as the integrand. Though this may seem incorrect,
it is in fact exactly what the typeset output means. In the latter case, the
earlier rule (treating the operand of a big operator to be everything up to the
first operator of lower precedence) applies. Hence, we can correctly recognize

z+ [f=0.

e The closing delimiter dz is treated as such only if it occurs at the top level.
Thus, in $\frac{\dx}{x}$, the \dx does not end the integrand. This allows
us to recognize such integrals correctly, but we cannot now infer the variable
of integration. There seems to be no clean solution for this problem. Writ-
ten mathematical notation relies on the fact that dz means 1- dz and the
integrand is therefore %

e Function application is treated as right associative. This results in sina cos b
being interpreted correctly. Since juxtaposition has been assigned a higher
precedence than function application, sina cos b continues to be recognized
correctly. The following equation is a good example of such ambiguous no-
tation —note the complete absence of parentheses:

2sin2nm cos 2nm = sin4nw

e In written mathematics, delimiters do not always match. For example, (0, 1]
denotes a semi-open interval. There are also cases where there is no matching
closing delimiter. The recognizer is aware of such anomalies and handles them
correctly. When it sees an open delimiter, it scans forward to the end of the
math expression for the first matching close delimiter of the same kind. If
one is found, then all of the input up to this point is treated as the delimited
expression. If no matching close delimiter of the same kind is found, then the
first unmatched close delimiter delimits the input. Otherwise, the occurrence
is treated as an unmatched delimiter.

e The ! is one of the few postfix operators used in written mathematics. This
is treated as a special case, and we confirm that the ! is indeed a factorial
sign by making sure that it does not have any attributes. Thus, !x is not a
factorial symbol.

6We have also built in the macros \dx, \dy, ... as special cases.

24

2.4 Macros introduce new object types

The previous sections described our document model and the techniques used to
construct high-level representations given documents that conform to this model.
The TEX macro facility [Knu84,Knu86] allows the definition of new markup com-
mands, making (IA)TEX extensible. Macros permit the author to abstract away
layout details when writing the document. To give an example, the command
\kronecker is not present in (IA)TEX. An author can extend (I#)TEX by defining

\newcommand{\kronecker}{\raisebox{1pt}{\:\otimes\:}}
and then write
$ A \kronecker B$

The definition for \kronecker has extended the markup language. IATEX [Lam86]
itself is a good example of how TEX macros can be used to implement a language
for encoding document structure.

The presence of user-defined macros in documents presents an interesting chal-
lenge for a system like AGTFR. Our goal is to handle books and technical documents
written in (IA)TEX, so recognizing the extended logical structure introduced by the
definition of new macros is therefore essential. In general, macro expansion can
perform any arbitrary computation permitted by the TEX language. Hence, it is
impossible to directly translate the macro expansion into an audio rendering. The
TEX primitives are visual layout operators, and translating a TEX macro directly
into an audio rendering rule would imply a one-to-one mapping between the visual
and audio rendering.

As explained in Section 1.1, visual renderings are attuned to a two-dimensional
display, and audio renderings need to be attuned to the features of an auditory
display. Further, expanding a TEX macro loses structural information; when all
macros in a document have been expanded, only the visual layout remains.

The first step in solving this problem is to represent user-defined macros in our
high-level document model. Producing audio renderings of such instances will then
be equivalent to rendering any other object present in the model.

Macro definitions introduce new object types. Thus, defining \kronecker is
equivalent to adding object kronecker to the set of objects present in the document
model. A macro definition in (IA)TEX has two parts; the first part declares the
macro and its number of arguments; the second part specifies how instances of this
macro call are to be displayed. Translating this to the object-oriented model, the
first part of the macro introduces a new object type; the second part is a rendering
rule for instances of this object.

We first describe how the recognizer is extended to handle instances of the
new object introduced by a macro definition. We specify the following information
about the new macro and the associated object type:

25

Macro name: The name of the macro.
Number of arguments: The number of arguments taken by this macro.

Processing function: Name of a processing function that parses instances of this
macro call. This function is synthesized automatically.

Object name: Name of the new object type introduced by this macro. Calls to
this macro appearing in the document will be converted to instances of this
object type.

Precedence: If the new object is an operator, its precedence is declared in terms
of one of the existing operators. See Table 2.1 on page 32 for the precedence
table.

Super classes: Super classes of this new object. The new object will inherit the
behavior of its super classes. Thus, since \kronecker will be used as a binary
operator, we can declare it as such.

Arguments are called: Contextual names for the arguments of this macro. For
example, the left-hand side of an inference is called its premise, the right-
hand side its conclusion. If \inference is defined as a macro with two
arguments, then we can supply these contextual names to define-text-object.
Such information is used to generate sophisticated audio renderings.

This information is supplied by calling Lisp macro define-text-object. We illus-
trate this in the case of \kronecker in Figure 2.2 on page 25. The Lisp macro itself
will be described in Section 2.4.1.

(define-text-object :macro-name "kronecker" :number-args 0
:processing-function kronecker-expand
:object-name kronecker
:supers (binary-operator) :precedence multiplication)

Figure 2.2: Extending the recognizer to handle user-defined macros.

Note that our recognizer has more information about the new macro than TEX.
This is consistent with the fact that our internal representation is richer than the
TEX representation, as described in Section 2.2.

To summarize, we model a macro as:

e Introducing a new object type, thereby extending the logical structure.

e Specifying how to display objects of this type.

26

A call to the macro in the document creates an object of the type introduced by

that macro.
To continue with the example of kronecker, given

$A \kronecker B$
LISPIFY converts it to

(inline-math "A" (cs "kronecker") "B")

LISPIFY marks the (IA)TEX macro instance as a a control sequence (cs). The
recursive descent recognizer performs the following steps on encountering calls to
macro \kronecker:

e Retrieve the appropriate processing function for this control sequence. In
this case it is the automatically synthesized function kronecker-expand.

e Call this function with as many tokens from the input as is required by
the TEX macro. In this case, this is 0, since macro \kronecker takes no
arguments.

Function kronecker-expand constructs an instance of object kronecker. At this
point, this instance of object kronecker has its children set to null. The input list
is thus converted to a list containing three math objects shown below.

(ordinary kronecker ordinary)

In the above list, only the types of the objects are shown. This list is now processed
by function inf-to-pre to produce the quasi-prefix form. Since class kronecker is a
subclass of binary-operator with the same precedence as multiplication, the result
is a tree with kronecker as the root and with two children, one each corresponding
to A and B.

In the above, A and B may be arbitrarily complex pieces of (IA)TEX markup;
the recursive nature of the recognition algorithm will set the children of object
kronecker to the operands in their processed form. For example, we can now build
an internal representation for the following equation:

(A® B)T = AT® BT
which would be written in (I#)TEX as
\[(A \kronecker B)"{T} = A~{T} \kronecker B"{T} \]

2.4.1 How define-text-object works

Lisp macro define-text-object is quite involved. In this overview, we use the call
shown in Figure 2.2 on page 25 to illustrate the various steps. A call to macro
define-text-object performs the following steps:

27

Define class: Generate the class definition for the new object type. In our exam-
ple, it produces:

(defclass kronecker (binary-operator)
((contents :initform nil :initarg :contents
:accessor contents))
(:documentation 'class kronecker
corresponding to document macro kronecker"))

If the corresponding macro takes n arguments, i.e., :number-args =n in Fig-
ure 2.2 on page 25, then the new object type is defined to have a slot ar-
guments. This slot will hold a list containing the result of processing the n
arguments of the (IA)TEX macro call.

Define processing function: Define a processing function that is called to pro-
cess instances of the (IA)TEX macro call. The function applies the recursive-
descent algorithm to the next number-args tokens from the input stream.
In the current example, the function generated is:

(defun kronecker-expand (&rest arguments)
"automatically generated processing function'
(assert (= (length arguments) 0)

nil "wrong number of arguments")

(let* ((self (make-instance ’kronecker))

(processor (if (math-p self)
#’process-argument-as-math
#’process-argument-as-text)))

(unless (= number-args 0)
(setf (arguments self)
(loop for arg in arguments collect
(funcall processor arg)))) self))

where variable number-args is bound to the value of the number-args key-
word argument in the lexical scope in which the function definition is evalu-
ated. Functions process-argument-as-math and process-argument-as-text apply
the recursive descent parser to their argument; the former parses mathemat-
ical content, the latter processes plain text.

Define accessor methods: If number-args # 0, accessor method argument is
generated. Method argument takes two arguments, an instance o of the new
object and an integer n, and retrieves the result of processing argument n of
the corresponding call to the (IA)TEX macro. It is used in the rendering rules
to retrieve different pieces of a (IA)TEX macro call. See Section 2.4.2 for an
example of its use. Assuming that number-args =n, this method looks like:

28

(defmethod argument ((n integer) (kronecker kronecker))
"automatically generated argument accessor"
(assert (<= n (length (arguments kronecker))) nil
"not that many arguments.")
(elt (arguments kronecker) (- n 1)))

We take advantage of the generic dispatch provided by CLOS and define an
instance of the above method with its arguments reversed —this avoids hav-
ing to remember the order of arguments to function argument when writing
rendering rules.

Define precedence: If the precedence keyword argument is supplied, an appro-
priate call to define-precedence is generated:

(define-precedence ‘'"kronecker" :same-as 'multiplication)

Install macro definition: Finally, the (IA)TEX macro is installed in a global
table that records all known (I#)TEX macros.

(define-tex-macro "kronecker" 0 ’kronecker-expand)

This specifies that the macro being defined takes 0 arguments and calls to it
should be processed using function kronecker-expand.

The call to the Lisp macro define-text-object shown in this example produces 123
lines of Lisp code.

2.4.2 Rendering instances of user-defined macros

Our system of rendering rules will be described in detail in Chapter 4. Such rules
are written in AFL, our language for audio formatting, described in Chapter 3.
Here, we show a small example of such a rendering rule for a user-defined macro. In
the following, we use CLOS generic function read-aloud, described in Chapter 4. For
the present, let us assume that function read-aloud executes the necessary actions
to render its argument. After executing the appropriate call to define-text-object
for the (IA)TgX macro \inference, which is defined as

\newcommand\inference [2] {\frac{#1}{#2}}

to render instances of calls to \inference, we can define

(defmethod read-aloud((inference inference))
"Sample read-aloud method for object inference.
Demonstrates how macro arguments are accessed when rendering.
(read-aloud (argument 1 inference))
(read-aloud "implies")
(read-aloud (argument 2 inference)))

29

If we wished to produce a rendering that inverts the order in which the argu-
ments to macro \inference are rendered, we would define:

(defmethod read-aloud((inference inference))
"Renders inference with arguments reversed."
(read-aloud "We know that ")

(read-aloud (argument 2 inference))
(read-aloud "because")
(read-aloud (argument 1 inference)))

A flexible method for switching among different rendering rules to obtain dif-
ferent “audio views” of the same object is described in Section 4.1.

Defining new environments in KTEX

As outlined in Section 2.1, the document model in IATEX can be extended by
defining new environments. Typically, a new environment is defined to achieve
specific kinds of layout, e.g., for typesetting conjectures and lemmas. We treat
such environment definitions as adding new objects to the document model. The
approach used is very similar to handling user-defined macros, though somewhat
simpler. Object new-environment is used as a base class for all user-defined en-
vironments. The principal difference between objects introduced by user-defined
macros and user-defined environments is that new-environment objects can be la-
beled and later cross referenced. The Lisp macro define-new-environment does the
necessary bookkeeping involved in tracking such cross-referenceable objects. These
properties are provided by the class definition for object new-environment.

2.5 Unambiguous document encodings

We formulate a few guidelines for encoding document content unambiguously based
on our experience in recognizing structure from electronic markup. A document
that adheres to these guidelines makes recognition easier. This is not to say that
we cannot handle documents that do not conform to these guidelines, but our
recognizer can extract more information from such unambiguous encodings. In
general, we feel that electronic encodings conforming to these guidelines will be
easier to maintain and enable multiple uses of the electronic source.

(IA)TEX macros provide an excellent solution to the problem of capturing con-
text specific information in the document encoding. The same visual layout may be
used to display disparate concepts. Encoding instances of such ambiguous notation
by using well-designed macros abstracts out the layout details from the document
encoding, and allows a recognizer to identify the different concepts correctly. We
illustrate this with a concrete example.

30

The visual layout of stacking one mathematical object above another, separated
by a horizontal line (horizontal rule), could be used in several contexts.

e Fraction: h—g@
X=Y,Y=2

e Inference rule: ===

Using the encoding \frac{object-1}{object-2} in both cases makes it impossi-
ble to disambiguate between the various interpretations. When an author wishes
to use the same layout to mean different things, the different occurrences should be
marked up distinctly. For instance, in IXTEX, the author could extend the markup
language by defining two new macros:

1. \newcommand{\fraction}[2]{\frac{#1}{#2}}.

2. \newcommand{\inference}[2]{\frac{#1}{#2}}.

Visual math notation is inherently ambiguous and derives most of its expres-
siveness by freely overloading standard visual-layout operators. (IA)TEX allows
an author complete flexibility in producing mathematical notation by providing
the primitives needed to produce such notation. It would be too restrictive to
insist that the complete semantics of a mathematical object appear explicitly in
the markup, since this would make inventing new notation cumbersome, if not
impossible. So, to an extent, we will never be able to attach semantic meaning to
every object in the document. However, we insist that document encodings should
not use identical markup to represent objects that have the same visual layout
but different meanings. This will allow a recognizer to process the objects in the
document according to context and later permit context specific renderings.

In addition, an electronic encoding should not use (IA)TEX layout operators
within the body of the document. This principle is in fact well-accepted within
the electronic-documents community, but it is not adhered to as often as one
would like. Document encodings that violate this requirement will become fewer
with widespread use of editors that allow an author to easily encode document
structure.

What we are saying is no different than the well-accepted programming stan-
dard that stipulates that function names should reflect the computation they per-
form. A well-designed macro library is like a well-designed subroutine library. To
cite a quotation from the TEX Book:

It is much easier to use macros than to define them. ... The use
of macro libraries, in fact, mirrors almost exactly the use of subrou-
tine libraries for programming languages. There are the same levels of
specialization, from publicly shared subroutines to special subroutines
within a single program, and there is the same need for a programmer
with particular skills to define the subroutines.

PETER BROWN, Macro Processors (1974)

31

To summarize, here are some guidelines for unambiguous document encoding:
e Avoid use of layout operators like \hskip and \vskip in (I#)TgX.

e Use different macros to encode semantically distinct objects that have the
same visual layout.

Electronic document encodings have not always followed these rules, since the
markup was viewed purely as a means of producing the visual rendering. Our
work points out that the same encoding can be put to multiple uses; it is therefore
important to apply principles of good software design to produce well structured

document encodings.

32

Table 2.1: Precedence table for mathematical operators.

|| Level] Description [Examples ||
0 tex-infix-operator 2
1 math-list-operator a,b
2 conditional-operator a:b
3 quantifier Va
4 relational-operator a=b
5 arrow-operator a—b
6 big-operator Yab
7 logical-or aVb
8 logical-and aAhb
9 addition a+b
10 multiplication axb
11 mathematical-function sina
12 juxtaposition ab
13 unary-minus -a

Chapter 3

AFL: Audio Formatting
Language

In Chapter 2, we described the internal representations used to capture document
structure and content. This internal representation is rendered in audio by applying
audio rendering rules written in AFL, a language for audio formatting.

AFL can be viewed as the audio analogue of visual formatting languages like
Postscript. Postscript provides primitives to write visual rendering rules; AFL
provides the corresponding audio rendering primitives. A set of rendering rules
written in AFL manipulate the audio formatter: the logical device that controls
the (possibly) multiple components (e.g., speech and sound) of the audio system.

The audio formatter has state. The kind of voice used, the speed of speech, the
pitch of the voice, the type of sounds generated, etc. are all determined by the cur-
rent state of the formatter. AFL, a block structured language, captures this state in
an AFL program variable, and AFL statements manipulate this state. This chap-
ter describes AFL, which has been implemented as an extension to Common Lisp.
Thus, the AFL programmer can use all the standard constructs provided by Lisp.

Section 3.1, gives an overview of AFL and the design issues that have been
addressed. Section 3.2 presents AFL in its most important setting, as a language
capable of controlling a single component —a speech synthesizer. Section 3.3 de-
scribes how AFL handles an audio formatter with multiple components. Section 3.4
describes AFL in the context of non-speech audio, and Section 3.5 describes the
pronunciation component of our present system. Section 3.6 provides some con-
cluding remarks. Appendix A.3 documents the various AFL statements.

3.1 Overview

An audio formatter (a logical device that produces audio output) can have sev-
eral components, e.g., a speech component and multiple sound components. The
state space of the audio formatter, henceforth referred to as the audio space, is

33

34

modeled as the direct sum (or cross product) of the state spaces of these compo-
nents. Thus, given an audio formatter with n components, its state is an n-tuple
(81,82, "+, Sn), Where s; is the state of component i. Each component subspace is
a multi-dimensional space, with dimensions corresponding to parameters that can
be modified on the corresponding hardware component. In ASTFR we have:

audio-space = speech-space x sound-space X pronunciation.

AFL state variables capture the current and global states of each component
space. The AFL block introduces a new lexical scope with local copies of all the
current component-state variables. For example, variable *current-speech-state*
is the local state of the speech component (in the current block) and variable
global-speech-state is its global state. Each component subspace provides oper-
ators for moving in that subspace. Operators select points (either by name or by
applying transformations to other points) and are used to form AFL expressions.
When a block terminates (prematurely or otherwise), effects of all local assign-
ments made within that block are undone. Components of the audio formatter
may have independent threads of control. AFL provides primitives for synchroniz-
ing these multiple threads. Blocks also serve as implicit cobegin statements; events
started within a block are completed before the block terminates.

AFL rendering rules typically introduce a new block, set the state of the audio
formatter and execute some actions. When the audio rendering has been com-
pleted, the block terminates, resulting in the state of the audio formatter being
reset.

Here is an outline of a typical AFL rendering rule:

(def-reading-rule .
(afl:new-block ... (afl:local-set-state .. D))

3.2 The speech component

We present AFL in the simple context of an audio formatter having a single com-
ponent —a speech synthesizer. The principal purpose of the speech component is
to produce speech —it provides statement

(afl:send-text <text>).

This statement sends <tezt> to the speech device. In addition, the speech compo-
nent provides primitives for producing the right intonational structure. The speech
generation statements are summarized in Table 3.2 on page 40.

The speaking voice can be varied with respect to several speech synthesis pa-
rameters. We define the speech space as a multi-dimensional space, where each
dimension corresponds to a synthesizer parameter. At any given time, the speech

35

state, a point in this space, determines the kind of voice used when speech gen-
eration statements are executed. Changing a voice parameter amounts to moving
in this space. The abstraction of a speech space imposes structure on the set of
discrete states provided by the voice synthesizer. This structure will be used to ad-
vantage in producing renderings of nested information structures. The abstraction
of a speech space also keeps the speech component of AFL hardware independent
—synthesizers vary widely in both the kind of parameters provided as well as how
these are modified.

In any AFL program segment, global variable *global-speech-state* and local
variable *current-speech-state* (modifiable by the program segment) refer to one
of these speech states. When a session of interactive rendering is begun, these
variables are set to the initial state of the audio formatter.

The AFL block
The AFL block
(afl:new-block <statements>)

introduces a local instance of variable *current-speech-state*. This instance is set to
the instance of *current-speech-state* that was referenceable just before execution of
the block, and <statements> are executed within this new local scope. Within the
block, all free occurrences of *current-speech-state* refer to the new local variable.
Further, this local variable describes the state of the audio formatter, so changes
to it immediately affect the voice synthesizer. Upon termination of the block, local
variable *current-speech-state* is destroyed, and the audio formatter is reset to its
pre-existing state. The programmer has no control over the name of this local state
variable and cannot create other local variables using the AFL block.

Execution of statement (terminate-block) causes the currently-executing block
to terminate immediately. A browser can execute this statement when the audio
rendering of an object is to be terminated prematurely because of an interrupt
from the user.

AFL blocks are simpler than the standard block construct provided by full-
blown programming languages. For the purpose of audio formatting, where the
major task is to control the parameters of the speech space, our experience has
shown that the AFL block is more than adequate. Further, our simplified version
of the block prevents rendering rules from making changes to the state of the
audio formatter that could persist after termination of a block. Such changes,
which would be possible with the conventional block, would also complicate the
implementation, which has to maintain the connection between the state of local
variable *current-speech-state* and the voice synthesizer itself.

36

Dimensions for the MultiVoice

In the previous subsection, we mentioned that the speech space has several dimen-
sions, which might depend on the particular voice synthesizer being used. In order
to make our presentation more concrete, we now describe the dimensions that can
be used with the MultiVoice synthesizer.

The MultiVoice provides nine predefined voices, which are modeled as distin-
guished points (constants) in the speech space. We list below the MultiVoice names
for the voices, together with the name used within AFL for them.

Perfect Paul "afl:paul Huge Harry ‘afl:harry
Frail Frank 'afl:frank || Doctor Dennis "afl:dennis
Beautiful Betty ’'afl:betty || Rough Rita "afl:rita
Uppity Ursula 'afl:ursula || Whispering Wendy "afl:wendy

Kit the Kid "afl:kid

A user can save a particular speech state in a variable and refer to it later. For
example, execution of the statement!

(save-point-in-speech-space <name> *current-speech-state¥)
saves the value of *current-speech-state* in program variable <name>. Statement
(get-point-in-speech-space <name>)

retrieves the value saved in variable <name>. Male and female voices are to be
thought of as lying in distinct disconnected components of the speech space, since
it is not possible to move from a male voice to a female voice simply by changing
parameters that affect voice quality?. Switching from a male to a female voice is
thus analogous to changing fonts, while modifying voice quality parameters is like
scaling different features of a specific font.

The MultiVoice parameters (and their default values) that are implemented as
dimensions in AFL are shown in Table 3.1 on page 37. They are: the speech rate.
the volumes of the speaker and the earphone port, five voice-quality parameters,
and seven parameters that deal with pitch and intonation. The column labeled
“step size” will be discussed later on.

We assume that these dimensions are available and can be changed by the
statements that are defined in the next subsection.

AFL statements

We now describe five other AFL statements used to change speech-space variables.
In the descriptions, <point> denotes any expression that evaluates to a point in

1Switching to a new voice causes a slight pause in the speech, so it is inadvisable to change
the speaking voice in the middle of a sentence, since this ruins the intonation.
2This is because female voices use a different noising source.

37

Table 3.1: Implemented MultiVoice parameters

| Dimension [Min [Max [Initial | step size | Units ||

[afl:speech-rate 120] 550 | 180 | 25 | Words/Min ||
Volume
afl:left-volume® 0| 100 50 5 dB
afl:right-volume 0| 100 50 5 dB
Voice quality
afl:breathiness 0{ 100 0 10 DB
afl:lax-breathiness 0| 100 0 25 %
afl:smoothness 0| 100 3 20 %
afl:richness 0| 100 70 10 %
afl:laryngilization 0| 100 0 10 %
Pitch and Intonation
afl:baseline-fall 0 40 18 10 Hz
afl:hat-rise 2| 100 18 10 Hz
afl:stress-rise 1| 100 32 20 Hz
afl:assertiveness 0| 100 100 25 %
afl:quickness 0| 100 0 10 %
afl:average-pitch 50 | 350 122 10 Hz
afl:pitch-range 0| 100 100 10 %

afl-left-volume is the volume of the speaker and afl:right-volume is the volume of
the earphone port when using directional audio.

the speech space, <name> is a variable that may contain a point in the speech
space, and <dimension> is the name of a dimension in speech space.

Statement initialize-speech-space must be executed before any operations are
performed on speech-space variables. It assigns default initial values to AFL vari-
ables *current-speech-state* and *global-speech-state*.

Statements

(local-set-state <point>)
and
(global-set-state <point>)

assign <point> to *current-speech-state* and *global-speech-state* respectively. As-
signment statement local-set-state synchronizes implicitly with events on the speech
component, i.e., execution of the assignment waits until all prior speech events have
completed. This synchronization is necessary, since in general the host computer
controlling the audio formatter executes instructions much faster than the speech

synthesizer.

38

The two statements given above are conventional assignment statements, but
they are only used to change the two AFL state variables.

Languages like TEX and PostScript provide for the application of a global scal-
ing to a rendering. The speech space provides similar functionality. The speech
component uses a final filter with the scale factor for each dimension initially set
to unity, and execution of

(set-final-scale-factor <dimension> <value >)

changes the final scale factor for dimension <dimension> to <value>. As an exam-
ple of its use, interrupting an audio rendering and executing

(set-final-scale-factor afl:speech-rate 2)

and then resuming causes speech to be heard twice as fast. Since the final scaling
is applied to the result of applying user-defined audio-rendering rules, the relative
changes in state effected by rendering rules are preserved.

AFL expressions

We now define AFL expressions that yield a new speech state —these have no side-
effects. The simplest expressions are the names of the nine predefined voices (e.g.,
afl:paul) and the names of variables to which states have been assigned. Using these
expressions to move in the speech space makes the space a collection of discrete
points. In addition, AFL provides four operators for generating new points in
speech space. Each of these “move operators” expresses a change along a single
dimension of the state space. While one move operator would have been sufficient,
having multiple operators makes AFL easier to use. These operators allow us to
express relative changes to the speech state. To give some intuition, they provide
the same ability as scaling a font in the visual setting.
Expression

(move-by <point> <dimension> <offset>)

yields a state that is the same as <point> except that <offset> has been added to
dimension <dimension>. For example, the following statement adds 50% to the
assertiveness of 'afl:paul.

(move-by 'afl:paul afl:assertiveness 50)
Expression
(scale-by <point> <dimension> <factor>)

yields a new state, <point> with the value of dimension <dimension> multiplied
by <factor>.

39

Expression
(move-to <point> <dimension> <value>)

yields state <point> with the value of dimension <dimension> set to <value>.
Expression

(step-by <point> <dimension> <steps>)

yields state <point> with the value for dimension <dimension> changed by <steps>
steps. Each dimension has a default step size, which specifies the minimum change
needed to be perceptible. The step sizes for the MultiVoice parameters are shown
in the “step size” column of Table 3.1 on page 37. Using step-by, one can have the
value of a dimension changed by a multiple of the step size.

The step-size for a particular dimension can also be changed by supplying the
additional keyword afl:step-size to any of the AFL operators. For example, while
the expression

(afl:step-by afl:average-pitch -1.5)
yields a new state with the value of afl:average-pitch changed, the expression
(afl:move-by afl:average-pitch 2 :slot afl:step-size)

yields a new state with the step size for afl:average-pitch changed to 2. Note that
this expression makes use of named parameters in Common Lisp.

The four move operators are shown in their simple form. In general, these
operators take a point and a list of dimension-value pairs specifying how to move.

(<operator> <point> ((<dimy> <val>) - - (<dimg> <valp>)))

Summary of the speech component

Table 3.2 on page 40 summarizes the speech generation statements provided by
the speech component.

The intonational markers we use correspond to the description in [Pie81]. Note
however, that MultiVoice does not provide all of the intonational markers described
therein —see Chapter 5 of the MultiVoice reference manual [Tec91] for a detailed
discussion on intonational markers on MultiVoice.

To conclude this section, here is a summary of the rest of the statements pro-
vided by the speech component. Many of these statements will be extended to
work in other component spaces in the next section.

e Variable: *current-speech-state*
Contains the current speech state.

e Variable: *global-speech-state*
Contains the global speech state.

Table 3.2: AFL statements for generating speech events.

40

[Statement

| Description

(send-text <text>)

Send text.

(speak-number <number>)

Speak number.

(force-speech)

Force speech®.

(pause <msec>)

Insert silence.

(subclause-boundary)

Clause boundary.

(comma-intonation)

Comma intonation.

(exclamation)

exclamation intonation.

(interrogative)

Interrogative intonation.

(high-intonation)

Rising intonation.

(low-intonation)

Falling intonation.

(high-low-intonation)

Rise and fall.

(primary-stress)

Primary stress.

(secondary-stress)

Secondary stress.

(exclamatory-stress)

Exclamatory stress.

ain order to get the sentence-level intonation right, speech synthesizers normally

speak only after the sentence end marker has been received.

Statement: (local-set-state <point>)
Assign value of <point> to *current-speech-state*.

Statement: (global-set-state <point>)
Assign the value of <point> to *global-speech-state*.

Operator: (<op> <pt> <dim> <val>)

Return the state reached by moving along <dim> by <val> from <pt>.

The type of move is specified by <op> where

<op> € {move-by, move-to, scale-by, step-by}

Operator: (gen-op <pt> ’(<op> <dim> <val>) -) Provides the function-

ality of all the other operators.

Statement: (set-final-scale-factor <dim> <factor>)
assign <factor> as the final scale factor for <dim>.

Statement: (initialize-speech-space)
Initialize current and global speech state.

41

Using Common Lisp

Thus far, we have described the parts of AFL that deal directly with manipulat-
ing the speech state. Remember, however, that AFL is implemented on top of
Common Lisp, so all Common Lisp statements may be used when writing AFL pro-
gram segments. Common Lisp has conditional statements, loops, recursion, etc., so
the full power of a conventional language is available. Naturally, were the audio-
rendering system to be implemented on another programming platform, AFL would
have to be fleshed out to include general programming-language statements.

3.3 Combining different spaces in AFL

In general, the output device may consist of any number of speech and non-speech
components, each of which is a named component of the audio formatter. Indi-
vidual components provide operators for moving in the space, etc., as described in
the sections on the individual component spaces. In this section, we describe how
these component spaces are combined to form the total audio space. The AFL
block and assignment statements, which have been described in the context of a
single component, will now be extended to work in the total audio space.

States in AFL

Conceptually, AFL maintains one local and one global state in program vari-
ables *current-total-audio-state* and *global-total-audio-state*. Since it is easier
to think of speech and non-speech audio separately, we treat these as named com-
ponent subspaces with their own state variables. Variables *global-speech-state*
and *current-speech-state* are really components of these states, so that the fully
qualified references to these variables are

global-total-audio-state *global-speech-state*
and
current-total-audio-state . *current-speech-state*

The names of these fields provide the external interface to the individual compo-

nents.
We now describe how components are combined to form the total audio space.

The AFL block is now extended to work in the total audio space; it introduces a
local variable *current-. . .* for each of the components.
Assignment statements

(local-set-state <point>)
and

(global-set-state <point>)

42

assign the value of expression <point> to AFL state variables. The type of <point>
determines the component state variable that will be set. Hence, if there are
several component spaces of a given type, e.g., several speech components, the
fully qualified name of the state variable must also be given, as in

(local-set-state <point> *current-speech-state*)

AFL assignment statements are implemented as generic functions. The space-
specific methods on the assignment statements perform the following steps:

1. Synchronize actions as necessary for this component space.

2. Set the variable that encapsulates the state of this component space to the
value of the expression that is supplied.

3. Call the hardware specific set-state function.

Adding a component space requires some work but can be done easily by some-
one familiar with the implementation. To add a new component space:

1. Define the space and build the underlying implementation.
2. Define the external interface by providing state variables.

3. Provide the space-specific methods on the assignment statements.

Synchronization

The various components of an audio formatter can have separate threads of con-
trol. AFL constructs are needed to synchronize events occurring on these multiple
components. The AFL block serves as a cobegin statement; a block terminates
only after all events started within it have been completed. We now address issues
that come up in designing the AFL block as a cobegin statement.

In a typical audio formatter having a speech and sound component, we may
specify that a sound is to play repeatedly on the sound component while certain
actions are executing on the speech component. The AFL block should not termi-
nate until speech commenced from inside that block has completed —otherwise the
sound will be turned off prematurely in this example. Invariably, with any speech
synthesizer, the speech will fall far behind the host computer that is generating
the text to be spoken. One way to avoid this is to synthesize a word at a time
and wait till it has been spoken, but then all intonation is lost. Text must be sent
in large enough chunks so that intonational cues are retained. This means that
events on other component spaces have to be explicitly synchronized with speech
space events. The AFL block, by serving as a cobegin statement, abstracts these
details from an AFL program.

AFL events are of two types:

43

1. Simple events that execute an action once. Such events are executed by
statements like send-text.

2. Events that repeatedly execute an action. These are executed within an
implicit loop forever statement. The actions executed within the loop forever
statement are typically simple events.

An AFL block terminates only after all simple events commenced within that
block have terminated. Components executing events of the second type (within
a loop forever construct) are said to be busy. AFL blocks keep track of busy com-
ponents, and when a block terminates, all events of the second type commenced
within that block are aborted.

Note that any event on an audio component terminates in the AFL block in
which it was begun. It is not possible to begin an event in one block and have
the block terminate but let the event continue. Upon first glance, this restriction
may seem too strong. However, in many experiments with AGTER, AFL has proven
to be sufficiently expressive. Further, this restriction tremendously simplifies the
semantics of the AFL language and its implementation.

Tracking busy components

To preserve the scope rules of AFL, two tables are used to record busy components.
Table busy-table, with global scope, has one entry for each component, and all its
entries are initially false. When a loop forever event is started on a component, the
corresponding entry in busy-table is set to true. Once a component has become
busy, no other events can be executed on it; but its current state can be changed,
e.g., the pitch of the sound that is playing on a busy component could be changed.

When a block terminates, only loop forever events commenced inside that block
are aborted. To implement this, we introduce table local-busy-table with an entry
for each component. This table is local to the AFL block, and all its entries
are initialized to false. When terminating a block, entries in the local copy of
local-busy-table are checked to determine the components whose loop forever events
are to be aborted.

Thus, when terminating a block, the following steps are performed in sequence:

1. Wait for completion of events on components whose busy-ta ble entry is false.

2. Abort ongoing events on components whose entry in the local-busy-table is
true.

3.4 Audio formatting using non-speech audio

This section describes the design and implementation of the sound component of
the audio formatter. AFL variables *current-audio-state* and *global-audio-state*

44

represent the local and global states of this component. Here, state is a point
in sound space. The sound component provides operators for constructing new
points. AFL assignment statements can be used to set the local and global states
of the sound component in a manner similar to that described in the case of the
speech component. The local scope introduced by AFL blocks also applies to
current-audio-state.

Space of sound cues

We define the space of sound cues just as we defined the speech space. Things
are a little more complicated in this case, because it is not so clear what all the
dimensions are, or even whether the number of dimensions is finite. If by non-
speech audio we mean any audible sound different from intelligible speech, the
space is indeed very large. In order to use non-speech audio effectively, we need to
restrict the space. Thus, in the following, the sound space is a suitably restricted
subspace of the entire space of non-speech audio.

The following enumerates a few of the dimensions we could use in constructing
the non-speech component. Depending on the type of hardware available, we will
have fewer or more dimensions.

1. Amplitude of sound.

2. Pitch (fundamental frequency).

3. Frequency of the different harmonics.
4. Attenuation or resonance.

5. Directionality.

We thus think of a point in this restricted subspace of non-speech audio as a
distinct sound. Each channel of audio output is a point in an instance of such a
subspace. Multiple channels of sound are thus modeled as a direct sum of these
subspaces.

In the following, the sound space and the associated primitives for working
in this space are defined assuming no restrictions on the underlying hardware.
However, ASTRR restricts itself to the simpler setting provided by SPARC audio.

Types of operators

The operators for moving in sound space are similar to those of the speech space
(see Section 3.2). The distinguishing factor here is that sounds have duration, so
the duration needs to be specified. This either takes the form of a simple time
unit or is specified in terms of synchronizing the non-speech audio with events on
other components, e.g., “play this sound until a particular event has completed”.

45

As discussed in Section 3.3, the AFL block serves as the smallest unit of synchro-
nization.

Synchronize and play

Primitive play-once waits until pending events on all audio components have fin-
ished executing before itself executing the event specified by the current point in
sound-space. The action executed by play-once could itself be either synchronous
or asynchronous. In either case, the duration of the event is specified explicitly as
a time unit or implicitly by the nature of the event. Primitive synchronize-a nd-play
is similar, except that the sound to be played is specified explicitly.

AGTRR typically uses this primitive to generate sounds to cue the beginning of
the rendering of certain objects.

Play until told to stop

Another type of synchronization primitive specifies that an event is to be repeated
until certain other events occur. Thus, we can specify that a certain sound-space
event is to be repeated for the duration of the rendering of an object. Here, the
duration of the event is specified in terms of other events taking place in the
audio formatter. We can picture this as turning on a conceptual switch on the
audio player and turning it off at a later time. This is achieved by executing a
loop-forever statement, as discussed in Section 3.3; such an event is terminated
when the block in which it appears is ready to terminate.

Select a sound to play

In an implementation where we can actually move along all the dimensions in the
sound space, the new state would be specified using move operators. However, in
a more primitive implementation environment where this is not possible, selecting
a sound or moving to a new state amounts to picking one of a set of distinguished
points. Thus, the space becomes discrete.

Examples of use

Here are some examples of the use of non-speech audio cues in ASTER.

The following rendering rule for itemized lists uses a sound cue to denote an
“audio bullet”, with the sound cue being played before rendering each item of the
list. The synchronization provided by play-once ensures that the sound cue for
each item in the list is played only after the text from the previous item has been

spoken.

(def-reading-rule...
(afl:new-block (loop for item in items do

46

(afl:synchronize-and-play
*item-cuex)
(read-aloud item))))

An audio highlight is a sound that repeats in the background while text is
being spoken. The rendering rule given below audio highlights the abstract in a
technical document using the non-speech primitives. The rule locally selects a
sound and turns on the non-speech audio. This results in the sound repeating in
the background. Since this action of turning on the audio is executed within the
block commenced in the rendering rule for the abstract, the sound is automatically
turned off once the abstract has been spoken. Further, since the AFL block is an
implicit cobegin statement, it terminates only after all speech activity commenced
inside the block have been completed —as a consequence the audio highlight is
turned off only after the entire abstract has been spoken.

(def-reading-rule .
(afl:new-block
(afl:local-set-state
(afl:select-sound afl:*current-audio-statex *abs-cue*))
(afl:local-set-state
(afl:switch-on afl:*current-audio-state*)) ...))

Implementation details
The following constraints are imposed by the implementation environment:

1. ASTER currently uses only digitized sounds. The non-speech space is therefore
discrete.

9. Sparc audio allows only one channel of output, since there is only one sound
chip.

The current implementation of non-speech audio uses the Lucid multitasking
facility. It also uses the Lucid extensions to Common Lisp for interfacing with
existing UNIX utilities and programs written in C.

Audio Player

Object audio-player provides an abstraction barrier between the external interface
to the sound space and the underlying implementation —the interface only deals
with object audio-player. An audio-player consists of a sound to be played, a function
to play the sound and a switch to turn the sound on and off. Once an audio player
object has been created, its sound can be changed, and it can also be turned on
and off using its switch. The external interface to the sound space maps points
to the state of the underlying audio player. We can think of object audio-player

47

as the underlying hardware for the sound component of the audio space. Thus,
we could have one audio-player for each audio component. Object audio-player is
implemented so as to allow the use of other sound generation software that becomes
available in the future. Given a function f that generates sound when called with
argument s, we can create an audio player with function f and sound s to create
a uniform interface to the underlying sound generation software.

AFL blocks and assignments are used to manipulate the external representation
of the state of the subspace, and the underlying hardware representation, in this
case the audio-player, is automatically updated.

Using other sound generation tools

Object audio-player allows the use of other sound generation tools with little mod-
ification to the AFL primitives. PLAY-NOTES is a simple C program that plays
a short beep when called with a set of arguments. A foreign function interface to
this C function provides the Lisp counterpart:

(play-notes &key(volume length tone decay octave))
To create an audio player that uses the above to generate sounds, we can write:

(setf *play-notes*
(make-instance ’audio-player :function #’play-notes
:sound (list :octave "5c")))

We can now turn this object on or off, and also change the note that is played by
executing:

(setf (player-sound *play-notes*)
(1ist :octave "6c"))

Finally, we can implement a new component space around this audio-player
object, called the play-notes-space, with its local state etc., and manipulate it
using AFL constructs.

3.5 ~ The pronunciation component

The pronunciation of a word depends on the type of text being spoken. For in-
stance, when speaking mathematics, it is important to say “cap gamma” when
rendering I, whereas when rendering plain text, upper case is not significant. Sim-
ilarly, if an English document contains French phrases, these should be pronounced
according to French pronunciation rules.

We model pronunciation as a separate component of the audio formatter. The
corresponding state space is discrete, with points representing different pronunci-
ation modes. Notice that the pronunciation component does not correspond to a
separate hardware component of the audio formatter.

48

Example of use

Consider a document that describes the career of the French mathematician Galois.
The introduction might read:

The works of Galois were, as we know, published in 1846 by Liouville,
in the Journal de Mathématiques. It is unfortunate that we do not have
the works of the great geometer as an isolated body; thus, the Société
mathématique decided to reprint Galois’ papers.

Speaking this using pronunciation rules of English results in poor audio formatting.
However, if the French phrases are clearly marked up, as in

\french{Soci\’et\’e math\’ematique}

we can write a rendering rule for object french (See Section 2.4 for details on new
objects) as follows:

(defmethod read-aloud ((object french))
"Render a french phrase. "
(afl:new-block (afl:local-set-state :french)
(read-aloud (argument 1 object))))

This results in the French phrases being pronounced correctly.

In our implementation, the effect of executing (afl:local-set-state :french) is to
change the internal pronunciation table that is consulted before pronouncing a
word —if the pronunciation for a phrase is not defined in this table, then the word
will be mispronounced. In speaking French phrases, this is only an intermediate
solution; to truly speak a different language, we need a multilingual speech synthe-
sizer. However, AFL programs remain the same, no matter what the underlying
implementation and hardware.

3.6 Some concluding remarks on AFL

The simplicity of the AFL block

In conventional programming languages, the block is used to introduce local vari-
ables, whose names and types are chosen by the programmer. In AFL, however,
the block is used only to introduce a fixed set of local variables, each of which is
associated with the current state of one component of the audio formatter.

The main advantage we gain from having a restricted block is simplicity of
semantics and implementation. The hardware for each audio component is associ-
ated with a particular variable. The contents of the variable can be changed only
through an explicit assignment to the variable, so it is not difficult in the imple-
mentation to change the hardware when the variable is assigned. AFL is optimized

49

so that only those dimensions that are actually changed have to be conveyed to
the hardware. Further, the particular variable that is associated with the hardware
can be switched only by the beginning and end of execution of a block. Hence, the
implementation of the change of association is simple.

The use of the restricted block leads to the rule that any audio event that is
begun in a block must end in that block. In all our extensive experimentation and
experience with AGTER, we have not found this rule to be an inconvenience. In
fact, we have been helped by the imposed discipline. On the other hand, taking
advantage of a more flexible block (were it available) would only complicate the
structure and interaction of various rendering rules, in much the same way that
the goto can cause undue complications in conventional programming languages.

Consider, for example, rendering rules of the following form:

e A rendering rule for fractions that plays a sound when speaking the numerator
and denominator.

o A rendering rule for superscripts that turns off the non-speech audio without
first declaring a local non-speech audio state.

When rendering a fraction whose numerator is a superscripted variable, e.g., -f_*_z—l,
the above would result in the sound getting turned off by the superscript rendering
rule, and this effect would persist for the rest of the rendering of the fraction. Since
rendering rules are written for specific object types, many of which can be nested,
the above kind of bug would become common if component states were not local
to every block.

External and internal direct sums

To give a slightly different intuition, there are two views of a vector space formed
by the direct sum of component spaces. These views are isomorphic when the
space is considered as an algebraic entity. In the internal view, the space is made
up of several subspaces that we see as individual components. The components
are entities in themselves and can be directly manipulated. This is the view taken
by conventional block structured languages. No local copies of state variables are
made automatically. The block is internal to the state space.

In the external view, the vector space is a single entity having different com-
ponents, and it is this latter view that AFL blocks have of the total audio space.
Blocks are external to the state space, so whenever a new block is executed, the
local state is a copy of the current point in the total space. This means that local
copies are made of all the component states.

50

Benefits of AFL

The benefits of ASTER, which is based on AFL, cannot be experienced by reading a
printed document such as this; rather, one has to listen to ASTER in action. Suffice
it to say that ASTFR has made it possible for the author to read current technical
material, on his own, that otherwise would not have been available for years (if at
all). Further, he can tune the renderings (see Chapter 4) to his liking and can even
browse the document. Thus, AFL represents a gigantic step forward in providing
the tools necessary to render technical documents in audio.
Several further points can be made.

e AFL provides for audio renderings the same power that TEX provides for
visual renderings. AFL has made it possible for us to experiment easily
and quickly with different audio renderings of mathematical notations. In
this regard, we are limited only by our own ability to think of new ways of
rendering mathematics clearly and succinctly; the language itself is not the
limitation.

e As a result of its focus on multiple components, AFL is an extensible tool
for writing high-level programs for producing multimodal renderings of in-
formation. While it is not trivial to design and implement a new audio
component, it also need not be a long and laborious affair. Based on the
author’s experience, we guess that it would take him less than a week to add
a new component that is based on a different speech synthesizer or sound

component.

Chapter 4

Rendering rules and styles

We begin this chapter by building up a general framework of rendering rules and
styles in Section 4.1. Rendering rules enable the generation of different audio views
of the same object. Section 4.2 introduces the concept of fleeting and persistent
sound cues and uses these to develop an audio layout for conveying structure
present in typical document content, e.g., sections and itemized lists.

We then develop a system of audio notation to convey mathematical content
and present a collection of rendering rules for producing such audio notation in Sec-
tion 4.3. The processing required to produce context sensitive renderings from the
quasi-prefix representation (see Chapter 2.2) is covered in Section 4.4. Some de-
scriptive rendering rules for mathematical content are discussed in Section 4.5.

“When reading complex mathematics in print, we often use a chunking strat-
egy: rather than read the entire expression, we first obtain a high-level view by
grouping related subexpressions. This becomes even more necessary in oral com-
munication —otherwise, the listener has to remember the mathematical content.
Complicated mathematical expressions can be better communicated by first substi-
tuting names for complex subexpressions to provide a quick overview. This process,
called rendering with variable substitution, is described in Section 4.6. A flexible
mechanism for delaying the rendering of specific objects is described in Section 4.7.
Appendix A.4 documents the external interface to the system of rendering rules
and styles.

Throughout this chapter, we describe how AGTER renders different object types.
Note, however, that the user is free to customize all of the renderings produced by

ASTHR.

51

52

4.1 Rendering rules and styles

renders document objects by calling generic function read-aloud. Primary
methods! can be defined on this function for objects that appear in the document
model described in Section 2.1.
The body of such a read-aloud method consists of AFL statements that set
AFL state and execute audio events. For instance, the read-aloud method for
object string is:

(defmethod read-aloud ((text string))
"Render a string."
(afl:send-text text))

Here is a slightly more complex example:

(defmethod read-aloud ((article article))
"Abbreviated read-aloud method for article. "
(when (title article) (read-aloud (title article)
(read-aloud (body article)))

Function read-aloud, as described so far, can produce only one view of a doc-
ument —it can render it in only one way. To enable different views of the same
object, we now introduce the notion of rendering rules and styles. This makes
function read-aloud more involved.

A rendering rule associates a name with a set of actions that are to be executed
when an instance of a given object type is rendered. The format of a rendering
rule is

(def-reading-rule (<object-name> <rule-name>) <afl statements>)

The body of the rule consists of AFL statements that modify AFL state and execute
audio events —it is the same as the body of an instance of method read-aloud.
Named rendering rules permit the user to define several rules for the same
object, but now, a mechanism is needed to determine which rule to use when
rendering instances of an object O. At any time, only one rendering rule is active
for object O, and this active rule is used by read-aloud.
Rules can be activated and deactivated interactively by executing

(activate-rule <object-name> <rule-name>)
and

(deactivate-rule <object-name>)

1We use standard method combination as defined in CLOS. See Appendix A.6 for an overview
of some of these terms.

33

Each rule presents a different audio view of the object. ASTER provides a collection
of default rendering rules (in the form of primary methods on read-aloud) that are
used when no rule has been explicitly activated for a particular object type.

Within the body of a rendering rule, we recommend that sub-objects be ren-
dered only by calling function read-aloud. This ensures that if a listener activates a
new rendering rule for an object O, then all instances of O will be rendered using
this rule. For example, after activating a rendering rule for fractions, a summation
that contains a fraction as the summand gets rendered as expected, i.e., the sum-
mation is rendered as before, but the fraction in the summand is rendered using the
newly activated rule. Of course, a rendering rule is free to activate and deactivate
other rules. Note, however, that this will hard-wire a particular type of rendering
into such a rule.

Rendering styles

Activating rendering rules provides a convenient mechanism for obtaining different
views of a single object type. However, this is cumbersome when changing how
several object types are rendered —we will have to explicitly activate a different
rule for each object type. This is obviated by the introduction of rendering styles.

A rendering style style-1 is the collection of rendering rules named style-1, each
of which renders a different object type. AJTER maintains a list of active styles
in the order in which they were activated. Initially, this list contains only style
default, which specifies a default rendering for all objects.

The user can execute

(activate-style style-1)

to add style-1 to the front of the list of active styles. This effectively activates
all rules that appear in style-1 —when rendering an object, ASTER uses the most
recently activated style that defines a rule for that object.

Style style-1 can be deactivated by executing

(deactivate-style style-1)

A listener can create a new rendering style simply by defining rendering rules
for one or more object types. The style need not provide rules for all the known
object types —rules for the remaining objects are taken from previously active
styles. Thus, we might define rules in style descriptive for summations, integrals
and coproducts. If descriptive is now activated, and style simple is the next most-
recently activated style, AGTER uses rendering rules from simple for all other objects.
Typically, the list of active styles is:

(use-special-patterns descriptive simple default)

54

If no rule has been explicitly activated for an object type O, then the active rule
for O is provided by the most recently activated style that defines a rendering rule
for O or one of its superclasses. Thus, in the above example, if the list of active
styles is descriptive, simple, default, the active rule for an integral is descriptive. If
we now want to have all objects rendered using this list of active styles but would
like integrals rendered using rule simple, then we would execute

(activate-rule ‘integral 'simple)

The ability to obtain different views of an object is a very useful learning
aid. It gives the listener a chance to obtain different perspectives of complex
expressions. Further, this system of rendering rules and styles has proven very
useful in experimenting with different ways of rendering mathematics.

Rendering rules can be used in many interesting ways. For instance, defining
and activating the following rule for paragraphs provides a thumb-nail view of a
document.

(def-reading-rule (paragraph quiet) nil)

The body of this rule is empty, so the contents of paragraphs are not rendered.
When this rule is activated, only the titles of the sectional units will be spoken.

(def-reading-rule (paragraph read-only-display-math)
"Render only the math appearing in paragraphs"
(let ((math-in-paragraph
(mapcar #’(lambda(object)
(wvhen (display-math-p object) object))
(contents paragraph))))
(mapc #’read-aloud math-in-paragraph)))

Figure 4.1: Rendering only displayed math.

The rendering rule in Figure 4.1 on page 54 renders only the displayed math
from a document. Activating this rule allows the listener to locate an equation
of interest quickly. The user can now reactivate the normal rendering rule for
paragraphs and listen to the entire paragraph that contains the math expression.
This is like flicking through the pages of a book until something of interest is
located and then reading the relevant content.

4.2 Rendering document content

Document structure is implicitly conveyed in audio renderings by using audio lay-
out made up of extra-textual speech and non-speech audio cues. The following

33

subsections describe this audio layout and outline the rules for producing such
renderings from the internal representation described in Section 2.1.

Audio cues are either fleeting or persistent. This classification is orthogonal to
the earlier classification into speech and non-speech audio cues. We define terms
fleeting and persistent below:

Definition 1 Fleeting cue:
A cue that does not last. Such cues are characterized by their duration being
specified by the nature of the cue itself.

Definition 2 Persistent cue:
A cue that lasts, i.e., persists. The duration for such cues is specified by other
ongoing events in the audio rendering, rather than by the cue itself.

The following paragraphs clarify the above definitions by giving some examples
of fleeting and persistent cues.

Examples of fleeting cues

e Speech: Announce? “title” before speaking the title.

o Non-speech: Play a short sound to indicate a bullet when rendering itemized
lists.

ASTFR minimizes the use of extra-textual announcements by cueing document
structure implicitly wherever possible. Fleeting sound cues are associated with
objects like paragraphs and bulletted lists to convey structure efficiently. To give a
visual analogy, we all know what a table of numbers or a centered paragraph look
like, but what do they “sound” like? Associating sound cues (earcons [BGB88])
with specific structures takes a step towards answering this question.

Fleeting cues are typically used to introduce particular objects. However, more
than an introductory cue is needed when rendering complex structures. For in-
stance, a fleeting cue at the beginning of each item is not sufficient when rendering
an itemized list —the listener is likely to forget the current context if the items are
complex. .

In the visual setting, the logical structure of a list is displayed by super-imposing’
indentation, an implicit layout cue, on the text. AGTER uses persistent audio cues to
achieve a similar effect. These cues consist of either a change in some characteristic
of the speaking voice or a sound that repeats in the background and have the
advantage of being present during the entire rendering, without detracting from
the flow of information.

2All fleeting speech cues are verbalized using a slightly softer voice to set them apart from
actual document content.

56

Examples of persistent cues

e Speech: Raise the pitch of the voice when rendering the contents of an item-
ized list.

e Non-speech: Play a continuously repeating sound while speaking an abstract.

Audio layout Audio layout is achieved by super-imposing fleeting and persistent
cues on the rendering. To convey nesting effectively, the AFL state changes used
to achieve persistent cues need to be monotonic in the mathematical sense. Let P
represent a point in audio space. Let f be a change-of-state function. To convey
nesting effectively, f should be monotonic —there should exist an ordering

P< f(P)< fY(P)< - (4.1)

where this ordering is perceptible. This is where we exploit the abstraction of
a speech space and the operators it provides. For instance, the following AFL
statement can be used to define a function that generates new AFL states for
rendering itemized lists:

(afl:step-by afl:*current-speech-state* »afl:average-pitch 1)

This notion of monotonicity in change of AFL states will be exploited once again
in Section 4.3 when designing an audio notation for mathematics.

Réndering hierarchical document objects

The rendering rule for different sectioning levels uses a fleeting speech cue by
announcing the current level, e.g., “section”, announcing positional information,
e.g., section number, and then speaking the title of the sectional unit. A persistent
sound cues the title —it is “highlighted” by playing a sound in the background.
Here is the corresponding rendering rule:

(def-reading-rule (section default)
"Render section"
(afl:new-block
(afl:local-set-state
(afl:step-by afl:*current-speech-state*
’afl:smoothness 2))
(read-aloud (section-name section))
(read-aloud (section-number section)))
(afl:new-block
(afl:local-set-state
(afl:step-by afl:*current-speech-state*
’afl:head-size 1))

57

(afl:local-set-state
(afl:select-sound afl:*current-audio-statex*
title-highlight))
(afl:local-set-state
(afl:switch-on afl:*current-audio-statex))
(read-aloud (section-title section)))
...);render body of section

Paragraphs are introduced by a fleeting sound:

(def-reading-rule (paragraph default)
(afl:new-block
(afl:synchronize-and-play *paragraph-cuex)
(afl:paragraph-begin) ;rising intonation.
<render contents>))

Special environments

Lists, centered text and other structures are marked up in IATEX as special envi-
ronments and are characterized by their visual layout. Thus, a list of items is cued
by indenting the items in the list. Nested lists are displayed by indenting them
with respect to the outer list —in audio, we use change of pitch.

An itemized list is represented internally as an object of type itemized-list, with
the list of items as its children. Each item itself can be a complex object. Here is
the AFL rule for rendering object itemized-list.

(def-reading-rule (itemized-list default)
(afl:new-block
(afl:local-set-state
(afl:step-by afl:*current-speech-state*
’afl:average-pitch 1))
(loop for child in children do (read-aloud child))))

This rendering rule begins a block, locally sets the state of the audio formatter
by raising the pitch of the voice, and then renders the contents of the itemized
list. These contents are rendered relative to the containing list. When this rule is
applied to a nested list, the inner list gets rendered relative to the outer list —the
pitch goes up by one step when rendering the outer list, and goes up by another
step when rendering the inner list. Thus, the local scope introduced by the AFL
block works effectively in conveying nested structures.

Rendering tables

Just speaking the contents of a table does not convey the relation between its
entries. Saying “next column” and “next row” before rendering each new row or

58

column is too distracting. We overcome this problem by exploiting stereo (spatial
audio). The first element of each row is spoken solely on the left speaker; the
rendering then progressively moves to the right, with the last element spoken solely
on the right speaker. Thus, given a row (Ako, Ak1y - - - » Akn), element Ag; is spoken
with the volume of the left speaker at l,firna.x-volume and the right volume at
%max-volume.

We achieve this with a simple AFL rendering rule: the volume of the left and
right speakers are dimensions in audio space, and implementing the above rendering
only requires moving along the line spanned by these dimensions.

4.3 Rendering mathematics

This section defines an audio notation for mathematics and presents rendering
rules that produce this audio notation.

There is little similarity between developing a written notation and its audio
counterpart. However, the evolution of written notation shows the following.

Any notational system is a combination of conventions and an intuitive use
of the various dimensions that are provided by the perceptual modality and
the means available to produce output appropriate for that modality.

We use this insight to develop a concise audio notation for spoken mathematics
that exploits the available audio dimensions. It is conceivable that the number of
audio dimensions will increase with the improvement in the relevant technology,
enabling more sophisticated notational systems in the future.

We characterize all of written mathematical notation as follows:

e Projects the inherent tree-structure present in mathematical expressions on
to a two-dimensional display —different delimiters are used and mathematical
expressions are stacked above one another.

o Annotates this tree structure with visual attributes. We identify six at-
tributes that use different aspects of the two-dimensional display —changes
in baseline and changes in font size— see Figure 2.1 on page 18.

The visual cues used to project the tree structure are independent of the cues
used to produce the attributes. Hence, attributes may themselves contain arbi-
trarily complex tree structures. Thus, conventional mathematical notation uses a
consistent set of visual layout primitives to construct complex displays.

Written notation provides the ability to render mathematical objects without
understanding their meaning. The underlying structure can be recreated by a
reader familiar with the subject matter at hand and the notational system in use.
Internalizing and browsing this structure is helped by the use of different types of

59

visual delimiters such as (, [, {, |, —_— and 7~ —these help the author mark off

“Interesting” subtrees within an expression.

In contrast, plain spoken renderings of mathematical expressions are completely
linear, thereby losing much of this expressive power. Spoken descriptions of com-
plex mathematics (found on talking books) compensate for this loss of expressive
power by using extra-textual phrases, thereby making the renderings verbose.

To overcome these problems, we develop an equivalent audio notation. The
first step is to identify dimensions in the audio space to parallel the functionality
of the dimensions in the visual setting. The second step is to augment these audio
dimensions with the use of pauses, intonational cues such as voice inflection, and
descriptive phrases.

AGTER implements this notational system by using fleeting and persistent cues,
especially by exploiting the computer’s ability to vary the characteristics of a syn-
thetic voice. Renderings produced are therefore much more concise.

Our audio notation minimizes the verbiage in math renderings. Concise ren-
derings serve to convey the concepts involved succinctly, leaving the listener time
to reason about the expression. More descriptive renderings (with explanatory
phrases to cue structure) can be used when listening to unfamiliar material. Thus,
there is a wide range of possible renderings of a math expression varying between
fully descriptive and completely notational. The choice of how much to rely on the
audio notation, and how descriptive renderings should be, is entirely subjective.

Here are the features we require of our audio notation for mathematics:

e Produce concise renderings: Avoid detracting from the mathematical content
by using as few extra-textual phrases as possible.

o Convey nested structures: The notation conveys deeply nested structures,
such as a subscript in a superscript, and complex subexpressions appearing
as subscripts or superscripts.

e Convey context: The renderings convey as much context as possible without
adding to the verbiage.

Producing audio notation for mathematics

We exploit the abstraction of the audio space to define unique audio dimensions
that make up the various pieces of the notation. These dimensions can be thought
of as lines® determined by a combination of the speech and non-speech dimensions
described in Chapter 3. The AFL states used to produce different pieces of the
audio notation are reached by “moving” along these dimensions. The functions
used to generate new states are monotonic in the mathematical sense described
in equation 4.1 on page 56.

3In general, these may be curves rather than straight lines.

60

We choose unique audio dimensions to map the quasi-prefix form into audio
space. The quasi-prefix representation is a tree with attributes. We pick one audio
dimension, denoted by dim-children (see Figure 4.2 on page 60), along which to vary
the current AFL state as different levels of a tree are rendered. We next choose
dimensions orthogonal to dim-children to cue the visual attributes as follows. Let
z and y denote two speech-space dimensions that are orthogonal to dim-children.
Select three lines in the speech space, z =0, z +y =0, and ¢ —y = 0. Moving
forward or backward along these three lines cues the six visual attributes.

Conventional mathematical notation has built up a strong association between
the superscript and subscript, in that we intuitively think of them as opposites, i.e.,
the superscript moves up, and the subscript moves down. ASTER takes advantage
of this association by moving the AFL state “forward” along the line z —y =0
before rendering superscripts and “backward” along this same line before rendering
subscripts. States along the line z + y = 0 cue left superscripts and subscripts;
states along z = 0 cue accents and underbars. By our choice of z and y, these
variations are independent of dimension dim-children. See Figure 4.3 on page 60
and Figure 4.4 on page 61 for the audio dimensions that are currently used for
cueing superscripting and subscripting.

(afl:multi-step-by state
» (afl:smoothness 2) ’(afl:richness -1) ;softer
» (afl:loudness 2) ’(afl:quickness 1) ;animated
) (afl:hat-rise 2) ’(afl:stress-rise 2)) ;animated

Figure 4.2: Audio dimension used for rendering subtrees.

The effect of moving along the audio dimension shown in Figure 4.2 on page 60 is
to produce a softer, more animated voice. As deeper levels of nesting are entered,
the change in voice characteristic produces a sense of falling off into the distance.

A change along the audio dimension shown in Figure 4.3 on page 60 produces a

(afl:generalized-afl-operator state
» (afl:step-by afl:average-pitch 1.5)
» (afl:step-by afl:head-size -.5)
» (afl:scale-by afl:average-pitch .5 :slot afl:step-size)
» (afl:scale-by afl:head-size .5 :slot afl:step-size))

Figure 4.3: Audio dimension used for rendering superscripts.

higher pitched voice. The change in the head size keeps the voice from sounding
unpleasant. The step size along both the average-pitch and head-size dimensions

61

are reduced. This allows unambiguous rendering of subscripts in superscripts. The
change in AFL state in Figure 4.4 on page 61 is the exact opposite of the change
in Figure 4.3 on page 60.

(afl:generalized-afl-operator state
» (afl:step-by afl:average-pitch -1.5)
»(afl:step-by afl:head-size .5)
) (afl:scale-by afl:average-pitch .5 :slot afl:step-size)
' (afl:scale-by afl:head-size .5 :slot afl:step-size))

Figure 4.4: Audio dimension used for rendering subscripts.

In cases where no contextual information is available, the visual attributes
appearing on a math object are rendered in the following order:

1. Subscript.
Superscript.
Underbar.

“Accent.

Left-subscript.

XA S o

Left-superscript.

The above ordering is motivated by the fact that in traditional mathematical nota-
tion, the subscript binds? the tightest. The order in which attributes are rendered
is encapsulated in Lisp variable *attributes-reading-order* and may be changed by
a user.

In style simple, a commonly used rendering style, subscripts and superscripts are
rendered by first moving either backwards or forwards along the audio dimensions
shown in Figure 4.3 on page 60 and Figure 4.4 on page 61. This produces extremely
concise and unambiguous renderings. Consider the following expressions:

e e e’ (4.2)
T+ yf-zrf (4.3)

Here, a plain verbal rendering produces an unnecessarily complicated description
that makes it difficult to comprehend the inherent structure present in the expres-
sion.

4This is an unwritten rule, however, and may be different in some fields, though we do not
know of one.

62

Here is an example to illustrate the benefits of an audio notation when rendering
unusual mathematical notation. In the following, +, denotes addition modulo n.
Given this information,

T +n Y +n 2

could be spoken as “x plus mod n y plus mod n z”. However, if this information is
unavailable, AGTFR can still produce a rendering that can be correctly interpreted
by a listener who is aware of the fact that the + sign can be subscripted. Fur-
ther, the listener who is familiar with +, denoting modulo arithmetic can now
understand the expression.

In style descriptive, new AFL states are used only if necessary when rendering
superscripts and subscripts. Typically, “x 17 in traditional spoken math means
z1. Rendering style descriptive takes advantage of this convention to avoid using
new AFL states when rendering subscripts that are simple. Note, however, that by
doing so, rendering style descriptive does introduce ambiguity in the renderings;
z¥! and zF! will sound the same. In our experience, we have found that this
ambiguity is not a problem when rendering mathematical texts; few authors write
z*2 in place of the preferred o2k,

Parenthesizing in audio

The technique used by written mathematical notation to cue tree structure is insuf-
ficient for audio renderings. Using a wide array of delimiters to write mathematics
works, since the eye is able to quickly traverse the written formulae and pair off
matching delimiters. The situation is slightly different in audio; merely announc-
ing the delimiters as they appear is not enough —when listening to a delimited
expression, the listener has to remember the enclosing delimiters. This insight was
gained as a result of work in summer 91%, when we implemented a prototype audio
formatter for mathematical expressions. Fleeting sound cues (with the pitch con-
veying nesting level) were used to “display” mathematical delimiters, but deeply
nested expressions were difficult to understand.

ASTER enables a listener to keep track of the nesting level by using a persistent
speech cue, achieved by moving along dim-children, when rendering the contents
of a delimited expression. This, in combination with fleeting cues for signalling
the enclosing delimiters, permits a listener to better comprehend deeply nested
expressions. This is because the “nesting level information” is implicitly cued by
the currently active voice (a persistent cue) used to render the parenthesized
expression.

To give some intuition, we can think of different visual delimiters as introducing
different “functional colors” at different subtrees of the expression. Using different
AFL states to render the various subtrees introduces an equivalent “audio color-
ing”. The structure imposed on the audio space by the AFL operators enables

5This is joint work with Dr. Dennis Arnon of Xerox PARC.

63

us to pick “audio colors” that introduce relative changes. This notion of relative
change is vital in effectively conveying nested structures.

Mathematical expressions are spoken as infix or prefix depending on the oper-
ator and the currently active rendering style. The large operators such as f, in
addition to the mathematical functions like sin, are rendered as prefix. All other
expressions are rendered as infix. A persistent speech cue indicates the nesting level
—_the AFL state is varied along audio dimension dim-children before rendering the
children of an operator. The number of new states is minimized —complexity of
math objects and precedence of mathematical operators determine if a new state
is to be used (see Section 4.4 for details on the complexity measure used). Thus,
while new AFL states are used when rendering the numerator and denominator of
g_fg, no new AFL state is introduced when rendering § + ¢ + d. Similarly, when
rendering sin z, no new AFL state is used to speak z, but when rendering sin(z+y),
a new AFL state is used to render the argument to sin.

In the context of rendering sub-expressions, introducing new AFL states can be
thought of as parenthesizing in the visual context. In the light of this statement,
the above assertion about minimizing AFL states can be interpreted as avoiding
the use of unnecessary parentheses in the visual context. Thus, we write a+ bc+d,
rather than a+ (bc)+d, but we use parentheses to write (a+b)(c+d). Analogously,
it is not necessary to introduce a new state for speaking the fraction when rendering
a+ % +d, whereas a new rendering state is introduced to speak the numerator and
denominator of %‘%.6

Dimension dim-children has been chosen to provide five to six unique points.
This means that deeply nested structures such as continuous fractions are rendered
unambiguously.

Consider the following example:

4 z (4.4)

Here, the voice drops by one step as each level of the continuous fraction is rendered.
Since this effect is cumulative, the listener can perceive the deeply nested nature of
the expression. The rendering rule for fractions is shown in Figure 4.5 on page 64.
Notice that this rendering rule handles simple fractions differently. When rendering
fractions of the form §, no new AFL states are used. In addition, there is a
subtle verbal cue; when rendering simple fractions, ASTER speaks “over” instead
of “divided by”. This distinction seems to make the renderings more effective, and
in some of the informal tests we have carried out, listeners disambiguated between
expressions using this distinction without even being aware of it.

6To see this, think of the fraction written linearly, i.e., % =b/e.

64

(def-reading-rule (fraction simple)
"simple rendering rule for fractions
(let ((pause-amount (compute-pause fraction))

(numerator (numerator-of fraction))

(denominator (denominator-of fractiom)))
(read-aloud "fraction") (afl:comma-intonation)
(afl:with-surrounding-pause pause-amount

(cond
((and (leaf-p numerator) ;simple fraction
(leaf-p denominator)) ; form a /b
(read-aloud numerator) (read-aloud "over")
(read-aloud denominator))
(¢t (afl:new-block
(afl:local-set-state ; move along
(reading-state ’dim-children)) ;dim-children
(read-aloud numerator))
(read-aloud " divided by, ") ; old state
(afl:new-block
(afl:local-set-state ; move along
(reading-state ’dim-children)) ; dim-children
(read-aloud denominator)))))))

where statement (reading-state 'dim-children) generates an AFL state along dimen-
sion dim-children, see Figure 4.2 on page 60.

Figure 4.5: Rendering rule for fractions.

Using pauses

The audio dimensions are supplemented by using pauses around subexpressions to
indicate grouping. The duration of the pause is based on the weight of a subex-
pression (See Section 4.4 for details on weight of an object, a complexity measure).
If the weight of an object is 1, then no pause is inserted; otherwise the weight of
the object is scaled by a constant factor given by *pause-around-child* to determine
the number of milliseconds of pause to be inserted around the rendering.

Using the above, ASTFR speaks a + % + d unambiguously by inserting a pause
around the fraction. No pause is inserted in rendering the simple expression a,
when it occurs by itself. Inserting a pause here is unnecessary and would have an
adverse stuttering effect on the speech.

65

4.4 Processing the quasi-prefix form

As described in Chapter 2, no semantic interpretation is attached to mathematical
content at the recognition step. AGTER can be enhanced to recognize specialized
notation and produce context-sensitive renderings (e.g., speak z? as “x squared”).
Some context-specific processing is needed to produce such renderings, and this
section outlines the kind of information that is available: the weight of an object

and special patterns.
Measure weight quantifies the complexity of math expressions. The weight

function is defined as follows:

1. The weight of a leaf node with attributes is 1 plus the sum of the weights of
its attributes. Attributes are themselves math objects, and their weight is
computed recursively.

2. The weight function on non-leaf nodes is defined recursively:

weight(m) = w-co+ w-ch + w-at
w-co = weight(contents(m))
w-ch weight(children(m))
w-at = weight(attributes(m))

Recognizing special patterns

Recognizing special patterns makes renderings sound more natural. Consider how
experienced readers speak math expressions. Even though “—1’—'3 is spoken as “the
fraction a plus b divided by ¢”, § is spoken as “one half a”. In addition, mathe-
matical notation is inherently ambiguous, with the same notational construct being
overloaded to mean different things in different contexts. Thus, the —1’s in 7!
and sin~! z have different meanings. The recognizer treats both occurrences of the
_1 as a visual attribute of the object being superscripted. The decision to treat
the —1 appearing as a superscript to the function as denoting the function inverse
is made by rendering rules based on special patterns.

Since such interpretation is context sensitive, the quasi-prefix representation is
enhanced —before an object is rendered, special-pattern (a memoized’ function)
is called to identify special patterns. A user can specify additional patterns by
providing method definitions on function special-pattern for specific object types.
These special patterns can then be turned on by calling

(turn-on-special-pattern <object-name>).

7 A memoized function remembers its results between invocations for efficiency.

66

The user can provide rendering rules named <pattern> for object <object>, which
get invoked when the particular special pattern is seen. Individual special patterns
can be turned off by executing statement

(turn-off-special-pattern <object-name>).

All special patterns can be turned off by deactivating style use-special-patterns.
Special patterns built into AGTER include:

e 2 as the superscript is interpreted as squaring, 3 as cubing etc.
o T as the superscript of a valid matrix expression denotes transpose.
e —1 as the superscript of a function name denotes function inverse.

o D" denotes a derivative.

4.5 Descriptive renderings

In Section 4.3, we described a succinct audio notation for mathematics. However,
renderings that are more descriptive also sound more natural. As mentioned earlier,
the extent to which we use descriptive renderings is an entirely subjective choice.
This section presents some descriptive AFL rendering rules from ASIER.

Rendering integrals

The various parts of an integral have special meaning. Using the audio notation
would produce a rendering that cues the subscript and superscript on the integral,
leaving it to the listener to interpret their meaning. Rule descriptive for object
integral (see Figure 4.6 on page 77) interprets the subscript and superscript as the
limits of integration. Integrals having no superscript are interpreted as surface in-
tegrals. The rule also correctly identifies the variable of integration in the majority

of examples.
We have a similar rendering rule for summations that interprets the subscript

as a constraint on the summation. The rule also correctly renders examples where
the subscript and superscript to the summation operator give the lower and upper
bound on the range of summation.

Obtaining different views

We can think of rendering rules as producing a particular “display” of a given
structured object. Thus, in a system like (IA)TEX, the author of a macro picks
a specific layout for objects appearing in the document. This choice, once made,

67

holds throughout the rendering of the document. On an interactive system like
ASTRR, the listener can pick different ways of “hearing” the same ob ject8.

In CS611, a course on advanced programming languages, we work with proof
trees. Proof trees typically have a set of premises that lead to a conclusion. A
typical rendering of a proof tree is:

We know that ...; Hence we infer

On the other hand, another rendering rule might “display” the same structure

We can conclude ... because we know

This has the effect of inverting a proof tree. We perform such actions all the time
when perusing written material. On the other hand, when listening to recorded
books on tape, a listener is tied down to the one rendering order that the reader
chose to use. In contrast, AGTER allows the listener to determine the rendering
order by activating different rules, thus enabling better comprehension of complex
material.

Here is another example from the same course. The following rules show differ-
ent ways of rendering occurrences of operator subst (textual substitution). They
allow the listener to “look” at a particular expression from different perspectives.
R[S/T] denotes R with T replaced by S. The linear “display” used to layout
this expression on paper is just one possible linearization of operator subst. When
speaking this expression, the description can be formulated in several ways.

R[S/T] is written using macro \subst, a macro that takes three arguments.
ASTER is first extended to recognize this macro call into object subst having three
arguments as follows:

(define-text-object :macro-name "subst" :number-args 3
:processing-function subst-expand :object-name subst
:precedence mathematical-function :supers (math))

Instances of \subst occurring in the document are now represented as instances of
object subst. Object subst has its argument slot set to a list containing the result
of processing the arguments to the \subst call. Function argument can be used to
access these within rendering rules. Here are some AFL rules to generate different
renderings of this object.

English descriptions The next two rendering rules use plain English to produce
a descriptive rendering. They are good rules to use when the concept of substitution
is being introduced. However, they do not work well for more complex examples

like R[X/Y][S/T).

8The author has found this feature very useful in understanding difficult mathematical proofs.

68

(def-reading-rule (subst english-active)
" english-active rendering rule for object subst."
(let ((pause-amount (compute-pause subst)))
(afl:with-surrounding-pause pause-amount
(read-aloud (argument subst 1))
(read-aloud " with ")
(read-aloud (argument subst 2))
(read-aloud " for ")
(read-aloud (argument subst 3)))))

(def-reading-rule (subst english-passive)
" english-passive rendering rule for object subst."
(let ((pause-amount (compute-pause subst)))
(afl:with-surrounding-pause pause-amount
(read-aloud (argument subst 1))
(read-aloud " with ")
(read-aloud (argument subst 3))
(read-aloud "replaced by ")
(read-aloud (argument subst 2)))))

Linear rendering The following linear rendering rule mimics the visual nota-
tion. It is succinct, since it avoids words like “brackets”, instead relying on voice
changes to convey the nesting. It is a good alternative to the tree-like rendering.

(def-reading-rule (subst linear)

" linear rendering rule for object subst"
(read-aloud (argument subst 1))
(afl:new-block

(afl:local-set-state (reading-state ’dim-children))
(read-aloud (argument subst 2))

(read-aloud " slash ")

(read-aloud (argument subst 3))))

Tree-like rendering The following produces a “tree-like” rendering of object
subst by displaying it as a prefix ternary-operator. It is a good rule for rendering
complex subst objects once the listener is familiar with the concept of textual
substitution. It is very succinct and conveys nesting effectively.

(def-reading-rule (subst tree-like)
" tree-like rendering rule for object subst."
(read-aloud "substitution ")
(afl:new-block
(afl:local-set-state (reading-state ’dim-children))

69

(read-aloud (argument subst 1))
(read-aloud (argument subst 2))
(read-aloud (argument subst 3))))

where (reading-state 'dim-children) generates a new AFL state along dimension
dim-children; see Figure 4.2 on page 60.

4.6 Variable substitution

The preceding sections have demonstrated the use of AFL in writing audio ren-
dering rules for conveying complex structures. However, oral communication takes
more time than written communication, and the listener has to retain a lot more
information than a person perusing printed text. This disadvantage is most felt
when listening to complex mathematics. It takes time to speak complicated ex-
pressions and sometimes the listener has forgotten the beginning of an expression
by the time it has been fully rendered.

Conjecture 1 Top-level structure: An ezperienced reader of mathematical formu-
lae first looks at the top-level structure of a complez equation, and then progressively
reads the subezpressions.

Thus, given Faa De Bruno’s formula:

k k
Drw= Y S D T o) Mt - (4.5)
z u E .
0<j<n kyt+ka+--+kn=) k(L) kn!(n!)k“
k1+2k2+---+nkn=n
klka)"'ykﬂZO

We see it as an equation with a derivative on the LHS and a double summation
on the RHS. We then see that the inner summation has a complicated constraint
and that the summand is a fraction. Finally, we read the entire expression.

The steps enumerated above are carried out implicitly by the eye, making it
difficult to identify the atomic actions involved. Yet, it is clear that we rely on
this type of breaking up or “chunking” of complex expressions when understanding
them. In fact, most of visual mathematical notation is an attempt at aiding this
process of grouping subexpressions together in a meaningful manner —even in the
visual setting, writing out Faa De Bruno’s formula in a fully linearized manner
(e.g., the TEX encoding) makes comprehension difficult, if not impossible.

In the audio setting, the listener does not have the luxury of being able to view
both the top level structure as well as the leaves of the formula when listening to
a straight rendering of the expression. This means that AGTER needs to take over
part of the work that was described as being implicit in the visual context —AGTER
needs to recognize and convey the same kind of grouping that the experienced
reader perceives in the visual notation.

70

We call this process rendering with variable substitution. Thus, given a complex
expression of the form %, where the e; are complex math expressions, ASTFR
recognizes this top-level structure and produces the rendering, “Fraction x over
y, where x is -+ and y is ---". In the following subsections, we enumerate the
conditions under which such variable substitution is performed. Based on these, we
have implemented a variable substitution rendering style. The listener can activate
this style and have AGTER perform variable substitution where appropriate.

Examples

To motivate the discussion, here are some examples of how variable substitution
can produce renderings that are easier to understand.

o0 -22
I= /0 e=*" dz (4.6)

would be spoken as

i = integral with respect to x from 0 to infinity of f dx,
where fis ...

This technique is particularly useful when presenting very complex equations. Vari-
able substitution transforms equation 4.5 on page 69 to:

numerator 1

L ~
;. oD - (D2w)

n, _
Dzw_ E u P, X k1 PRI Fn (4.7)
0<j<n ki+ka+-+ka=j \1.(... ,.(n)g
k 2k k = N
ltl,f:,,,;fz'ﬁ i denominator 1

lower constraint 1

which can now be rendered as:

Enneth derivative with respect to x of w equals

Summation over 0 less than or equal to j less than or equal to n
Summation over lower constraint 1 of

jayth derivative of u with respect to x times the fraction
numerator 1 over denominator 1. where lower constraint 1 is ...,
numerator 1 is ...,

denominator 1 is

It takes 68 seconds to speak equation 4.5 on page 69, making it difficult to perceive
the top-level structure from listening to a straight rendering of the expression.
Using style variable substitution, the top-level expression is rendered in 23 seconds,
and it takes a further 57 seconds to render the substitutions. Thus, though the
total time taken to speak the entire expression is more, the listener can understand

71

the top-level structure in about a third of the time it would take to listen to the

entire expression.

Variable substitution should be used sparingly, since renderings using this style
take a longer time to convey entire expressions, in this example, 80 seconds against
68 seconds—AGTER uses variable substitution only if an expression is sufficiently
complex.

Criterion for applying variable substitution

The following enumerates a few of the points to be considered when designing a
variable substitution scheme.

1. Minimize the number of levels of substitution. Ideally this should not be
more than 1.

2. Avoid unnecessary substitutions. In equation 4.6 on page 70, substituting a
variable for the entire right-hand side is redundant.

3. Use a complexity measure that determines when an expression is sufficiently
complex to warrant variable substitution. This measure should capture the
following properties of an expression:

(a) Complexity of a math object considered by itself.

(b) Relative complexity of an expression with respect to its parent.

Motivation for above Criteria

The first requirement says that any variable substitution scheme we apply should
result in a simple top-level expression. The second requirement ensures that the
top-level expression conveys as much information as possible. In addition, it en-
sures that the renderings resulting from variable substitution do not end up being
more complicated than plain renderings. Thus, in equation 4.6 on page 70, substi-
tuting identifier z for the entire right-hand side to produce

i equals x where x equals ...

does not simplify the rendering. This is because the top-level expression is a
relation, and substituting for one of the sides of a relation only produces a new
relation which is as complex as the original. The third requirement ensures that
all expressions are compared using the same weighting scheme. Measure weight
described in Section 4.4 is used.

We introduce the notion of relative complezity below:

12

Definition 3 Relative Complezity:
Given ezpression e with child ¢; with weight(e) = w and weight(c;) = wi,

relative-complezity(ci) = %’- (4.8)

Basic algorithm

Here is a sketch of the variable-substitution algorithm. It uses three user-specified
complexity thresholds, whose purpose will become clear in the following descrip-
tion.

Given an expression e, compute its weight w. Do not perform substitutions if
w < *absolute-complexity-threshold*. Otherwise, e is a good candidate for variable
substitution.

First try to substitute for the children of e. Given children ¢; {1 < ¢ <
n}, compute their weights w;. Substitute for a child ¢; if and only if its relative
complexity is greater than *proportional-complexity-threshold*. Thus, for each ¢, if
w; > w - *proportional-complexity-threshold*, apply the algorithm recursively to c;.
If no substitution can be performed on the descendants of c;, replace c; itself.

If no substitution can be performed on any of the c; or their subexpressions,
then substitute for e provided that e is not a top-level expression. Also do not
substitute if e is one of the sides of a relational.

Given a top level expression e having weight w, this algorithm is called as
follows:

(collect-substitutions e (complexity-threshold e))
where (complexity-threshold e) is defined as:

(defun complexity-threshold (object)
"Compute the threshold value for this object"
(let ((proportional
(+ 1 (truncate
(* (weight object)
*proportional-complexity-threshold# NI
(max proportional *absolute-complexity-threshold*)))

Instead of computing 3% < *proportional-complexity-threshold*, we initialize the
algorithm with the threshold w-*proportional-com plexity-threshold*, since w remains
constant throughout the algorithm.

Refining the algorithm

We now introduce the following refinements to the algorithm:

73

o If the parent expression is a relation, then do not perform substitutions on the
children themselves. Proper subexpressions of the children are still considered
for substitution.

e Consider attributes as well as the children of an expression for substitution.

e Use a different weighting scheme for deciding when to substitute for attributes
by introducing a third constant, *attribute-complexity-threshold*. This con-
stant is used to scale *proportional-complexity-threshold* when considering

attributes.

Substitution threshold values

The following values were arrived at experimentally:

absolute-complexity-threshold = 5
proportional-complexity-threshold = 1 /7
attribute-complexity-threshold = 2.5

Naming the substitution

AGTFR. chooses identifier names that convey some information about the object
being replaced. This has two advantages:

e An identifier like “summand” when referring to the expression appearing as
the summand in a summation conveys more information than the identifier

Z.

e When substitutions are spoken after rendering the top-level expression, the
listener finds it easier to relate them to the top-level expression.

Names for the substituted expressions are chosen using the following information:

¢ Type information. The objects returned by the recognizer are all typed. So
at the very least, we have type information for all objects, e.g., mathematical
function, parenthesized expression, etc.

o Contextual information. The first child of a fraction is called its “numerator”.
The left-hand side of an implication is called the “premise” and its right-
hand side the “conclusion”. We have built in this information for standard
mathematical objects and provided a flexible mechanism for the user to add
or modify such information.

e Special patterns: The special patterns presented in Section 4.4 are also used
in synthesizing meaningful names for the substitutions.

74

Thus, when substituting for the subscript to a summation operator, AGTER uses
the name “lower constraint”. Since more than one such “lower constraint” may be
substituted in a general expression, such names are appended with an integer to
make them unique. This is how the rendering shown earlier for Faa De Bruno’s
formula is produced.

Additional examples

The following illustrate the effect of applying variable substitution.

z ez+e’ z+e® z
e (14 T (14 et (14 eY)
N ——— N—— NG Y —
first term 1 first term 2 product 1

The above expression has been annotated with underbraces to indicate the
variable substitution that is performed. Notice that applying variable substitution
reveals the recursive nature of the expression. It is interesting to note that if we
now run our algorithm on this annotated expression, the subexpressions marked
by underbraces are chosen for substitution.

Implementation issues

We had to resolve some interesting implementation issues in order to provide the
functionality described above. All the previously active rendering rules and styles
work in conjunction with the variable substitution rendering style. This means
that the expressions resulting from variable substitution are rendered exactly as
they would be if they occurred by themselves. To achieve this, AGTER first applies
variable substitution and then applies the currently active rendering rules to the
result. This added level of complexity is completely transparent to a user of ASTER,
who can continue to add rendering rules and modify styles in the presence of
variable substitution.

4.7 Floating objects

The concept of objects that float to the end of a page or chapter is well-known in
the context of typesetting. Footnotes float to the end of the page, while figures
may float to the end of a chapter. ASTER provides the same functionality with
rendering rules that delay audio rendering. In this section, we describe rendering
rules that enable footnotes to float (in general instances of any object type) to the
end of different hierarchical units in the document model.

We achieve this by first implementing a mechanism for delayed evaluation in

Lisp.

(delay-until <trigger> <action>)

75

delays the execution of action <action> until triggered by <trigger>. In a rendering
rule that floats an object, <action> is a function object whose body specifies audio
events to be executed. The delayed action is triggered by executing

(force-if <trigger>)

This forces all actions that are waiting for <trigger> in the order in which they
were delayed. The delayed evaluation provided by this mechanism is of course

more widely applicable.

Example of a floating rendering rule

We now give an example of a rendering rule® that floats instances of object footnote
to the end of the containing paragraph. This rule uses delay-until.

(def-reading-rule (footnote float)
"Make footnotes float to the end of containing paragraph.
(delay-until ’paragraph
#’ (lambda()
(without-rule (footnote float)
(read-aloud footnote)))))

After rendering instances of object O, function read-aloud forces all delayed actions
that are triggered by the class-name of O. Thus, to make footnotes float to the end
of the containing paragraph, all the user need do is to activate the above rendering
rule. A rule that floats all figures'® to the end of a chapter is:

(def-reading-rule (figure float)
"Make figures float to the end of containing chapter.
(delay-until ’chapter
#’ (lambda()
(without-rule (figure float)
(read-aloud figure)))))

where Lisp macro (without-rule (<o> <r>)) executes statements with rule
<r> for object type <o> deactivated.

Using floating renderings

The ability to delay the renderings of objects provides several interesting applica-
tions. The first of these is rendering the text of footnotes at the end of a paragraph

9This is a simplified rule. This rule also takes care of rendering the footnote marker before

delaying the rendering of the footnote text.
10Fjgures are rendered by speaking the figure caption.

76

or section, rather than where the footnote marker occurs in the running text. Such
a rule is useful when rendering documents having several footnotes.

Note that footnotes float to the end of the logical unit of text in which they
occur, rather than to the end of a physical unit like a page. Page breaks are
completely irrelevant in the context of audio formatted output, since they are
merely a consequence of the constraints placed by the physical page.

The general ability to float any object in the document model is a more powerful
feature than is present in standard typesetting systems, which typically allow only
certain objects to be floated. In AGTER, given object types 0O; and O, where
instances of Oy occur as sub-objects of instances of 01, we can write a rendering
rule that delays the rendering of all instances of Oz until the enclosing instance of
O; has been completely rendered. Thus, instances of O, float to the end of the
enclosing instance of Oj.

7

(def-reading-rule (integral descriptive)
"Descriptive rendering rule for integrals"

(let ((lower-limit (subscript integral))
(upper-limit (superscript integral))
(children (children integral))

(pause-amount (compute-pause integral))
(var (variable-of-integration integral)))
(afl:with-surrounding-pause pause-amount
(read-aloud " Integral ")
(cond
((and lower-limit upper-limit)
(read-aloud "from ")
(when var (read-aloud (children var))
(read-aloud " equals"))
(read-aloud lower-limit)
(afl:pause 1)
(read-aloud " to ")
(read-aloud upper-limit)
(afl:pause 1))
(lower-limit
(when var (read-aloud " with respect to ")
(read-aloud (children var)))
(read-aloud " over, ")
(read-aloud lower-limit))
(var (read-aloud "with respect to ")
(read-aloud (children var))))
(afl:force-speech)
(read-aloud (first children)) (afl:force-speech)
(read-aloud var) (afl:subclause-boundary))))

Figure 4.6: Descriptive rendering rule for integrals.

Chapter 5

Browsing audio documents

5.1 Introduction

When perusing printed text, a reader can quickly skip portions of the document,
reading only those sections that are of interest. Typeset documents allow such
structured browsing by using layout cues to present the underlying document
structure; from here, the eye’s ability to “randomly” access portions of the two-
dimensional printed page appears to take over. The passive information in a printed
document is accessed by an active reader capable of selectively perusing the text.
Hence, visual documents themselves need not be interactive.

Things are different with audio. This passive-active relationship is reversed
in traditional oral communication; the information flows past a passive listener
who has little control on what is heard. The problem is particularly severe when
presenting structured information (e.g., complex mathematics) —a listener is likely
to lose interest by the time the relevant information is presented. Hence, we need
to enable active listening, i.e., enable the listener to determine what is heard.
Therefore, to be effective, audio documents need to be interactive.

The first step is to make audio documents interactive. Techniques for specifying
and modifying how particular objects are rendered were described in Section 4.1.
In addition, a browser for audio documents allows a user to interactively traverse
the internal high-level representation described in Chapter 2 and listen to portions
of interest. The browser provides basic tree-traversal commands. These can be
composed to effectively browse the information structure.

The design of our browser is motivated by the conjecture that most of visual
browsing actions are directed by the underlying structure present in the infor-
mation. Thus, when we read a complex mathematical expression that involves a
fraction, we can quickly look at the numerator while reading the denominator. This
single action of looking up at the numerator can be decomposed into a series of
atomic tree traversal movements with respect to the structure of the expression. In
the visual context, these actions happen extremely fast, leading to a feeling that the

78

79

eye can access relevant portions of the visual display almost randomly. However,
this notion of randomness disappears when we consider that such visual browsing
becomes difficult in a badly formatted document where the underlying structure is
not so apparent. Similarly, even when presented with a well-formatted document,
a person unfamiliar with the subject matter finds it impossible to perform the
same kind of visual browsing. Visual browsing thus depends on familiarity with
the underlying structure and a clear rendering of this structure. AGSTER parallels
this functionality by building up a rich internal representation and providing a set
of atomic actions to traverse this representation. The effectiveness with which a
user can browse this representation is now a function of the user’s familiarity with
the structure in the subject matter being presented.

We present the browser as follows: Section 5.2 motivates the need for a browser
by analyzing how visual browsing works. Based on this, we derive a corresponding
model for audio browsing. We identify a set of atomic browsing actions that enable
general browsing. Section 5.3 describes how a user can traverse the high-level repre-
sentation of a document. This section introduces the concept of a current selection
and describes how the user is unobtrusively cued to the nature of the current se-
lection. Section 5.4 describes how the listener can execute actions after setting the
current selection. These actions include listening to the current selection, rendering
it relative to its parent, and listening to the rest of the document. Cross-references
form an important component of technical documents and are described in Sec-
tion 5.5. A particularly difficult problem faced when listening to mathematical
texts on conventional talking books, or even when reading printed mathematical
texts, is keeping track of equation numbers and understanding statements that
refer to equations and theorems by their numbers in the running text. We de-
scribe a flexible mechanism that allows a listener to annotate cross-referenceable
objects with meaningful labels that can be used to refer to such objects in later
cross-references. This section also describes how places of interest in a document
can be marked using a bookmark facility. Appendix A.5 documents the external
interface to the browser. The browser, along with the ability to change rendering
rules and styles, makes audio documents produced by AGTER fully interactive.

5.2 How does browsing work?

Communication through the printed medium

As a first step towards developing an effective audio analogue, let us examine
communication through the printed page. The printed page is passive: it is a two-
dimensional visual display with marks on it. The person reading the printed page
can either scan the material linearly or browse through parts of the document.
Visual layout (the way the marks appear on paper) enables such browsing. Thus.
rather than laying all the text in a naive manner on the page, we exploit concepts

80

such as line and paragraph breaks to allow the reader to perceive chunks of the
printed matter and to selectively read specific portions of the text being presented.

The dpower of the printed medium lies in the eye’s ability to browse text laid
out on a two-dimensional display. When reading a paper, we are able to skim
through the text, focusing on paragraphs of interest, and quickly scan across to
the bottom of a page when we see a reference being made to a footnote.

The audio setting

The previous paragraph adopted the metaphor of a document being marks on
paper. In contrast, in the audio setting, we have the ear, which is passive, and
a document that is scrolling away in a linear fashion. This makes the goal of
achieving an audio analogue to the printed page seemingly difficult.

An alternative model

The eye is certainly capable of moving to any point on the page extremely rapidly.
Yet, when we browse, we do not move about randomly around the printed page.
Typically, we move to the next paragraph, next line, or previous word. This seems
to indicate that the eye infers some structure in the printed document, which is
used to move around effectively. Since each of these actions are being performed
extremely rapidly, owing to the eye’s inherent scanning ability, these atomic actions
are difficult to pinpoint.

We therefore conjecture the following: Every well-formatted document presents
inherent logical structure, which the eye is capable of perceiving. All visual browsing
actions can be characterized as movements around this structure.

A naive example

Consider a well-formatted document containing no mathematical formulae. Here,
the layout structure consists of a root node, which is the page, and the paragraphs
which are the various children. At the next level on this tree, we have the lines,
and each line is further broken up into words and words themselves are broken up
into characters. Given this structure, we can rephrase all of the browsing actions
as a combination of simple tree traversal movements. Thus, we can identify the
following atomic actions:

1. Go to next sibling.

2. Go to previous sibling.
3. Go to parent.

4. Go to left most child.

81

5. Go to rightmost child.
6. Mark current node.

7. Return to marked node.

Using the above atomic actions and their various combinations, we can define
all the browsing actions that the eye is capable of performing.
Thus, on encountering a reference to a footnote while reading we:

1. Mark current node.
Go to parent (this gets us out of the current paragraph).
Move across siblings until footnote is located.

Read footnote.

oUoR N

Return to marked node.

A complex example

Consider the following expression as read by a person familiar with mathematical
notation:

/ e—z2+ez3 dz

sinz? 4 cos? z

The experienced reader is able to quickly scan the above expression and, while
perusing the denominator, access the numerator. This ability is a consequence of
internalizing the underlying structure conveyed by the visual layout and using it
to traverse the information. The atomic actions in accessing the numerator are:

1. Mark current node.
2. Read previous sibling.
3. Return to marked node.

We enable audio browsing by allowing a listener to perform the same kind of
traversals. AGTFR internalizes a sufficiently rich structure to permit all of these
browsing actions.

82

5.3 Traversing high-level document structure

Our internal representation for document structure is an attributed tree. Tree
structures are easy to traverse, and they provide a uniform way of browsing struc-
ture present in both plain text as well as mathematical formulae. This section
outlines our approach to enabling such browsing actions.

All browsing actions are defined with respect to the current selection (a node
in the internal tree representation of the document) that is recorded in variable
read-pointer. Typically, the current selection is initially the top of the document.
The current selection can be changed in two ways:

o Interrupting the current rendering by executing command stop! (bound to
s). Commands stop and quit are described in detail in Section 5.4.

e By moving the selection when no rendering is in progress. Typically, single
key-strokes? execute the commands listed in the following paragraphs.

The following browser commands can be executed when no rendering is in
progress. Our key-mapping for these commands is inspired principally by the key-
map used by the UNIX VI editor.

e t Move to the top of the document.

e C-u t move to the top of the current math expression.
e h: Move left: set current selection to previous sibling.
e 1: Move right: set current selection to next sibling.

e j: Move down: set current selection to first child.

e k: Move up: set current selection to parent.

Below, these browser actions are augmented to enable the traversal of the at-
tributed tree structure defined in Chapter 2. In our model, all nodes have content.

e i: Move to content: set current selection to the contents of the current selec-
tion.

The following actions move the selection to the various attributes. The parent of
an attribute is defined to be the object being attributed. The result of moving to
attributes can therefore be undone by moving back up to the parent.

e ": Move to superscript.

1Contrast this with command quit (bound to q).

2The browser interface is implemented using Emacs Lisp. Key-strokes execute EMACS Lisp
commands, which in turn send the right forms to the Lisp system. The browser interface will
have to be re-implemented if Lisp is not being run inside EMACS.

83

e _: Move to subscript.
e *: Move to accent.
e #: Move to underbar.

!: Move to left subscript.

e %: Move to left superscript.

The above key-map? for traversing the attributes was arrived at as follows: The
choice for superscript and subscript is automatic, since the keystrokes match the
symbols used by TEX to markup these attributes. Placing the fingers on the row
of numerals on a standard keyboard, the actions necessary for typing ~ and _ are
mimicked with the left hand to arrive at the key-bindings for the left superscript and
subscript. The middle finger of each hand is used to get to the accent /underbar.

Tables are the only objects in our internal representation that do not conform
completely to the tree-traversal model. This is because each table element is linked
to its parent as well as to its four neighbors. The left and right neighbors can be
modeled as siblings, but we need extra links and hence extra actions to traverse
the entries by columns.

e a: Move to element above.

e d: Move to element below.

Summarizing the selection

When any of the above browsing actions are executed, the new selection is sum-
marized. These summaries are designed to be concise but informative. A typical
problem that results when traversing complex structure is the so-called “lost in
space” problem, where a user gets disoriented with respect to the current selec-
tion. We avoid this problem by conveying the following bits of information after
each move:

e Context: Contextual information about where the current selection occurs
with respect to the rest of the document.

e Type: The type of the current selection. Typically, this involves summariz-
ing the current selection, which is described below.

Thus, when moving down the right hand side of Faa de Bruno’s formula shown
in equation 4.5 on page 69, the listener would hear:

3A user of AGTER is free to re-map these actions to other keys.

84

[Key-press | Action | Context | Type |

Right hand side is | Summation

] First child Summand is Summation

J First child Summand is Juxtaposition

J First child First term is Derivative

1 Next sibling | Second term is Fraction

b First child Numerator is Product

1 Next sibling | Denominator is Product

Messages like the ones shown above have been found to be sufficient to avoid the
lost-in-space problem mentioned earlier.

The nature of an object is conveyed by generic function summarize —methods
on this function specify how individual object types are summarized. Below, we
show some examples —the following list is not meant to be exhaustive. In cases
where insufficient information is available to generate a complete summary of an
object instance, the type of that object is spoken.

Il Object Type | Summary l
Article Title
Sectional unit Section title
Complex Math object | Operator appearing at the root
Math object (leaf node) Render node

Contextual information (e.g., what the children of math objects are called) is
available to AGTER, —children of an inference are called “premise” and “conclu-
sion”; children of a fraction are called numerator and denominator. Such informa-
tion was used to advantage in generating meaningful names when applying variable
substitution; it is now exploited in giving contextual information about the current
selection.

Traversing the structure of mathematical expressions is particularly useful when
used in conjunction with the variable-substitution rendering style. In fact, such
traversal can be thought of as a dual to variable substitution. If an expression has
been rendered once using variable substitution, then future traversals of that ex-
pression use the variable names generated in the substitution process when cueing
the current selection. This proves to be a very useful memory aid when under-
standing complex equations like Faa de Bruno’s formula shown in equation 4.5 on
page 69.

Traversing document structure is also very useful when handling large docu-
ments, e.g., entire textbooks. The browser actions described so far enable the
listener to move quickly through the document without having to listen to a lot
of text. In conjunction with the ability to switch rendering styles, this enables
the quick location of portions of interest. For instance, a listener can activate a

85

rule (see Figure 4.1 on page 54) that renders only the mathematics in a document.
Once an equation of interest is encountered, the listener can interrupt the ren-
dering, move the current selection from this point to the enclosing paragraph or
sectional unit, and then listen to the relevant portion of the document.

5.4 Rendering the current selection

The current selection is rendered by executing browser command read-current. The
rendering commenced by read-current can be interrupted in two ways:

e Quit: Interrupt the current rendering and restore the current selection.

e Stop: Stop the rendering and leave the current selection at the object last
rendered. Thus, executing read-current and stop moves the current selection.

Another browser action is to render the rest of the document starting from the
current selection. This is enabled by browser command read-rest (bound to c).

Moving the selection to the next or previous node and then rendering is a com-
mon sequence of actions. ASTER provides commands read-previous and read-next
(bound to p and n respectively) that combine these actions.

In addition, the browser provides command read-just-this-node (bound to r)
that renders only the current node, rather than the entire subtree rooted at this
node —this is useful when traversing complex mathematical expressions.

Relative renderings

In the above paragraphs, we described the various browser actions that render the
current selection. The current selection can be rendered either as if it occurs by
itself or as it would be if it were rendered along with the rest of the document.
The former is straightforward; we need only execute generic function read-aloud on
the current selection. The latter presents an interesting problem.

Specifying that the current selection should be rendered relative to its position
in the entire document is analogous to picking a word from the electronic encoding
of a book and asking the question:

On what page in the book does this word appear?

In general, answering such a question would involve completely rendering the book.
Analogously, rendering the current selection relative to its position in the document
can be computationally intensive. We avoid this complexity by recording a pointer
to the AFL state that is current when a document object is rendered. On the
surface, this seems like it would require a lot of storage. In reality, this approach is
both feasible and efficient, because the same AFL states are used to render a large
number of the objects appearing in a document.

86

Recording of AFL states used to render specific objects is made possible by
adding an extra slot named afl-state to object document. Initially, the value of
this slot is nil, but when an object is rendered for the first time, a pointer to the
AFL state that is current when the rendering commences is recorded in this slot.
Relative renderings are produced by function read-current-relatively shown below.
Notice the use of the AFL block in setting up a lexical scope for the duration of
the rendering. Locally setting the AFL state to that recorded in slot afl-state of
the object being rendered is sufficient to achieve the desired relative rendering.

(defun read-current-relatively()
"Render current selection relatively"
(save-pointer-excursion

(cond
((afl-state *read-pointerx*)

(afl:new-block ;retrieve state
(afl:local-set-state (afl-state *read-pointerx))
(read-aloud *read-pointer*) (afl:force-speech)))

(t (read-current)))))

Relative renderings are most useful when listening to tables and matrices. As
described in the chapter on rendering rules (see Section 4.2), these are rendered
using stereo effects, with the spatial location of the sound indicating the position of
elements in the table. When moving through the elements of a table, hearing each
element at the right spatial coordinate is useful in keeping track of the location
of the current selection. Thus, the user can move the current selection to the
rightmost column and then move down this column, hearing each element spoken
on the right speaker. As another example of using relative renderings, consider
traversing the right-hand side of Faa de Bruno’s formula shown in equation 4.5 on
page 69. Moving to the subscript of the summation with _ and then executing
read-current-relatively results in the constraint being rendered in the “subscript
voice” —this cues the location of the current selection.

5.5 Cross-references and bookmarks

This section describes how the browser allows the traversal of additional links
introduced by cross-references in the document. Command read-follow-cross-ref
(bound to g) is executed after interrupting the rendering. By default, this renders
the next cross-reference in the document; a prefix argument* results in the previous
cross reference being rendered. This is necessary —typically, the rendering will
have been stopped close to, rather than, on a cross-reference. AGTER also allows

4Emacs terminology for C-u as a prefix to the command.

87

cross-reference links to be traversed while rendering is in progress. When a cross-
reference is spoken, AGTER plays a short sound cue that acts as a prompt. If
the user responds with y, the cross-reference is rendered before continuing. The
presence of this functionality almost obviates the need for the user to call command
read-follow-cross-ref interactively.

How a cross-reference tag is rendered depends on the object that is cross-
referenced. For instance, rendering a cross-reference tag to a section results in
the section number and title being spoken. This is more useful than just speaking
the section number. Typically, the renderings of cross-reference tags are designed
to give as much information as possible without being unduly verbose. Renderings
of cross-reference tags are customizable by providing methods on generic function
read-cross-reference. One such method is shown below.

(defmethod read-cross-reference ((section section))
"Render a cross reference to a sectional unit."
(read-aloud (section-name section))

(when (section-number section)
(afl:speak-number-string (section-number section)))

(afl:comma-intonation) (read-aloud (title section))

(afl:comma-intonation) (afl:force-speech))

Cross-referenceable objects

Technical documents use cross-references to numbered equations and theorems to
make the presentation succinct. Cross-references in the running text typically
use a system-generated number, e.g., equation 3.2.1. Even when reading printed
material, this convention can present problems. Consider, for instance, a proof
that reads:

By equation 3.1 and theorem 4.2 and equation 8, we get equation 9 and
hence the result.

If the above is difficult to understand when reading it in print, it is unusable when
encountered in a spoken document, where the listener does not have the luxury of
quickly scanning back to the cross-references.

The ability to follow a cross-reference tag during the rendering does miti-
gate this problem to some extent. However, following such cross-references can
prove distracting. ASTFR overcomes this by allowing the listener to label cross-
referenceable objects with meaningful labels when they are rendered. These user-
supplied labels are used when rendering cross-reference tags, almost eliminating
the need to follow cross-references.

To give a concrete example, consider listening to a book on Fermat’s last theo-
rem. The first chapter might introduce the subject by stating the theorem. Assume

88

that this theorem is numbered 1.1. The rest of the book might refer to this theorem
by number, as in:

As a corollary of this result, we can prove theorem 1.1.

When the corresponding document is rendered by AGTFR, the listener hears the
theorem, the system generated number (theorem 1.1), and a fleeting sound cue. At
this point, the user can give the theorem a more meaningful name by pressing y and
entering an appropriate name. Assume the listener enters “Fermat’s last theorem”.
Later, when rendering cross-references to this theorem, the newly entered label will
be used instead of the system generated theorem number. Thus, the example shown
above would be rendered as:

As a corollary of this result, we can prove Fermat’s last theorem.

Bookmarks

The browser also provides a simple bookmark facility, which can be used to mark
positions of interest to be returned to later. Browser command mark-read-pointer
(bound to m) prompts the user for a bookmark name and marks the current
position. Command follow-bookmark (bound to f) takes a bookmark name and
returns to the marked position. Bookmarks can be accessed in two ways: f renders
the marked object without moving the current selection and C-u f resets the
current selection to the marked position.

Chapter 6

Related work

This chapter presents a review of the published literature relevant to our work.
In producing audio renderings, we draw on prior work on structured electronic
documents and the use of speech and non-speech audio in computer interfaces.

Section 6.1 introduces work on recognizing document structure. We outline
ongoing work on marking up document structure unambiguously and translating
between different document encodings. Section 6.2 covers prior and ongoing work
in the innovative use of audio in human-computer interaction.

6.1 Electronic documents

Electronic document systems are based on:

1. Markup-based approaches.

2. Layout-based approaches.

Marking up document structure

Standard Generalized Markup Language (SGML) marks up document logical struc-
ture in a layout-independent manner [SGM86,0rg90,HPR92,Gol90]. A Document
Type Definition (DTD) is used to encapsulate the logical structure of specific
classes of documents. Thus, SGML provides a notation for describing classes of
structured documents and for coding documents belonging to described classes.
An advantage of SGML and other grammar-based document representations is
the ability to perform multiple applications on a single document source file. The
International Committee on Accessible Documents (ICAD) has been working on
defining an accessible DTD!, but at present their work does not encompass math-

ematical content.

1Gee Section B for some frequently asked questions about accessible documents and our
answers.

89

90

Though SGML is now used to markup a variety of documents by many govern-
ment agencies, it still has very little support for marking up technical content, e.g.,
mathematics. There is ongoing work to remedy this situation. In the last year, the
SGML-Math committee has been working on a math DTD for SGML. This work
is not yet complete, but it has raised a few interesting issues. The main point of
discussion has been whether it is possible to design a math DTD that captures se-
mantic information about the mathematical constructs being marked up. Though
it would be nice to have all of a mathematical construct’s semantic content when
processing the document, e.g., in our case producing audio renderings, this seems
almost unattainable. There is as yet no firm agreement on this point, but the trend
seems to be to move towards a math DTD that captures the layout as embodied
by TEX. Defining a DTD that captures full mathematical semantics would make it
difficult to invent new notation. TEX, by only capturing the layout constructs used
to build up written mathematics, side-steps this issue, and the resulting system
makes it easy to invent new notation. However, this also makes recognition more
difficult. Some of the problems present in (IA)TEX are being addressed by ongoing

work on the JATEX3 project.
Significant work has been carried out in the context of structure-sensitive edi-

tors for documents. This work has focused on the design of appropriate document
encodings that capture high-level structure unambiguously. Another topic of in-
terest has been the capture of hypertext links within the context of structured
documents. The logical structure of documents is typically captured using a tree-
like representation consisting of hierarchical units. The challenge of integrating
this model with the notion of hypertext links has been successfully addressed by
the design of HyperText Markup Language (HTML), an SGML-based markup
system for encoding structured hypertext documents. Finally, the aim of achiev-
ing the best of two worlds, i.e., the power afforded by a grammar-based markup
system and the user-interface provided by WYSIWYG systems (what you see is
what you get) has led to work on providing multiple synchronized views of a doc-
ument [Har88]. See [QV92,LG90,BB90,KLMN90,P188,SF88,SF90,FBN+90,Lev88,
SFR92,F889,Kat87,A3886,KS84,CJ90,BG90,Ver90,P888,QNA90,Br088] for details

on relevant work in this area.

Translating between different markup languages

There has been some work towards building automatic translators for converting
electronic documents from one markup language to another. The need for such
systems is apparent: Even though most of today’s documents get written electron-
ically, it is still practically impossible to exchange electronic documents generated
on disparate computer systems. This means that the only way information can be
exchanged is by first printing a hardcopy.

There are two approaches to solving this problem:

91

1. Recognize high-level structure in the form of abstract syntax and then convert
the abstract syntax representation to any desired concrete syntax.

2. Produce an output form that is the least common denominator of the various
high-level representations and then exchange this version.

Producing abstract syntax

ICA (Integrated Chamelion Architecture), was developed at the Computer Science
Department in Ohio State University [MOB90]. The system produces translators
between different document encodings. Users specify an abstract syntax for the
class of documents they wish to translate. Typically, this abstract syntax would
be similar to a DTD used by SGML. Users then specify the conversion rules for
mapping this abstract syntax to and from the concrete syntax used by different
markup systems. Using this specification, the system generates translators that
can convert documents from a specific concrete syntax to the abstract syntax and
vice-versa.

The advantage of this approach is that it requires only O(n) translators to
convert between documents encoded in n different markup languages. Directly
translating between the n markup systems would require O(n?) translators. The
difficulty is that not all markup systems use the same model for the same class of
documents. This means that the abstract syntax can capture only those features
that are common to all n markup systems. To give an example, one of the target
systems might explicitly capture section numbers in the markup, while the other
might compute them upon request.

Converting to the least common denominator

Given documents marked up in n different markup languages, an alternative solu-
tion is to convert all of them to a form that is the least common denominator of
the various document encodings. This can be done by converting the documents
either to plain ASCII or to a display-specific format, such as Postscript. Both these
alternatives have shortcomings as outlined below.

Converting to ASCII loses layout structure. Since the only thing that cues
logical structure in a formatted document is layout, this form of conversion loses
information.

An alternative solution is adopted by systems like the Adobe Acrobat. Page
Description Format (PDF), a portable form of Postscript, is used by the Adobe
Acrobat as a common currency between different computing platforms. The en-
coded document can be displayed with its original layout on disparate computing
platforms without using the software used to produce the original document. This
solution does allow users to exchange documents without losing any layout in-
formation. However, it is only one step better than exchanging printed paper:

92

exchanging PDF files is like exchanging electronic paper! For example, the infor-
mation present in the document cannot be manipulated electronically. This also
means that the information and its inherent structure can be accessed in only one
way —by a human looking at the information. The principal advantage of having
information online —the ability to process it— is lost. In addition, it has the
serious disadvantage of making electronic information inaccessible to persons with
special needs.

Recognizing document logical structure

Most recognition work has focused on recognizing logical structure from document
layout. Significant research has been carried out in the context of OCR-based
document recognition systems. For a complete up-to-date bibliography on work in
this area, we refer the reader to the online bibliography on document understand-
ing available at FTP://dimund.umd.edu/pub/DOCBIB/databases/DocumentBib.bib.
The site also provides a searching tool using the Internet Gopher.

See [PR92] for details on recognizing logical structure from the layout informa-
tion present in a Postscript file. This is a difficult problem and re-emphasizes the
earlier comment on PDF and the shortcomings in storing electronic documents in
a purely layout-oriented form.

Relatively little work has been done in recognizing document structure from
electronic markup. The work on Chamelion [MOB90] and related work in the
area of attribute grammars [Yel88] could be used to extract logical structure from
electronic documents. Tools such as the Cornell Synthesizer Generator [RT84,
RT88a,RT88b] and the Centaur system [Bor88] can also be used to build such
recognizers. The key to building such recognizers successfully is the robustness
and applicability of the high-level models used. For details on other attempts at
recognizing structure from markup, see [Arn91,AM91,AW91,Arn92].

Mathematical notation

One of our principal aims when designing ASTER was to produce clear and succinct
audio renderings for mathematics. In designing a concise audio notation for math-
ematics, it is interesting to note that the written mathematical notation that we
have come to accept is relatively new. For an in-depth survey of the evolution of
written mathematics, see [Caj30].

There is little similarity between developing a written notation and its audio
counterpart. However, the evolution of written notation shows the following. Any
notational system is a combination of conventions and an intuitive use of the various
dimensions that are provided by the perceptual modality and the means available
to produce output appropriate for that modality. In the case of visual notation,
these dimensions are font size, changes in baseline, use of different delimiters,

93

stacking of sub-expressions to build up layout, and the use of characters from
different scripts. This insight enabled us to develop a concise audio notation for
spoken mathematics that exploits the various audio dimensions that are currently
available —see Section 4.3 for details. It is conceivable that the number of audio
dimensions will increase with the improvement in audio hardware, leading to a
more sophisticated audio notation.

6.2 Summary of work in audio interfaces

This section presents a brief executive summary of the various research projects
that are related to incorporating audio as an additional dimension to computer
interfaces.

Speech synthesis
There are three approaches to producing digitized speech:

1. Concatenative: Concatenate digitized utterances produced by a human to
make up canned messages.

2. Diphone: Use a library of diphones obtained by sampling a large number of
utterances spoken by a human.

3. Formant: Model the human vocal tract by using a series of cascading filters
to produce the right wave forms and hence intelligible speech. ’

Approach 1 is space intensive. It works in a limited number of cases, but it
has the advantage of producing the most natural sounding speech in a restricted
domain.

Approach 2 is more widely applicable and provides an unlimited vocabulary.
It is memory intensive, since the diphones (numbering about 3,000 for English)
need to be accessed frequently. The approach is not compute intensive. Quality
varies widely from barely intelligible to human-intelligible. This approach has been
commercially applied by Apple in the form of MacinTalk-1 and MacinTalk-2. The
MacinTalk-2, also known as GalaTea, is fairly memory intensive, but the quality
is among the best that has been achieved with this method of synthesis. The
principal drawback with diphone synthesis is that the underlying model is fairly
restrictive. Though systems like GalaTea achieve a fair amount of intonation, the
intonational structure generated still leaves much to be desired. The model also
allows only minimal variations in voice, e.g., pitch and speech rate. Changing voice
parameters produces a significant deterioration in output.

Approach 3, which models the human vocal tract, is compute but not memory
intensive. It is also the most flexible approach to speech synthesis. Since it is based

94

on a mathematical model of the human vocal-tract, it permits a large number of
variations in voice quality (see [K1a87,Her89,Her90,Her91] for details). What is
more, it allows us to perform the same kind of scaling etc. on the voice that we
perform in the visual setting when working with fonts. This is particularly useful
in conveying complex information and is exploited in our own work in presenting
spoken mathematics.

Audio as a data-type

The practical problem of how audio data should be managed has been addressed
in order to deal with the following issues:

e Real-time compression of audio data.

e Changing speech rate in digitized audio without modifying pitch. This is
referred to as time-scale modification [RW85).

e Producing spatially located sounds (directional audio).
e Conversion between various encoding schemes.
o Exchanging audio data between disparate hardware.

e Broadcasting audio data over networks for teleconferencing. Significant work
has been done in the context of the Internet m-bone, the multicast backbone.

e Client/server solutions to allow user applications to transparently access au-
dio resources.

The work done at DEC CRL on the AudioFile [LPT*93] project is particularly
significant in using audio resources effectively. AudioFile, using the same concep-
tual model as the X-windows system, provides a client/server model for accessing
audio devices on a variety of platforms. Several applications such as answering ma-
chines can be very easily built on top of AudioFile, which is publicly available from
FTP://crl.dec.com/pub/DEC/AF. The speech skimmer project at the MIT Media
Labs allows a listener to interactively skim recorded speech and listen to it at sev-
eral levels of detail. See [Aro93b,Ar092b,Ar092a,SASH93,Ar091b,Ar093a,SA89,
ABLS89,ASea88,Aro91a,Aro92c| for work carried out in the Speech Group at the
MIT Media Labs on manipulating digitized speech and audio.

CSOUND, a music synthesis system developed at MIT by Barry Vercoe, can
be used for real-time synthesis of complex audio. Researchers at NASA Ames have
developed the convolvotron [WF90,WWK91], a system for real-time synthesis of
directional audio. The convolvotron is computationally intensive, but the power
available on today’s desktop has seen the development of scaled-down versions of
this technology in the form of QSOUND for the Apple and Intel-486 platforms.

95

Non-speech audio in user interfaces

Non-speech audio can be used in innovative ways to augment conventional output
devices such as a visual display. Today, most desktop computers can produce at
least telephone-quality audio. Non-speech audio has been used for a long time on
the Apple platform to provide the user with audio cues for specific events. This
work has been formalized by the human-computer interaction community by in-
troducing the notion of earcons [SMGQO,JSBGSG,BCK+93,BGP93,Ram89,RK92,
BG93,Gav93,BGB88,Bux89]. A screen access program (prototype) for Presenta-
tion Manager under OS2 demonstrated the effective use of such non-speech cues
in providing the user with spatial information —see [F.92] for details. A similar
approach is being used at Georgia Tech in developing Mercator? [ME92], a screen
access program for the X-windows system. The use of non-speech audio to display
complex data sets has been investigated by the scientific visualization community,
where audio provides an extra dimension (see [BGK92,BLJ86,Ram89,RK92,Bro92,
Bro91,SB92] for several related examples).

Information presentation in audio

Work in speech synthesis and linguistics has considered the problem of present-
ing information using speech. The question of achieving the right intonational
structure is addressed by [Gr086,DH88,Pie81,HP86,HW84,HLPW87,PH90,HW91,
Hir91,Hir90a,Hir90b,WH91]. See [LOS76,5tr78,0KDA73,ZP86] for an analysis of
the intonational cues used by human speakers when speaking mathematical expres-
sions. A set of guidelines for presenting spoken mathematics is outlined in [Cha83]
and has been used by the Recordings for the Blind (RFB) in producing mathemat-
ical texts in talking book format.

Presenting information orally can be applied in several different situations.
In [Dav89], a system for providing oral instructions to an automobile driver is
described. Refer to [DT87,Dav88,DS89,DS90] for related work on this project.

Information browsing

With the advent of remote access systems to information databases, the need for
effective browsing techniques has received attention in several research projects.
Notable among these is Paul Resnick’s PhD work [Res92] at MIT. His thesis pro-
poses a flexible model for quick and effective information browsing by modeling
the information structure as a series of linked lists.

Structure-based browsing has been in vogue in the hypertext community for sev-
eral years. Many results from this area are directly relevant to information browsing

2Gee FTP://cc.gatech.edu/multimedia/papers/Mercator for online papers.

96

in audio. Notable among these is the work in defining Hypertext Markup Lan-
guage (HTML), a hypertext analogue to SGML. The World-Wide Web (WWW),
an HTML-based hypertext information retrieval system is widely used on the In-
ternet. WWW browsers allow a user to quickly access a wide variety of information
sources. The Webb currently contains textual as well as audio and video resources.
At present, only primitive browsing of audio/video data is possible, since there is
very little structure available in digitized audio/video data.

Browsing digitized audio/video data

Relatively little research has been carried out in this area so far. The potential
presented by the availability of a large volume of digitized audio/video data was
first outlined in [LB87]. The need to browse such data efficiently will prove essential
if we are to survive the age of the 1,000 television channels!

Approaches used so far are characterized by the use of word spotting to iden-
tify context from the digitized audio data and using such contextual information
to access portions of interest from the audio/video data stream. On the global
Internet, the availability of Internet Talk Radio and other sources of large audio
data provide an excellent research test-bed.

Appendix A

Documentation

This chapter documents the different modules of AGTER. The entire system is about
33,000 lines of LISP-CLOS code, and documenting each function here would make
this appendix prohibitively long. Therefore, only those commands that will be
used by a general user are documented.

A.1 Setting up ASTFR

This section details the hardware/software configuration necessary for running
ASTFR —detailed installation instructions can be found with the source code.

Hardware requirements

ASTRR currently uses a MultiVoice synthesizer [Tec91], a serial-line text-to-speech
device based on the Dectalk 3.0. The MultiVoice provides independent software
control on the volume of the speaker and headphone ports. Since this is currently
missing from the Dectalk, AGTER cannot produce directional speech if a Dectalk is
used.

AGTHR is implemented under Lucid Common Lisp/SPARC 4.0.2. AGIER relies
heavily on CLOS support and is presently running on a SPARC IPC with 24MB of
memory. The Common Lisp process communicates with the MultiVoice connected
to either of the serial ports, /DEV/TTYA or /DEV/TTYB. It is currently assumed that
the Common Lisp process is run on the local workstation.

Software environment

ASTFR has an Emacs front-end. Common Lisp is run as a sub-process of Emacs
(version 18.59.1 or 19), using the Emacs ILISP interface.

Once the source code has been installed, ASTER can be started up from within
Emacs by executing M-x aster. This starts up a Common Lisp sub-process and

97

98

loads in all of the code, compiling it if necessary. At this time, the voice synthesizer
should be connected and powered on, since AJTER communicates with the device
when starting up to make sure that all is well. The user hears spoken messages as

each module of ASTER is successfully loaded.

A.2 The recognizer

This section documents the external interface to the recognizer.

parse-article filename [FUNCTION)]

Recognize document contained in file filename and construct a high-
level representation, which is returned as a document object. Assumes
that the document in file filename is a valid (IA)TEX document.

do-not-signal-error-on-unknown-tex-macro ¢ [VARIABLE)

If nil, the recognizer signals a continuable error upon encountering a
new user-defined TEX macro in the document being recognized. Default
is not to signal an error.

define-text-object &key macro-name number-args processing-function [MACRO)
arguments-are-called precedence object-name supers

Extend the recognizer to handle instances of a newly defined TEX
macro. The keyword arguments are:

[Description | Type | Keyword ||
TEX macro name string macro-name
Number of arguments | number number-args
Name to use symbol | processing-function
Represented as symbol object-name
Super-classes list supers
Contextual names list arguments-are-called
define-new-environment &key env-name object-name [MACRO)]

Extend the recognizer to handle user-defined environments in IATEX.
env-name, a string, is the name of the new environment. object-name,
a symbol, is the name of the object that represents instances of this
environment.

99

define-math-classification string classification [FUNCTION]

Classify token string as of type classification. This is how tokens are
classified for processing in math mode.

define-precedence operator &key same-as [FUNCTION)

Define precedence for operator operator to be the same as existing
operator same-as.

show-precedence-table [FUNCTION]

Show one entry from each row of precedence table. Entries are listed
in ascending order of precedence.

A.3 AFL

This section documents the LISP-CLOS functions and macros that make up AFL.
Note that symbols like new-block that provide the external interface to AFL are
exported symbols of package AFL; hence, all names are written without the package
prefix, afl:.

The following are common to all the components of AFL.

new-block &body body [MACRO)]

AFL block statement. Introduce a local instance of variable *current-
speech-state*; set it to the instance of *current-speech-state* that was
referenceable just before execution of the block; and execute body within
this local scope. Within the block, all (free) occurrences of *current-
speech-state* refer to the new local variable. Upon termination of the
block, destroy local variable *current-speech-state* and reset the state
of the underlying hardware to its pre-existing state. The AFL block
also functions as a cobegin statement. A block terminates only after
all events commenced within it have finished executing.

terminate-block [FUNCTION]

Cause the currently-executing AFL block to terminate immediately. A
browser can execute this statement when the audio rendering of an
object is to be prematurely terminated because of a user interrupt.

100

local-set-state new-state [GENERIC FUNCTION)])

Set AFL local state to new-state. The type of new-state determines
which component is set. Each component subspace provides a method
on this function to perform the necessary actions when its state is set.

global-set-state new-state [(GENERIC FUNCTION]

Set AFL global state to new-state. The type of new-state determines
which component is set. Each component subspace provides a method
on this function to perform the necessary actions when its state is set.

The following subsections document the different component subspaces of AFL.
Each component subspace provides methods on the generic functions corresponding
to the AFL assignment statements. For the sake of brevity, we will not document

each of the individual methods.

A.3.1 The total audio space

The total audio space is the cross product of the component subspaces. Its state
variable is an n-tuple made up of the state variables of the component subspaces.

initialize-total-space [FUNCTION]
Create and initialize AFL variables that encapsulate the local and
global state of the total audio space.

current-total-audio-state nil [VARIABLE)

AFL total state in the current local scope.

global-total-audio-state nil [VARIABLE)]
AFL total state in the global scope.

A.3.2 The speech component
Initializing the speech space
initialize-speech-space &optional (voice *default-voice*) [FUNCTION]

Initialize speech space by setting up local and global speech state. Op-
tional argument voice is the name of a point in speech space to which
these should be initialized —the default is *default-voice*.

101

default-voice ’paul [VARIABLE]

Name of default voice used to initialize speech space.

global-speech-state nil [VARIABLE)
Contains global speech state of AFL.

current-speech-state nil [VARIABLE)
Contains local speech state of AFL.

re-initialize-speech-space ~ &optional (voice *default-voice®) [FUNCTION)

reinitialize speech space with voice, the name of a point in speech space.

Speech space operators

The speech space operators do not cause any side-effects.

move-by (point point-in-speech-space) dimension offset &key (slot [METHOD)]
"value)
Return point reached by moving from point along dimension by offset.
Default is to change the dimension value. If called with :slot ‘step-size,
modify the step size instead.

step-by (point point-in-speech-space) dimension n-steps &key (slot [METHOD)]
‘value)
Return point reached by moving from point by n-steps along dimension.
Default is to change the dimension value. If called with :slot ’step-size,
modify the step size instead.

move-to (point point-in-speech-space) dimension-value &key (slot [METHOD)]
‘value)

Return point reached by moving from point along dimension to value.
If called with :slot ’step-size, modify the step size instead.

scale-by (point point-in-speech-space) dimension scale-factor&key [METHOD)]
(slot ’value)

Return point reached by scaling value along dimension by scale-factor.
If called with :slot ’step-size, modify the step size instead.

102

multi-move-by (point point-in-speech-space) &rest settings [METHOD)
Move from point along several dimensions, where settings is a list of
dimension-value pairs.

multi-move-to (point point-in-speech-space) &rest settings [METHOD)]
Move from point along multiple dimensions, where settings is a list of
dimension-value pairs.

multi-scale-by (point point-in-speech-space) &rest settings [METHOD)]
Return the result of scaling point along multiple dimensions, where
settings is a list of dimension-value pairs.

multi-step-by (point point-in-speech-space) &rest settings [METHOD]
Return result of stepping along multiple dimensions from point, where
settings is a list of dimension value pairs.

generalized-afl-operator (point point-in-speech-space) &rest settings [METHOD)]
Operate on point and return result. Settings is a list of triples —
operation, dimension, value.

set-final-scale-factor dimension factor [FUNCTION)]
Set final scale factor for dimension to factor. Final scaling is applied

before producing output.

Speech events
pause milliseconds [FUNCTION)]

Insert milliseconds milli-seconds of pause.

send-text tert [FUNCTION)]

Send tezt to the speech device.

speak-number number-string [FUNCTION]

Send number-string to the speech device.

103

force-speech [FUNCTION)]

Force speech immediately. Used when speech is to be produced before
a sentence end marker has been sent.

with-surrounding-pause pause-amount &body body [MACRO]

Execute body with surrounding pause specified by pause-amount.

Intonational structure

comma-intonation [FUNCTION)

Generate a comma intonation. Applies to the clause last sent.

period-intonation [FUNCTION]

Generate a period intonation. Applies to the clause last sent.

interrogative [FUNCTION])

Send an interrogative intonation. Applies to the clause last sent.

exclamation [FUNCTION)]

Send exclamation intonation. Applies to the clause last sent.

exclamatory-stress [FUNCTION|

Send exclamatory stress. Applies to the next phrase to be sent.

primary-stress [FUNCTION|)

Send primary stress. Applies to the next phrase to be sent.

secondary-stress [FUNCTION)]

Send secondary stress. Applies to the next phrase to be sent.

subclause-boundary [FUNCTION]

Insert a subclause boundary. Applies to the next phrase to be sent.

high-intonation [FUNCTION]

Generate H*, rising intonation. Applies to the next phrase to be sent.

104

low-intonation [FUNCTION)

Generate L*, falling intonation. Applies to the next phrase to be sent.

high-low-intonation [FUNCTION]
Generate HI, rise and fall intonation. Applies to the next phrase to be
sent.

paragraph-begin [FUNCTION)

Begin a paragraph, rising pitch. Applies to the next phrase to be sent.

Points in speech space
save-point-in-speech-space name point [FUNCTION)]

Associate name with point, a point in speech space.

define-standard-voice name &rest settings [FUNCTION]

Define a standard voice named name specified by settings, a list of
dimension-value pairs.

get-point-in-speech-space name [FUNCTION]

return predefined point named name.

Dimensions in speech space
list-of-speech-dimensions [FUNCTION]

Return list of speech-space dimension names.

minimum-value dimension [FUNCTION|

Return minimum value for dimension.

maximum-value dimension [FUNCTION]

Return maximum value for dimension.

dimension-range dimension-name [FUNCTION|

Return difference between maximum and minimum values for dimen-
sion dimenston.

105

length-of-subinterval dim n [FUNCTION)

Return length of a subinterval when dimension dim is subdivided into
n — 1 subintervals.

A.3.3 The non-speech audio component

Initializing the non-speech component

initialize-audio-space [FUNCTION)]
Create and initialize the local and global states of the non-speech com-
ponent to default values.

global-audio-state nil [VARIABLE)

Contains global state of the non-speech audio component.

*current-audio-state® nil [VARIABLE)

Contains local state of the non-speech audio component.

The non-speech audio space provides methods on the generic functions for the
assignment statements.

Non-speech space operators

select-sound (point point-in-audio-space) (sound string) [METHOD]
Return point with this sound selected. Sound is the name of a sound-
file.

select-sound (sound string) (point point-in-audio-space) [METHOD]
Return point with this sound selected. Sound is the name of a sound
file.

switch-on (point point-in-audio-space) &key (synchronize nil) [METHOD]

Return a new point with its switch turned on. Executes asynchronously
by default. Call with :synchronize t to synchronize with other ongoing
events.

switch-off (point point-in-audio-space) &key (synchronize nil) [METHOD)

Return a new point with its switch turned off. Executes asynchronously
by default. Call with :synchronize t to synchronize with other ongoing

events.

106

toggle-switch (point point-in-audio-space) &key (synchronize nil) [METHOD]

Return point, with the audio-player switched toggled. Executes asyn-
chronously by default. Call with :synchronize t to synchronize with
other ongoing events.

play-once (point point-in-audio-space) [METHOD)]
Play the sound selected by point once.

move-to (point point-in-audio-space) dimension value &key &allow- [METHOD)]
other-keys

Move from point to value along dimension.

Non-speech events
synchronize-and-play soundfile &key (background-flag nil) [FUNCTION]

wait until all ongoing simple events have stopped executing and then
play soundfile, an audio file. If background-flag is t, then the sound is
played in the background (asynchronously).

Pronunciation
define-pronunciation string pronounced-as &key (mode :text) [FUNCTION]

Define pronounced-as as the pronunciation for string string. The de-
fault is to define this pronunciation for tezt mode. In general, mode is
a keyword symbol that names a pronunciation mode.

A.4 Rendering information structure

This section documents the commands associated with defining rendering rules,
changing rendering styles, and the post-processing required to generate context
sensitive renderings.

A.4.1 Processing the quasi-prefix form
weight object (GENERIC FUNCTION]

Compute the weight of object object. weight is a complexity measure
used to compare mathematical objects. Weight is a memoized function:
it remembers its results between calls.

107

balanced-tree-p (math-object math-object) [METHOD]

Return ¢ if tree rooted here is balanced, i.e., all the children have the
same weight.

special-pattern object [GENERIC FUNCTION)]

Define the special patterns that should be looked for when processing
object. Methods on this function for specific object types specify such
patterns in the form of a case statement, with one case for each pattern
to be identified. Rendering rules that should be applied when special
patterns are seen, can be defined. Example: If we specify ’half as the
special pattern for %, then we can define a rendering rule named ’half for
object math-object. Activating style use-special-patterns and executing
turn-on-special-pattern with argument math-object results in the newly
defined rule being used when rendering expressions containing % This

function is memoized: it remembers its results between computations.

A.4.2 Rendering rules and styles
read-aloud object [GENERIC FUNCTION]

Render object object in audio. An around method on this function
for the principal object type, document, calls the currently active rule
for object. Primary methods on read-aloud for object serve as default
rendering rules. Rendering rules should use read-aloud, rather than a
specific rule, to render sub-objects —unless a specific rendering is to
be hard-wired into the rule.

current-reading-style [FUNCTION)

Return names of currently active rendering styles.

activate-style style [FUNCTION]

Activate style style.

deactivate-style style [FUNCTION)]

Deactivate style style.

activate-rule object-name rule-name [FUNCTION)

Activate rule rule-name for object object-name.

108

deactivate-rule object-name [FUNCTION)

Deactivate currently active rule for object object-name.

reading-rule object-name rule-name [(GENERIC FUNCTION]

Methods on this generic function define named rendering rules. object-
name is the name of a document object type. rule-name is a symbol
that names the rule. Rendering rules are methods on this generic func-
tion that specialize on both object type and rule name. Users of ASTER
should use the interface provided by Lisp macro def-reading-rule when
defining new rules.

def-reading-rule (object-name rule-name) &body body [MACRO]

This macro provides a transparent interface to the underlying imple-
mentation of rendering rules. object-name names the object type, rule-
name is the name of the rendering rule, and body is the body of the
rendering rule. This macro expands to the appropriate method on
generic function reading-rule.

rem-reading-rule object-name rule-name [MACRO)]

Remove rendering rule rule-name for object object-name. This macro
provides an easy-to-use interface to the CLOS function remove-method.

trace-reading-rule object-name rule-name [MACRO)]

Trace rendering rule rule-name for object object-name. This macro
provides an easy-to-use interface to the CLOS function remove-method.

doc-reading-rule object-name rule-name [MACRO)]

Return documentation for rendering rule named rule-name for object
type object-name.

turn-on-special-pattern object-name [FUNCTION]

Turn on special patterns for object type object-name. If special patterns
are turned on, a known special pattern is seen and rendering style use-
special-patterns is active then ASTFR uses a rule that is appropriate for
this context.

turn-off-special-pattern object-name [FUNCTION)]

Turn off special patterns for object object-name.

109

A.5 The browser

This section documents the browser. Below, current position refers to the current
position in the document being browsed. The object at this current position is
referred to as the current selection. The phrases “moving current position” and
“changing current selection” are used synonymously.

Current position
read-pointer [FUNCTION]

Return current position in the document. This points to the object
that was just rendered.

save-pointer-excursion &body body [MACRO]

Preserve the current position in the document when rendering the cur-
rent selection. This macro remembers the current position in the doc-
ument and restores it afterexecution of body. Note: Current position is
accessible by calling read-pointer.

Moving in the browser
move-up &optional (n 1) [FUNCTION)

Move current position up by n levels. The defaultthe is one level.

move-forward &optional (n 1) [FUNCTION|

Move current position forward (to the right) by n. The default is to
move to the next sibling.

move-back &optional (n 1) [FUNCTION]

Move current position backward (to the left) by n. The default is to
move to the previous sibling.

move-above [FUNCTION|
If in a table, then move to the element above the current selection.
Produce an appropriate spoken message if on the top row of a table.

move-below [FUNCTION]

If in a table, then move to the element below the current selection.
Produce an appropriate spoken message if on the bottom row of a
table.

110

move-to-children [FUNCTION)

Move to the children of the current selection.

move-to-contents [FUNCTION)]

Move to the contents of the current selection.

move-to-top-of-math [FUNCTION]

Move to the top of the current mathematical expression —the root of
the internal tree representation.

The next six functions move the current position to the various attributes of a
math object.

move-to-subscript [FUNCTION)]

Move to subscript.

move-to-superscript [FUNCTION|

Move to superscript.

move-to-accent [FUNCTION]

Move to accent.

move-to-underbar [FUNCTION]

Move to underbar.

move-to-left-superscript [FUNCTION]

Move to left-superscript.

move-to-left-subscript [FUNCTION]

Move to left-subscript.

forward-sentence &optional (c 1) [FUNCTION]

Move forward c¢ sentences. Move back if ¢ is negative.

111

Summarize
summarize document [(GENERIC FUNCTION]

Summarize a document object. Methods on this function specify how
different object types are summarized. Summarizing an object pro-
duces a succinct audio rendering sufficient to cue the listener to the
identity of the object.

Rendering in the browser
read-current [FUNCTION]

Render the object at the current position, indicated by read-pointer.
Object will be rendered in the global state.

read-current-relatively [FUNCTION]

Same as read-current except that the object is rendered in the context
in which it occurs. Especially useful when browsing table entries; using
this function places them at the correct spatial location.

Calling any of the following functions affects current position.

read-previous &optional (n 1) [FUNCTION]

Render left sibling if any. n specifies amount by which to move left.

read-next &optional (n 1) [FUNCTION]

Render right sibling if any. n specifies amount by which to move right.

read-children [FUNCTION]

Render the children of the object at the current position.

read-parent &optional (n 1) [FUNCTION|
Move up by n levels and render the resultant selection. The default is
to move up one level and render the parent.

read-rest start-position &optional (read-this-node t) [FUNCTION]

Render rest of the document starting at the current position. Optional
argument read-this-node specifies if current selection should be rendered

as well.

112

read-above [FUNCTION]

If in a table, then render the element above the element at the current
position. Produces appropriate spoken message if on the top row of a
table or outside a table.

read-below [FUNCTION)]

If in a table, then render the element below the element at the current
position. Produces appropriate spoken message if on the bottom row
of a table or outside a table.

read-just-the-node [FUNCTION)]

Render only the node at the current position. Useful when browsing
mathematical expressions. Use this function to listen to the current
term rather than the entire sub-expression rooted at current position.

read-sentence &optional (count 1) [FUNCTION)]

REnder the next count sentences.

Cross references
follow-cross-ref-wait 1 [PARAMETER)

The value of this parameter determines how cross-reference tags are
rendered. If *follow-cross-ref-wait* = 0, then the cross-reference tag is
rendered and the system continues without waiting to check if the user
wishes to follow the cross-reference. If *follow-cross-ref-wait* = n, then
ASTER prompts the user by playing *cross-ref-cue* (a short sound cue)
and waits for n seconds before continuing. If the user presses “y” in

this time, the cross-referenced object is rendered.

read-follow-cross-ref direction-flag [FUNCTION)

Follow and render the closest cross reference.

Bookmarks
mark-read-pointer [FUNCTION]

Mark current location of read pointer.

113

remove-bookmark tag [FUNCTION]

Remove this bookmark.

follow-bookmark [FUNCTION)]

Prompt for a bookmark and render the object marked by it. Does not
affect the current position in the document.

goto-bookmark [FUNCTION)]

Prompt for bookmark and move to this position. Affects current posi-
tion in the document.

A.6 Some CLOS terminology

This section defines some basic CLOS terminology. We refer the reader to [Ste90,
X3J93] for additional details. The definitions given in this section are derived
from an online copy of a draft standard for CLOS, Common Lisp Object System
Specification, by Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya
E. Keene, Gregor Kiczales, and David A. Moon.

CLOS concepts

CLOS is an object-oriented extension to Common Lisp as defined in Common
Lisp: The Language, by Guy L. Steele Jr. It is based on generic functions, multiple
inheritance, declarative method combination, and a meta-object protocol.

The fundamental objects of CLOS are classes, instances, generic functions, and
methods.

A class object determines the structure and behavior of a set of other objects,
which are called its instances. Every Common Lisp object is an instance of a class.
The class of an object determines the set of operations that can be performed on
the object.

A generic function is a function whose behavior depends on the classes or iden-
tities of the arguments supplied to it. A generic-function object contains a set of
methods, a parameter list (lambda-list), a method combination type, and other
information. The methods define the class-specific behavior and operations of the
generic function; a method is said to specialize a generic function. When invoked,
a generic function executes a subset of its methods based on the classes of its
arguments.

A generic function can be used in the same ways that an ordinary function
can be used in Common Lisp; in particular, a generic function can be used as an
argument to funcall and apply.

114

A method is an object that contains a method function, a sequence of param-
eter specializers that specify when the given method is applicable, and a sequence
of qualifiers that is used by the method combination facility to distinguish among
methods. Each required formal parameter of each method has an associated pa-
rameter specializer, and the method will be invoked only on arguments that satisfy
its parameter specializers.

Using CLOS

A class can inherit structure and behavior from other classes. A class whose defi-
nition refers to other classes for the purpose of inheriting from them is said to be
a subclass of each of those classes. The classes that are designated for purposes of
inheritance are said to be superclasses of the inheriting class.

A class Cy is a direct superclass of a class Cq if C2 explicitly designates C as
a superclass in its definition. In this case, C, is a direct subclass of C1. Ch is
a superclass of Cy if there is a series of classes Cs,...,Cp-1 such that Ci41 is a
direct superclass of C; for 1 <7 < n. In this case, C; is a subclass of Cy.

A class can inherit slots (named fields) and methods from its superclasses. A
subclass inherits methods in the sense that any method applicable to all instances
of a class is also applicable to all instances of any subclass of that class. The set
of names of all slots accessible in an instance of a class C is the union of the sets
of names of slots defined by C and its superclasses.

.Like an ordinary Lisp function, a generic function takes arguments, performs a
series of operations, and perhaps returns useful values. An ordinary function has a
single body of code that is always executed when the function is called. A generic
function has a set of bodies of code, of which a subset is selected for execution.
The selected bodies of code, called the effective method, and the manner of their
combination are determined by the classes or identities of one or more of the
arguments to the generic function and by its method combination type.

In standard method combination, primary methods are unqualified methods
and auxiliary methods are methods with a single qualifier that is one of :around.
:before, or :after. Primary methods define the main action of the effective
method, while auxiliary methods modify that action in one of three ways.

1. :before Method specifies code to be executed before applicable primary
methods. Applicable before methods are executed in most-specific-first or-
der.

2. :after Method specifies code to be executed after all applicable primary meth-
ods. After methods are executed in most-specific-last order.

3. :around Method specifies code to be run instead of applicable primary meth-
ods. The most specific around method is called first, and it can pass control

115

to other around methods and, when no other around method is applicable,
to the most-specific primary method.

The method combination facility controls the selection of methods, the order in
which they are run, and the values that are returned by the generic function. CLOS
offers a default method combination type, called standard method combination,
and provides a facility for declaring new types of method combination.

A brief online CLOS tutorial by Jeff Dalton, E-mail: (J.DaltonQed.ac.uk), is
available in FTP://aiai.ed.ac.uk/lisp/random/clos-guide and from the Common Lisp
repository as FTP://ftp.cs.cmu.edu/user/mkant/Lisp/doc/intro/clos-gd.txt.

Appendix B

Accessibility

This chapter defines what we mean by accessible documents and attempts to dispel
some common misconceptions. Throughout this appendix, we address the question
of accessibility of electronic information as it affects persons with visual impair-
ments.

Access to computers

A common mode of providing access to computers has been to design screen-
reading programs, which allow a user to read different parts of a computer display
using text-to-speech. Such screen-reading programs are currently used to provide
access to electronic information as well. Typically, the information is displayed
on the visual display, and the screen-reading application is used to listen to the
text. This approach does provide access to plain textual information. However,
it breaks down when presenting technical information, e.g., written mathematics,
tables, and other forms of highly structured information.

This break-down is a consequence of visually formatted information presenting
the underlying structure using purely layout-oriented cues. When a screen-reading
program speaks such visually laid out information, the underlying structure is not
conveyed. To give an example, consider a table of numbers. When this is spoken
by a screen-reading program (a line at a time), it is impossible to perceive the
underlying structure.

In general, this kind of break-down happens constantly when structured infor-
mation is spoken by a screen-reading program. When we read visual documents,
we perform structured browsing. In general, this is impossible when using the tra-
ditional paradigm of displaying information visually and reading aloud this display.

Note that though the previous paragraphs are critical of the approach taken
by traditional screen-reading programs, they should be regarded not as a criticism
of the screen-reading paradigm itself. Screen-readers are designed to give access

116

117

to computer applications and are appropriate! for the tasks for which they were
originally designed. What we point out here is that it is incorrect to overload
the screen-reading programs with tasks for which they were not designed. There
is a distinct shift in paradigms between providing access to a visual display and
presenting structured information orally, and it is this shift in paradigm that we
emphasize.

How structured information is presented orally should not be constrained by
the way it is displayed visually. Visual information is laid out in a manner most
suited to the visual mode of interaction; oral information should be presented in a
manner most suited to oral communication.

Accessible document encodings

Using the screen-reading paradigm to provide access to electronic information has
resulted in a common misconception that an accessible document is an ASCII
document. This is not true! Though a large number of ASCII documents (elec-
tronic documents that contain plain text with no control codes) are accessible
using screen-reading software, ASCII documents that use implicit visual layout in
the form of spacing and vertical alignment are inaccessible. Thus, an ASCII dis-
play of a fraction or table is inaccessible for the reasons pointed out in the previous
section.

This thesis has focused on the issue of presenting structured information orally
with a view to conveying the underlying structure using audio layout. This kind
of oral presentation requires full access to both the information as well as its un-
derlying structure. Based on our experience, we define accessibility of a document
encoding as follows:

1. Amount of structural information captured by the encoding.

9. The extent to which this structural information is available for processing by
other applications.

3. The availability of the appropriate software needed to process this structure.

Thus, document encodings such as Postscript and PDF? are inaccessible be-
cause extracting document structure from purely visual layout is hard. Similarly,
the internal format used by WYSIWYG (What you see is What you get) systems
is inaccessible, since the assumed mode of presentation is visual.

Document encodings using markup languages such as (IA)TEX are better suited
for oral access to information, because they encode the information in a layout

1This thesis was written using IBM Screen Reader, a screen-reading program, to provide access

to the visual display.
2PDF (Page Description Format) is a portable form of exchanging visually formatted infor-

mation used by the Adobe Acrobat.

118

independent manner. As pointed out in the chapter on recognition (see Chapter 2),
extracting high-level structure from the (I#)TEX source, though possible, is fairly
involved.

The advantage of grammar-based systems like (I8)TEX is that they encapsulate
the information in a manner that allows alternative processing. This advantage is
fully realized by Standard Generalized Markup Language (SGML), which provides
the best possible choice for accessible encodings. Note, however, that a document
does not become accessible simply by being encoded in SGML. The accessibility
of an SGML document is determined by the Document Type Definition (DTD)
to which it adheres. Thus, a DTD that does not capture any high-level structure
leads to inaccessible SGML documents.

Online books

The author has used ASTER to read the following books. The electronic sources
were made available to him by their authors and publishers. These books proved
invaluable as online references and also allowed us to test ASTFR on a sufficiently

large collection of documents.
The works by Kaplansky and Galois were made available by Prof. Keith Dennis

of the Mathematics department.

119

Table B.1: Online books read using ASTER.

” Text

l Author

|

Lisp

Patrick Winston and Bertold Horn

Structure and Interpretation
of Computer Programs

Harold Abelson and

Gerald Sussman

Paradigms of AI Programming

Peter Norvig

IATEX A Document Preparation System

Leslie Lamport

The Design and Analysis of Algorithms

Dexter C. Kozen

Matrix Computations

Charles Van Loan and Gene Golub

Computational Framework for
the Fast Fourier Transform

Charles Van Loan

Algebraic Computation

Richard Zippel

Mathematica: A Practical Reference

Nancy Blachman

A Logical Approach to
Discrete Mathematics

David Gries and
Fred Schneider

Nonlinear Optimization:
Computational Issues

Steve Vavasis

Topics in Commutative Ring Theory

Irving Kaplansky

Ouvres Mathematiques d’Evarist Galois

English translation

Introduction to
C Programming

Brian Kernighan and
and Dennis Ritchie

AWK

Brian Kernighan

A C++ Primer

Stanley B. Lippman

CS611 Programming Languages

Lecture notes

CS681 Design and
Analysis of Algorithms

Dexter Kozen
Lecture Notes

Bulletins of the AMS

(American Mathematical Society)

Bibliography

[ABLS89] B. Arons, C. Binding, K. Lantz, and Christopher Schmandt. A voice

[AM91]

[Arn91]

[Arn92]

[Aro9la)

[Aro91b)

[Aro92al

[Aro92b]

[Aro92c]

[Aro93a]

and audio server for multimedia workstations. In Proceedings of Speech
Tech, pages 86-89, May 1989.

Dennis S. Arnon and S. Mamrak. On the logical structure of math-
ematical notation. Proceedings of the TEX Users Group, 12:479-434,
July 1991.

Dennis Arnon. DocTypes: A Methodology for Managing Structured
Documents of Multiple Types. Xerox PARC, April 1991.

Dennis S. Arnon. Model-directed conversions of IATEX documents.
Proceedings of the TEX Users Group, July 1992. To be published.

B. Arons. The design of audio servers and toolkits for supporting
speech in the user interface. Journal of the American Voice 1/0 Soci-
ety, pages 27-41, March 1991.

B. Arons. Hyperspeech: Navigating in speech-only hypermedia. In
Hypertext 91 ACM, pages 133-146, 1991.

B. Arons. A review of the cocktail party effect. Journal of the Amer:-
can Voice I/0 Society, pages 35-50, July 1992.

B. Arons. Techniques, perception, and applications of time-compressed
speech. In Proceedings of 1992 American Voice I/0O Society, pages 169-
177, September 1992.

B. Arons. Tools for building asynchronous servers to support speech
and audio applications. UIST ’92. Proceedings of the ACM Symposium
on User Interface Software and Technology, pages 71-T78, November
1992.

B. Arons. Hyperspeech. ACM SIGGRAPH Video Review, InterCHI
98 Technical Video Program, 1993. videotape.

120

[Aro93b)

[ASea88]
[Ass86]
[AW91]

[BB9O]

[BCK*93]

[BG90]

[BG93]

[BGBSS)]

[BGK92]

[BGP93]

121

B. Arons. Interactively skimming recorded speech. Proceedings of
the User Interfaces Sofware and Technology (UIST) conference, ACM,
November 1993.

B. Arons, Christopher Schmandt, and et al. The VOX audio server,
version 1.0. Olivetti Research Center, August 1988.

Association of American Publishers. Markup of Mathematical Formu-
las, April 1986. Electronic Manuscript Series.

Dennis S. Arnon and Carl Waldspurger. Meddle: A Structure Editor
for Mathematical Notation, February 1991. Draft Manuscript.

Jr. Allen L. Brown and Howard A. Blair. A logic grammar foundation
for document representation and document layout. In Proceedings of
the International Conference on Electronic Publishing, Document Ma-
nipulation & Typography, pages 47-64. Cambridge University Press,
September 1990.

Robin Bargar, Meera M. Blattner (Chair), Gregory Kramer, Julius
Smith, and Elizabeth Wenzel. Panel: Effective uses of nonspeech audio
in virtual reality. Proceedings of the IEEE Symposium on Research
Frontiers in Virtual Reality, October 1993.

Eric A. Bier and Aaron Goodisman. Documents as user interfaces.
In Proceedings of the International Conference on Electronic Publish-
ing, Document Manipulation & Typography, pages 249-262. Cambridge
University Press, September 1990.

M. M. Blattner and R. M. Greenberg. Communicating and learning
through mon-speech audio. Multimedia Interface Design in Education.
NATO ASI Series. Springer-Verlag, February 1993.

W. Buxton, W. Gaver, and S. Bly. The use of nonspeech audio at the
interface. Tutorial Notes, CHI ’88., 1988.

R. M. Blattner, M. M. Greenberg, and M. Kamegai. Listening to tur-
bulence: An example of scientific audiolization. Multimedia Interface
Design, pages 87-102, 1992.

Meera M. Blattner, Ephraim P. Glinert, and Albert L. Papp. Sonic
Enhancements for 2-D Graphic Displays, and Auditory Displays. To
be published by Addison-Wesley in the Santa Fe Institute Series. IEEE,
1993.

[BLJS6]

[Bor88]

[Bro88]

[Bro91]

[Bro92]

[Bux89)

[Caj30]

[Cha83]

(CJ90]

[Dav88]

[Dav89]

[DHS8)

122

M. M. Blattner, Mansur D. L., and K. L. Joy. Sound-graphs: A numer-
ical data analysis method for the blind. Proceedings of the Hawaiian
International Conference on System Science, 1986.

P. Borras. Centaur: the system. In Proceedings of the SIGSOFT’88,
Third Annual Symposium on Software Development Environments,
Boston, Massachusetts, 1988.

Kenneth P. Brooks. A two-view document editor with user-definable
document structure. DEC SRC Research Report, 1(33), November

1988.

Mark H. Brown. Color and sound in algorithm animation. Technical
report, DEC Systems Research Center, 130 Lytton Avenue, Palo Alto,
CA 94301, August 1991.

Mark H. Brown. Zeus: A system for algorithm animation and multi-
view editing. Technical report, DEC Systems Research Center, 130
Lytton Avenue, Palo Alto, CA 94301, February 1992.

W. Buxton. Introduction to this special issue on nonspeech audio.
Human Computer Interaction, 4(1):1-9, 1989.

Florian Cajori. A History of Mathematical Notations, volume I-II. The
Open Court Publishing Company, Chicago, IL., 1928-1930. Contents:
vol. L. Notations in elementary mathematics. vol. II. Notations mainly
in higher mathematics.

Larry A. Chang. Handbook for Spoken Mathematics. Lawrence Liver-
more National Laboratory, 1983.

Gil C. Cruz and Thomas H. Judd. The role of a descriptive markup
language in the creation of interactive multimedia documents for cus-
tomized electronic delivery. In Proceedings of the International Confer-
ence on Electronic Publishing, Document Manipulation & Typography,
pages 277-290. Cambridge University Press, September 1990.

James R. Davis. A voice interface to a direction giving program. Tech-
nical Report 2, MIT Media Laboratory Speech Group, April 1988.

James R. Davis. Back Seat Driver: Voice Assisted Automobile Nav-
igation. Ph.D. dissertation, Massachusetts Institute of Technology,
September 1989.

James R. Davis and Julia Hirschberg. Assigning intonational features
in synthesized spoken directions. In Proceedings of the Association for
Computational Linguistics, pages 187-193, 1988.

[DS89]

[DS90]

[DT87]

[F.92]

[FBN+90]

[FS89]

[Gav93]
[Gol90]
[Gro86]

[Har88]

[Her89]

[Her90]

123

James R. Davis and Christopher Schmandt. The back seat driver: Real
time spoken driving instructions. In Vehicle Navigation and Informa-
tion Systems, pages 146-150, 1989.

James R. Davis and Christopher Schmandt. Discourse strategies for
conversations in time. In Proceedings of the AVIOS 1990 Conference,
pages 21-26, 1990.

James R. Davis and Thomas F. Trobaugh. Direction assistance. Tech-
nical Report 1, MIT Media Laboratory Speech Group, December 1987.

Jr. McKiel F. Audio-enabled graphical user interface for the blind or
visually impaired. Proceedings of the Johns Hopkins National Search
for Computing Applications to Assist Persons with Disabilities (Cat.
No.92TH0429-1), pages 185-7, 1992.

Richard Furuta, Heather Brown, Steven R. Newcomb, Roberto Minio,
Vincent Quint, Roy Rada, and Laurence A. Welsch. Hypertext and
electronic publishing. In Proceedings of the ECHT 90 European Con-
ference on Hypertext, Panels, pages 347-353. Cambridge University

Press, 1990.

Richard Furuta and P. David Stotts. Programmable browsing seman-
tics in trellis. In ACM Hypertext’89 Proceedings, Navigation in Con-
text, pages 27-42. ACM, 1989.

William Gaver. Synthesizing auditory icons. Proceedings of INTER-
CHI 1993, pages 228-235, April 1993.

Charles F. Goldfarb. The SGML handbook. Oxford: Clarendon Press;
Oxford; New York: Oxford University Press, 1990.

Barbara J. Grosz. Attention, intentions, and the structure of discourse.
Computational Linguistics, 12(3):175-204, July-September 1986.

Michael Harrison. Vortez: An interactive document preparation sys-
tem, volume 236 of Lecture Notes in Computer Science, page 21.
Springer Verlag, January 1988.

Susan R. Hertz. The delta programming language: An integrated ap-
proach to non-linear phonology, phonetics and speech synthesis. Pa-
pers in laboratory phonology I: Between the grammar and the physics
of speech, 1989.

Susan R. Hertz. A modular approach to multi-dialect and multi-
language speech synthesis using the delta system. Proceedings of the
workshop on speech synthesis, 1990.

[Her91]

[Hir90a]

[Hir90b]

[Hir91)

[HLPW87

[HPS6]

[HPR92]

[HW84]

[HWS89)]

[HW91]

[JSBG86]

124

Susan R. Hertz. Streams, phones and transitions: Towards a new
phonological and phonetic model of formant timing. Journal of Pho-
netics, 19:91-109, 1991.

Julia Hirschberg. Assigning pitch accent in synthetic speech: The
given/new distinction and deaccentability. In Proceedings of the Sev-
enth National Conference, pages 952-957, Boston, 1990. American As-
sociation for Artificial Intelligence.

Julia Hirschberg. Using discourse context to guide pitch accent deci-
sions in synthetic speech. In Proceedings of the European Speech Com-
munication Association Workshop on Speech Synthesis, pages 181-184,
Autrans, France, 1990.

J. Hirschberg. Using text analysis to predict intonational boundaries.
In Proceedings of the Second European Conference on Speech Commu-
nication and Technology, Genoa, 1991. ESCA.

J. Hirschberg, D. Litman, J. Pierrehumbert, and G. Ward. Intonation
and the intentional structure of discourse. In Proceedings of IJCAI-87,
Milan, 1987. International Joint Conference on Artificial Intelligence.

J. Hirschberg and J. Pierrehumbert. The intonational structuring of
discourse. In Proceedings of the 24th Annual Meeting, pages 136-144,
New York, 1986. Association for Computational Linguistics.

E. Van Herwijnen, N. A. F. M. Poppelier, and C. A. Rowley. Standard
DTDs and scientific publishing. EPSIG News, 3:10-19, 1992.

J. Hirschberg and G. Ward. A semantico-pragmatic analysis of fall-
rise intonation. In Proceedings of the 20th Meeting. Chicago Linguistic
Society, 1984.

Berthold K. P. Horn and Patrick Henry Winston. LISP. Addison-
Wesley, Reading, Mass, third edition, 1989.

J. Hirschberg and G. Ward. The influence of pitch range, duration,
amplitude, and spectral features on the interpretation of 1*+h 1 h%.
Journal of Phonetics, 1991.

K. L Joy, D. A. Sumikawa, M. M. Blattner, and R. M. Greenberg.
Guidelines for the syntactic design of audio cues in computer inter-
faces. Nineteenth Annual Hawaii International Conference on System
Sciences, 1986.

[Kat87]
[K1a87]

[KLMNOO]

[Knu84]
[Knu86]

[KS84]

[Lam86)
[LB87]

[Lev88]

[LG90]

[LOST6]

[LPT+93)

125

A. Katz. Issues in defining an equations representation standard. ACM
SIGSAM Bulletin, 21(2):19-24, 1987.

Dennis H. Klatt. Review of text-to-speech conversion for English.
Acoustic Society of America Journal, 82(3):737-783, September 1987.

Pekka Kilpelainen, Greger Linden, Heikki Mannila, and Erja Nikunen.
A structured document database system. In Proceedings of the Inter-
national Conference on Electronic Publishing, Document Manipulation
& Typography, pages 139-151. Cambridge University Press, September
1990.

Donald E. Knuth. The TgXbook. Addison-Wesley, Reading, Mas-
sachusetts, 1984.

Donald E. Knuth. 7gX The Program. Addison-Wesley, Reading,
Mass., 1986.

Gary D. Kimura and Alan C. Shaw. The structure of abstract docu-
ment objects. In Proceedings of the Conference on Office Automation
Systems, Document Modeling and Management, pages 161-169. ACM,
1984.

Leslie Lamport. IATEX: A Document Preparation System. Addison-
Wesley, Reading, Mass., 1986.

A. Lippman and W. Bender. News and movies in the 50 megabit living
room. IEEE GlobeCom Proceedings, (Tokyo, Japan, Nov. 1987).

David M. Levy. Topics in document research. In ACM Conference
on Document Processing Systems, pages 187-193, December 5-9 1988.
Santa Fe, New Mexico.

Jose Valdeni De Lima and Henri Galy. The integration of structured
documents into DBMS. In Proceedings of the International Conference
on Electronic Publishing, Document Manipulation & Typography, pages
153-168. Cambridge University Press, 1990.

I. Lehiste, J. Olive, and L. Streeter. Role of duration in disambiguating
syntactically ambiguous sentences. Journal of the Acoustical Society of
America, 60:1199-1202, 1976.

Thomas M. Levergood, Andrew C. Payne, G. Winfield Treese, James
Gettys, and Lawrence C. Stewart. Audiofile: A network-transparent
system for distributed audio applications. Useniz, 1993.

[ME92)

[MOB90]

[OKDAT3]

[Org90]

[PH90]

[PI88]

[Pie8l)

[PR92]

[PS88]

[QNA90]

[QV92]

[Ram89]

126

Elizabeth D. Mynatt and W. Keith Edwards. Mapping GUIs to audi-
tory interfaces. Proceedings ACM UIST92, pages 61-70, 1992.

S. A. Mamrak, C. S. O’Connell, and J. A. Barnes. The integrated
chameleon architecture: A software toolset to support data translation.
Technical Report OSU-CISRC-11/90-TR37, Department of Computer
and Information Science, The Ohio State University, November 1990.

M. M. O’Malley, D. Kloker, and B. Dara-Abrams. Recovering paren-
theses from spoken algebraic expressions. IEEE Trans. Audio Electroa-
coust., AU-21:217-220, June 1973.

International Standards Organization. Information Technology: for
Using SGML. 1SO/IEC, 1990.

J. Pierrehumbert and J. Hirschberg. The meaning of intonational con-
tours in the interpretation of discourse. In Intentions in Communica-
tion. MIT Press, Cambridge MA, 1990.

W. Timothy Polk and Lawrence E. Bassham III. A window and icon
based prototype for expert assistance for manipulation of SGML doc-
ument type definitions. In ACM Conference on Document Processing
Systems, Document Standards, pages 79-84. ACM, 1988.

Janet Pierrehumbert. Synthesizing intonation. Journal of the Acous-
tical Society of America, 70(4):985-995, October 1981.

Gilbert B. Porter and Emil V. Rainero. Document reconstruction: A
system for recovering document structure for layout. FElectronic Pub-
lishing, 1992.

Lynne A. Price and Joe Schneider. Evolution of an SGML applica-
tion generator. In ACM Conference on Document Processing Systems,
Experience with Document Standards, pages 51-60. ACM, 1988.

Vincent Quint, Marc Nanard, and Jacques Andre. Towards document
engineering. In Proceedings of the International Conference on Elec-
tronic Publishing, Document Manipulation & Typography, pages 17-29.
Cambridge University Press, September 1990.

Vincent Quint and Irene Vatton. Combining hypertext and structured
documents in grif. In Proceedings of the Fourth ACM Conference on
Hypertezt, Systems I, pages 23-32. ACM, 1992.

T. V. Raman. CONGRATS: Converting graphics to sound. Masters
dissertation, Indian Institute of Technology, Bombay, May 1989. Mas-
ters thesis report.

[Ram91]
[Ram92]

[Res92]

[RK92]

[RTS4]

[RT88a)

[RT88b]

[RW8S5]

[SA89]

[SASH93]

[SB92)

[SF88]

[SF90]

127

T. V. Raman. TEXTALK. TUGboat, 12:178, March 1991.

T. V. Raman. An audio view of (IA)TgXdocuments. Proceedings of the
TEX Users Group, 13:372-379, July 1992.

Paul Resnick. HyperVoice: Groupware by Telephone. Ph.D. disserta-
tion, MIT, 1992.

T. V. Raman and M. S. Krishnamoorthy. Congrats: A system for
converting graphics to sound. Proceedings of IEEE on Johns Hopkins
National Search for Computing Applications to Assist Persons with
Disabilities, pages 170-172, February 1992.

T. Reps and T. Teitelbaum. The synthesizer generator. Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages 42-48, 1984.

T. Reps and T. Teitelbaum. The Synthesizer Generator: A System for
Constructing Language-Based Editors. Springer-Verlag, NY, 1988.

T. Reps and T. Teitelbaum. The Synthesizer Generator Reference
Manual. Springer-Verlag, Third edition, 1988. First edition, Cornell
University, August, 1985; Second edition, Cornell University, June,
1987.

S. Roucos and A. M. Wilgus. High quality time-scale modification
for speech. Proceedings of the International Conference on Acoustics,
Speech and Signal Processing, pages 493-496, 1985.

C. Schmandt and B. Arons. Getting the word (desktop audio). Uniz
Review, 7:54-62, October 1989.

L. J. Stifelman, B. Arons, C. Schmandt, and Eric Hulteen. Voicenotes:
A speech interface for a hand-held voice notetaker. Proceedings of
INTERCHI Conference, ACM SIGCHI, 1993.

Manojit Sarkar and Mark H. Brown. Graphical fish eye views of graphs.
Technical Report, March 1992.

P. David Stotts and Richard Furuta. Adding browsing semantics to
the hypertext model. In ACM Conference on Document Processing
Systems, Hypertext, pages 43-50. ACM, 1988.

P. David Stotts and Richard Furuta. Hierarchy, composition, scripting
languages, and translators for structured hypertext. In Proceedings of
the ECHT’90 European Conference on Hypertezt, Turning Text into
Hypertext, pages 180-193. Cambridge University Press, 1990.

[SFR92]

[SGMS6]

[SMG90]

[Ste90]
[Str78]

[Tec91]

[Ver90]

[WF90]

[WH91]

[WWK91]

[X3J93]

128

P. David Stotts, Richard Furuta, and J. Cyrano Ruiz. Hyperdocuments
as automata: Trace-based browsing property verification. In Proceed-
ings of the Fourth ACM Conference on Hypertezt, Architecture, pages
272-281. ACM, 1992.

International Organization for Standardization. Information Process-
ing: Text and Office Systems: Standard Generalized Markup Language
SGML, October 1986. ISO 8879-1986 E.

D. A. Sumikawa, Blattner M. M., and R. M. Greenberg. Earcons and
icons: Their structure and common design principles. Visual Program-
ming Environments, 1990.

Guy L. Steele. Common Lisp The Language. Digital Press, Bedford,
Mass, second edition, 1990.

Lynn Streeter. Acoustic determinants of phrase boundary perception.
Acoustics Society of America, Journal, 64(6):1582-1592, 1978.

Institute On Applied Technology. MultiVoice 1.0 —Quwner’s and
Programmer’s Manual. Institute On Applied Technology, 300 Long-
wood Avenue, Boston, MA 02115, 1991. The MultiVoice is based on
Dectalk 3.0.

Anne-Marie Vercoustre. Structured editing - hypertext approach: Co-
operation and complementarity. In Proceedings of the International
Conference on Electronic Publishing, Document Manipulation & Ty-
pography, pages 65-78. Cambridge University Press, September 1990.

Elizabeth M. Wenzel and Scott H. Foster. Real time digital synthesis
of virtual acoustic environments. Computer Graphics, Special Issue on
1990 symposium on interactive 3d graphics, 24.2, March 1990.

Michelle Q. Wang and Julia Hirschberg. Predicting intonational
boundaries automatically from text: The ATIS domain. In Proceed-
ings. DARPA Speech and Natural Language Workshop, February 1991.

Elizabeth M. Wenzel, Fredric L. Wightman, and Doris J. Kistler. Lo-
calization with non-individualized virtual acoustic display cues. Pro-

ceedings of the ACM, 1991.

Accredited Standards Committee X3J13. Programming Language —
Common Lisp— Draft Proposed. CBEMA, 1993. Available from
FTP://parcftp.xerox.com/pub/cl/dpANS2.

[Yel88]

[ZP86]

129

Daniel M. Yellin. Attribute Grammar Inversion and Source-To-Source
Translation. Springer-Verlag, Berlin, New York, 1988.

Ingrid Zuckerman and Judea Pearl. Comprehension-driven generation
of meta-technical utterances in math tutoring. In Proceedings of the
Fifth National Conference, pages 606-611, Philadelphia, 1986. AAAIL

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif
	pdftemp/0131.tif
	pdftemp/0132.tif
	pdftemp/0133.tif
	pdftemp/0134.tif
	pdftemp/0135.tif
	pdftemp/0136.tif
	pdftemp/0137.tif
	pdftemp/0138.tif
	pdftemp/0139.tif
	pdftemp/0140.tif
	pdftemp/0141.tif
	pdftemp/0142.tif
	pdftemp/0143.tif
	pdftemp/0144.tif
	pdftemp/0145.tif

