
INFORMATIQUE THÉORIQUE ET APPLICATIONS

BERND BORCHERT

DIETRICH KUSKE

FRANK STEPHAN
On existentially first-order definable languages
and their relation to NP
Informatique théorique et applications, tome 33, no 3 (1999),
p. 259-269
<http://www.numdam.org/item?id=ITA_1999__33_3_259_0>

© AFCET, 1999, tous droits réservés.

L’accès aux archives de la revue « Informatique théorique et applications » im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.
org/conditions). Toute utilisation commerciale ou impression systématique est
constitutive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=ITA_1999__33_3_259_0
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Theoretical Informaties and Applications
Theoret. Informaties Appl. 33 (1999) 259-269

ON EXISTENTIALLY FIRST-ORDER DEFINABLE
LANGUAGES AND THEIR RELATION TO NP *

BERND BORCHERT1, DIETRICH KUSKE2 AND FRANK STEPHAN1

Abstract. Under the assumption that the Polynomial-Time
Hierarchy does not collapse we show for a regular language L: the un-
balanced polynomial-time leaf language class determined by L equals
NP iff L is existentially but not quantifierfree definable in FO[<,min,
max, +1, — 1]. Furthermore, no such class lies properly between NP
and co-l-NP or NP©coNP. The proofs rely on a resuit of Pin and
Weil characterizing the automata of existentially first-order definable
languages.

Resumé. Sous Phypothèse que la hiérarchie de temps polynomial est
stricte, nous montrons que, pour un langage régulier L, la classe des
langages de feuille de la hiérarchie polynomiale associée à L est égale à
NP si et seulement si L est définissable dans FO[<, min, max, +1, — 1]
par une formule existentielle comportant au moins un quantificateur.
De plus, il n'existe aucune classe de ce type entre NP et co-l-NP ou
NP©co-NP. Les preuves reposent sur un résultat de Pin et Weil qui
caractérise les automates des langages définissables par des formules
existentielles du premier ordre.

AMS Subject Classification. 03D05, 68Q15, 68Q68.

1. INTRODUCTION

NP is the set of languages A for which there is a nondeterministic polynomial-
time Turing machine (NPTM) M such that a word x is in A iff some computation
path of the computation tree M(x) accepts. It is easy to see that for example the
following définition also yields the class NP (note that an NPTM defines in an
obvious way an order on the computation paths) : NP is the set of languages A for

Keywords and phrases: Leaf languages, NP, first-order definable languages.

* Supported by the Germon Research Foundation (DFG).
1 Universitàt Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany;
e-mail: bb@math.uni-heidelberg.de fstephan@math.uni-heidelberg.de
2 Institut für Algebra, Technische Universitàt Dresden, 01062 Dresden, Germany;
e-mail: kuske@math.tu-dresden.de

© EDP Sciences 1999

260 B. BORCHERT, D. KUSKE AND F. STEPHAN

which there is an NPTM M such that a word x is in A iff there is an accepting path
p of the computation tree of M(x) and the next path p+1 in that computation tree
does not accept. Yet another example of a characterization of NP is the following:
NP is the set of languages A for which there is an NPTM M such that a word x
is in A iff there is an accepting path p of the computation tree of M(x) and some
later path pf > p in that computation tree of M(x) does not accept.

The reader will notice that by writing a 1 for acceptance and a 0 for rejection
the above three examples of définitions of NP can easily be described by languages:
the language corresponding to the first standard définition is £*1£*, the language
corresponding to the second example is £*10S*, and the language corresponding
to the third is E*1E*OE*. This concept is the so-called leaf language approach of
characterizing complexity classes, more precisely: the polynomial-time unbalanced
one, see Borchert [2] (the first paper about leaf languages by Bovet et al [3] used
the balanced approach).

We had three examples of languages such that the complexity class characterized
by it equals NP. Now an obvious question is of course: which are exactly the
languages that characterize NP? — at least we would like to know which regular
languages characterize NP. Because the regular language IE* characterizes the
complexity class P we would, with an answer to that question, solve the P —
NP? question. Therefore, we cannot expect an absolute answer. But under the
assumption that the Polynomial-Time Hierarchy (PH) does not collapse we are
able to give the following answer (see Th. 3.4).

Assume that PH does not collapse. Then a regular language L charac-
terizes NP as an unbalanced polynomial-time leaf language if and only
if L is existentially but not quantifierfree definable in the first-order
logic FO[<, min, max, +1,-1] .

The proof heavily relies on the results of Pin and Weil [9] characterizing the ordered
syntactic monoids and the finite automata of the existentially definable languages.

Borchert [2] showed that under the assumption that PH does not collapse there
is no class characterized by a regular leaf language properly between P and NP
and neither between P and co-NP. In this paper we will prove such an emptiness
resuit for the intervals between NP and co-l-NP and between NP and NP©co-NP
(see Th. 3.5).

2. L A N G U A G E - T H E O R E T I C RESULTS

Let in this paper languages be over the alphabet E = {0,1}. We consider the
usual model of defining languages by formulas, see for example [8,10,11]. Like
in [11] we will use the extended first-order logic F0[<,minïmax, +1, -1] from
now on called FOX (with X for "extension") instead of the usual first-order logic
FO[<]. The additional functions min, max (both 0-ary) and -hl, —1 (both 1-
ary) are definable in FO[<], but on the level of existential definability FOX is
strictly more powerful than FO[<], Formulas in FOX are interpreted over words,
ie . a variable x indicates a position in a word. In a word of length n there

EXISTENTIALLY DEFINABLE LANGUAGES AND NP 261

are the positions 0, . . . , n — 1 and the relation < is the usual "properly-smaller"-
relation on the natural numbers. The constant min stands for position 0, max
stands for position n — 1. x + 1 is the usual successor function with the exception
(n — 1) + 1 := n — 1, likewise x — 1 is the usual predecessor function. It is possible
to define with a FOX-sentence (a sentence is a formula without free variables)
a language in {0,1}+ in the following usual way. Choose a predicate name Q
and build a FOX-sentence ƒ containing it as a unary relation symbol. For any
length-n word w G {0, l } n let Qw be the predicate Qw(i) = true iff w has the
letter 1 in position z. For a given word w and a FOX-sentence ƒ containing the
predicate symbol Q> the predicate variable Q is interpreted as the predicate Qw,
and now ƒ either évaluâtes to true or to false. This way, each FOX-sentence
ƒ containing a 1-ary relation variable Q defines a language in {0,1}*, namely
the set of all words w such that ƒ évaluâtes to true when Q is interpreted as
Qw. A language L is existentially definable in FOX if there is an existentially
quantified sentence of FOX in prenex normal form defming L. For example, the
sentence 3x(Q(x)) is an existentially quantified sentence of FOX and defines the
language £*1£*. Another example is the sentence 3x3y(x < y A Q{x) A ~^Q{y))
defining the language £*l£*0£*. Similarly, the language E*10£* is defined by
the sentence 3x(Q(x) A^Q(x+l)). Note that the three languages £*1£*, £*10£*
and £*l£*0S* were already mentioned in the introduction as examples of leaf
languages for NP. An example of a universally quantified sentence is \/x(^Q(x))1

it defines the language 0*. The set of FOX-definable languages (with any number
of quantifier alternations) is a proper subset of the set of regular languages, namely
the set of star-free regular languages, see for example [8,10,11].

A language L is generalized definite iff it is a Boolean combination of finite
languages and of languages of the form vY,*w for some words v and u>. A lan-
guage in £ + has dot-depth 1/2 if it is the finite union of languages of the form
w\Ti

kW2T1
kw^ ... £*u>n where tui,.. . ,wn are nonempty words, i.e. it is the finite

union of products of generalized definite languages. Finite automata are defined
as usually, see for example [8,10], we consider them to be deterministic.

We say that a finite automaton contains the co-UP -pattern if there are two
reachable states p, 3, a nonempty word v G S + and two words w, z € £* such that
p.v — py q.v = ç, p.w — q, and p.z is an accepting state and q.z is not an accepting
state, see Figure 1 where F dénotes the set of accepting states of the automaton
(the strange name of this pattern is justified by Lem. 3.2). The UP-pattern is
defined like the co-UP-pattern by exchanging "e F" and "^ F".

The part (a) <=^ (b) in the following theorem is due to Thomas [11]. The
équivalence (b) <==> (c) is a direct reformulation of [9], Theorem 8.15 by Pin and
Weil.

Theorem 2.1 (Thomas [11], Pin and Weil [9]). For a language L it is equivalent:
(a) L is existentially (universally, quantifierfree) definable in FOX;
(b) L has dot-depth 1/2 (the complement of L has dot-depth 1/2, is generalized

definite);
(c) L is accepted by afinite automaton which does not contain the co-UP-pattern

(the UP-pattern, neither the co-UP nor the UP -pattern),

262 B. BORCHERT, D. KUSKE AND F. STEPHAN

FIGURE 1. co-UP-pattern.

FIGURE 2. co-NP-pattern.

V V V

FIGURE 3. co-1-NP-pattern.

FIGURE 4. n-counting pattern.

We define more patterns: the co-NP-pattern, the co-1-NP-pattern and the count-
ing pattern (Figs. 2, 3 and 4). The co-NP-pattern looks like the co-UP-pattern,
with an additional u?-loop at g, i.e. q.w = q. In the co-l-NP-pa££ern, v ^ e
and p.v = p, q.v = q and qi.v = qi> Furthermore, p.w = #, q.w — ci and
qi.w — qi+i for i = 1 ,2 , . . . , n — 1 and qn.w = qn. Finally, p.z E F, q.z ^ F
and qi.z e F for % — 1, 2 , . . . , n. An automaton contains the counting pattern (for

EXISTENTIALLY DEFINABLE LANGUAGES AND NP 263

the number n) if there are two reachable states p, q and two words u>, z such that
p.w = q^q.w71'1 = p and p.z £ F and <?.z ^ F . Note that a minimal automa-
ton contains the counting pattern iff it is not counterfree. Finally, the NP-pattern
and the 1-NP-pattern are defined like the co-NP-pattern and the co-1-NP-pattern,
respectively, by exchanging "€ F" and "0 F".

The following Corollary 2.2 will be the bridge from Theorem 2.1 to the results
about complexity classes presented in the next section,

Corollary 2.2. Let A be the minimal automaton accepting the regular language
L. Then L is not existentially (universally) definable in FOX iff A contains at
least one of the following patterns:

(1) the counting pattern;
(2) the co-NP-pattern (the NP-pattern);
(3) the co-l-NP-pattern (the 1-NP-pattern).

Proof We give the proof for the existentially definable languages: suppose the
automaton A contains one of these patterns. Since each of the patterns contains
the co-UP-pattern, L is not existentially definable in FOX by Theorem 2.1.

For the other direction let L be a regular language which is not existentially
definable in FOX and assume that A does not contain the counting pattern, ie .
that A is counterfree [8]. Because L is not existentially definable in FOX the
automaton A contains the co-UP-pattern, Le. there is a state p and words v, w, z
with v € S + such that p.v = p, p.wv = p.w, p.z G F and p.wz £ F. With
x :— wvn where n is the number of states of the minimal automaton A one gets
p.xn = p.xn+l since the automaton is counter-free. Then some state p.x1 with
0 < i < n together with p.xn and the words v1x

n~'L and z forms the co-NP-
or the co-1-NP-pattern depending on whether p.xnz £ F or p.xnz e F. The
characterization of the languages not universally definable works dually. •

3. AN APPLICATION TO THE LEAF LANGUAGE CHARACTERIZATION

OF N P

In this section we will give an application of the results from the previous sec-
tion to the question which leaf languages characterize the complexity class NP. An
informai idea of the leaf language concept was already given in the introduction.
Let us be a bit more formai (for a detailed définition and more examples and
motivation see [2]). Consider the computation tree given by a nondeterministic
polynomial-time Turing machine (NPTM) M which runs on an input x. Note that
by the original définition of nondeterminism the tree is not necessarily balanced.
Also note that there is a natural order on the paths of the tree: if at some con-
figuration there appears nondeterminism the Turing machine M gives a natural
linear order on the different possible following configurations: this order is given
by the order of the commands in the list representing the transition table. Given
the computation tree, label every accepting final configuration with 1 and each re-
jecting final configuration with 0. This way one gets an ordered tree in which the
leaves are labeled by 0 and 1, see Figure 5. The word consisting of the leaf labels

264 B. BORCHERT, D. KUSKE AND F. STEPHAN

0 0

FIGURE 5. Computation tree (whose yield is 1001110100).

read from left to right is called the yield of the tree. Let any language L Ç E+

over the alphabet £ = {0,1} be given. Let M be a NPTM. A word x is in the
language M[L] iff the yield of the computation tree of M running on input x is in
L. Then the (unbalanced polynomial-time) leaf language class L- P is the set of
all languages M[L] for some NPTM M.

Example. In the introduction we already mentioned that NP = S*l£*- P =
E*10E*- P = £*l£*0£*- P. As another example, 0*- P = co-NP. It is easy to
see that. IE* - P = P. The classes MOD„P for each n > 2 are defined as Cn - P
where Cn is the set of words w such that the number of 1 's in w is not a multiple
of ra, see [1]. The two trivial leaf languages are 0 and £ + , it holds 0 - P = {0}
and E + - P = {E*}. The join of NP and co-NP, NP © co-NP, is characterized
as J- P where J = 00* U 10*, it is the smallest class among all classes L- P
containing both NP and co-NP, see [2], Proof of Proposition 2c. Another example
is the class UP, a so-called promise class: it is the set of all languages A for which
there is an NPTM M such that the yield of the computation tree M(x) is in
0* or 0*10* fox every x, and a word x ïs in A iff the yield of the computation
tree is in 0*10*. We give the définition of UP and its set of compléments co-UP
just in order to explain the name of the corresponding pattern (see Lem. 3.2);
we do not use them for our results. The class 1-NP = 0*10*- P and its class
of compléments co-l-NP = 0*10*- P will be crucial for our main resuit. Note
that co-NP C 1-NP Ç DP and NP Ç co-l-NP C co-DP, where DP and co-DP
are the two classes of the second level of the Boolean Hierarchy over NP which
is contained in P(NP) and therefore contained in S | and H ,̂ see for example [5].
Remember that both DP and co-DP contain both NP and co-NP. Figure 6 gives
an idea about the location of 1-NP and co-l-NP.

The followïng theorem shows that under the assumption that PH does not
collapse also other séparations can be proven.

Theorem S.l. Assume that PH does not collapse.
(1) (Chang; et al [6]) 1-NP (co-l-NP) is not contained in co-DP (DP), and

therefore neither contained mNP7 co-NP; NP©co-NP, nor co-l-NP (1-NP).

EXISTENTIALLY DEFINABLE LANGUAGES AND NP 265

co-DP

co-l-NP

DP

NP ér NP©co-NP > co-NP MOD3P

FIGURE 6. 1-NP and co~l-NP.

(2) (Toda [12]) For n > 2, MODnP is not contained in PH and therefore
neither contained in NP? co-NP, NP ® co-NP, 1-NP, nor co-l-NP.

The following Lemma 3.2 gives the main link between patterns in automata and
complexity classes, it also explains the names of the patterns.

Lemma 3.2. Let L be the language accept ed by a finit e automaton A where any
state is reachabïe from the initial state.
(1) Let X be in {NP,co-NP,l-NP;co-l-NP,UP,co-UP}. If A contains the X-

pattern then X is a subset of L- P.
(2) If A contains a counting pattern, then MODpP is a subset of L- P for some

prime p.
(3) If A contains both the NP- and the co-NP-pattern, then NP ® co-NP is a

subset of L~~ P.
Proof (1) This proof is very similar to the one of [2], Lemma 5. We give it for
the case X — co-NP, only. Let the automaton A contain the co-NP-pattern, see
Figure 2. Let the state p be reachabïe from the initial state by the word a. We
want to show that co-NP is included in L- P. It suffices to construct for every
NPTM M an NPTM M1 such that M[0*] = Mf[L], Given Af, let M' be the
following machine. On input xy Ml initially branches nondeterministically int o
three subtrees. The left (right) one consists of \a\ (\z\) computation paths with a
(z) written on them, this way the yield of the computation tree Af'(ar) will have the
prefix a (the suffix z, respectively). The middle subtree simulâtes the computation
of M including the nondeterministic branchings. Everytime M accepts (rejects)
it produces the word w (the word v) by extending that computation path of M
by \w\ (by \v\) new computation paths. By this construction, Mf(x) has a similar
computation tree as Af(x), besides that every 0 is replaced by a tree for v and
every 1 is replaced by a tree for wr and at the leftmost and rightmost part there
are computation paths for a and z, respectively. Thus, the yield is in a{vyw}*z.
In particular, it reaches one of the states p.z and q.z. Looking at Figure 2 one

266 B. BORCHERT, D. KUSKE AND F. STEPHAN

can easily verify: the yield of the computation tree Mf(x) is in L iff the yield of
the computation tree M(x) belongs to 0*, Le, Mf[L] — M[0*] as desired. For the
other patterns the proof (including the construction of M') is the same.

(2) Let B be the minimal automaton accepting L. With A, the automaton B
contains an n-counting pattern. Let p be some prime factor of n, Using that B is
minimal, it is easily seen that B contains a p-counting pattern (where u is replaced
by u71^). Now the construction from (a) complètes the proof.

(3) This follows immediately from (a) and the fact that NP©co-NP is the small-
est class L- P containing both NP and co-NP. D

Remark. It seems that Lemma 3.2 above is not possible for the polynomial-time
balanced leaf language classes. Because this connection between the automata pat-
terns and complexity classes is crucial we can state our main results for unbalanced
leaf language classes only.

For the logic FO[<] and the balanced polynomial-time leaf languages, the fol-
lowing Lemma 3.3 is due to Burtschick and Vollmer [4]. It can be considered to be
the first result about the close relation of leaf languages for NP and existentially
first-order definable languages. Here, we prove it for our slightly different case of
unbalanced computation trees and the logic FOX.

Lemma 3.3 (cf Burtschick and Vollmer [4]). If L is existentially first-order de-
finable in FOX then L-P is a subset of NP.

Proof Let M be an NPTM and tp a first-order sentence from FOX with m vari-
ables (all of which are existentially quantified). We construct an NPTM M' that
évaluâtes tp on the leaf word of the machine M:

this machine M' simulâtes M m times and memorizes the nondeterministic
choices, Le. the corresponding paths in the computation tree of M. Since these
paths represent positions in the yield of M it is then possible to compute the truth
value of ƒ in polynomial time.

Let L be defined by an existential sentence ƒ in FOX, i.e.

f = 3xi ...3xrnip(xu...,xrn)

where (p is quantifierfree and contains no more variables than x\,..., xm. We have
to show that for every NPTM M there is a NPTM Af' such that M[L] = M'[Ö*].
M' is defined the following way. Given an input x simulate M(x) including all
nondeterministic branchings but do not terminate when the end of a computation
path is reached. Instead, memorize the nondeterministic choices made on that
computation path as a tuple pi = (a i , . . . , ai) where a number aj dénotes that in
the j - th nondeterministic situation on that computation path the a^-th possibility
was chosen. After that simulate M including all nondeterministic branchings once
more. Coming to the leaf of a computation, again do not stop but memorize the
nondeterministic choices as a tuple P2, and simulate M again. Iterate this proce-
dure m times (m was the number of quantifiers in ƒ). This way a computation
tree with m layers of the simulated computation tree for M(x) is obtained. Now a

EXISTENTIALLY DEFINABLE LANGUAGES AND NP 267

computation path of the whole computation tree M'(x) basically represents a m-
tuple (j9i,... ,pm) of computation paths of Af (x), each path pi is represented as a
tuple of numbers. Let this m-tuple (pi, . . . ,pm) represent in the sentence ƒ above
a choice of the positions (xi , . . . , xm). Let M(x)(p) dénote the result (1 for accep-
tance or 0 for rejection) of the computation path p in the computation tree M(x).
Note that it is possible to compute the truth value of <p(M(x)(pi),..., M(x)(prn))
in polynomial time the following way. To get the value of M(x)(p) for a path p
simulate M(x) on p. The constants max and min stand of course for the paths
(1 , . . . , 1) and (mi, . . . , mj), respectively, where the rrij are the choices for the right-
most path. Given a path p — (a i , . . . , ai) it is possible to compute the path p + 1:
when p is the rightmost path then p + 1 — p, otherwise, starting with aj, a j_i , . . . ,
check which ÜJ is the first non-maximal nondeterministic choice, and p-\-1 will be
the path (a i , . . . , aj + 1,1,.. . , 1). Likewise, given p, one can compute p — 1. Fi-
nally note that it is possible to compute the predicate p <pf just by lexicographie
comparison. After the computation of the truth value (p(M(x)(pi),..., Af (x)(pi)),
Mf(x) accepts iff <p(M(x)(pi),..., M{x)(p\)) is true. Now it is straightforward to
check that M[L] = Mf[0*} where L is the language given by the sentence ƒ. D

The language 0* is existentially definable by the sentence 3xQ(x). Since by
définition NP = 0*- P, the union of all classes L - P over all existentially FOX-
definable languages L equals NP by the above lemma. Note that this result from
Burtschick and Vollmer [4] is weaker than Theorem 3.4 below in a double sensé:
even under the assumption that PH does not collapse it still allows some existen-
tially definable language to characterize some class properly between P and NP,
and still allows not existentially definable regular languages to characterize NP.

Now, finally, we can state our main result (part (2) in the following theorem)
about the close relation of existentially definable languages and NP.

Theorem 3.4. Assume that PH does not collapse and let L be a regular language.
(1) L - P — P iff L is quantifier-free definable in FOX but not trivial.
(2) L - P = NP iffL is existentially but not quantifier-free definable in FOX.
(3) L- P = co-NP iff L is universally but not quantifier-free definable in FOX.

Proof (1) By [11] (cf. Th. 2.1), L is quantifier-free definable in FOX iff it is
generalized definite. Now (1) is Lemma 11 from [2].

(2) Now let L be existentially but not quantifierfree definable in FOX. Then
it is not universally definable by Theorem 2.1, équivalence of (a) and (c). Hence
by Corollary 2.2 its minimal automaton A contains the counting, the NP-, or the
1-NP-pattern. On the other hand, since it is existentially definable, by Corol-
lary 2.2 A contains neither the counting, the co-NP-, nor the co-1-NP-pattern.
But because the co-NP-pattern is a subpattern of the 1-NP-pattern, the automa-
ton A has to contain the NP-pattern. Therefore, by Lemma 3.2, the class NP
is contained in i - P . And since L is existentially definable in FOX, L - P is
contained in NP by Lemma 3.3. Therefore, L-P = NP.

To show the other implication by contradiction, assume L not to be existentially
definable. Then, by Corollary 2.2 and Lemma 3.2, L - P contains at least one of

268 B. BORCHERT, D. KUSKE AND F. STEPHAN

co-l-NP 1-NP

co-NP

{0} {E*}

FIGURE 7. Nondensities in the inclusion order {L - P | L regular}.

the classes co-l-NP, MODPP for some prime p, or co-NP. Thus, L- P ^ NP by
Theorem 3.1(1), (2) and the assumption that PH does not collapse, respectively.

Part (3) follows immediately from (2). n

In [2] it was shown that under the assumption that PH does not collapse there
are no classes L- P properly between P and NP and neither between P and co-NP.
Here we have the following extension, the situation is shown in Figure 7.

Theorem 3.5. Assume that PH does not collapse. Then {0}, {E*}, P ; NP,
co-NP ; 1-NP, co-l-NP and NP © co-NP are eight different classes. Moreover,
each of the intervals depicted as a line between two inclusion-comparable classes in
Figure 7 represents a non~density in the sense that both classes are a class L- P
with L regular but no class of that kind is located properly between them,

Proof. From Theorem 3.1 it follows that we have eight different classes and that
the only inclusions which hold are the ones indicated (remember that the class
NP ©co-NP is contained both in DP and co-DP). The emptinesses of the intervals
below NP or co-NP were shown in [2]. For the emptiness of the interval between
NP and co-l-NP let L b e a regular language with N P c L - P C co-l-NP. Then
neither MODpP nor co-NP is contained in L- P. Furthermore, by Theorem 3.4,
L is not existentially defmable. Now co-l-NP Ç L - P follows from Corollary 2.2
and Lemma 3.2 (1) and (2).

Using Lemma 3.2 (3), the emptiness of the interval between NP and NP©co-NP
follows similarly (one needs the additional observation that NP©co-NP is the least
leaf language class containing NP and co-NP). . D

4. OPEN PROBLEMS

Under the assumption that PH does not collapse the authors could characterize
the regular leaf languages which characterize P, NP, and co-NP, respectively. They

EXISTENTIALLY DEFINABLE LANGUAGES AND NP 269

would have liked to extend their result to other classes, for example to higher
classes of the Polynomial-Time Hierarchy like ££. So far, no automata criterion
like the co-UP-pattern criterion is known for dot-depth 3/2, 5/2, etc, see [9]. But
such a criterion, as well as a result analogous to Theorem 3.1 (1), seems to be
necessary.

For the classes of the Boolean Hierarchy like DP the situation does not seem to
be as hopeless but the authors could not yet give a characterization.

The authors are grateful for comment s by Klaus Ambos- Spies, Jean-Eric Pin, Heinz
Schmitz, Wolfgang Thomas, and Heribert Vollmer.

REFERENCES

[1] R. Beigel and J. Gill, Counting classes: Thresholds, parity, mods, and fewness. Theoret.
Comput. Sci. 103 (1992) 3-23.

[2] B. Borchert, On the acceptance power of regular languages. Theoret. Comput. Sci. 148
(1995) 207-225.

[3] D.P. Bovet, P. Crescenzi and R. Silvestri, A uniform approach to define complexity classes.
Theoret Comput. Sci. 104 (1992) 263-283.

[4] H.-J. Burtschick and H. Vollmer, Lindström Quantifiers and Leaf Language Dennability.
Internat. J. Found. Comput. Sci. 9 (1998) 277-294.

[5] J.-Y. Cai, T. Gundermann, J. Hartmanis, L.A. Hemachandra, V. Sewelson, K. Wagner and
G. Wechsung, The Boolean Hierarchy I: Structural properties. SI AM J. Comput. 17 (1988)
1232-1252.

[6] R. Chang, J. Kadin and P. Rohatgi, On unique satisfiability and the threshold behaviour of
randomized réductions. J. Comput. System Sci. 50 (1995) 359-373.

[7] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer and K. Wagner, On the power of
polynomial-time bit-computations, In: Proc. 8th Structure in Complexity Theory Confer-
ence, IEEE Computer Society Press (1993) 200-207.

[8] R. McNaughton and S. Papert, Counter-Free Automata, MIT Press, Cambridge, MA (1971).
[9] J.-E. Pin and P. Weil, Polynomial closure and unambiguous product. Theory Comput. Sys-

tems 30 (1997) 383-422.
[10] H. Straubing, Finite Automata, Formai Logic, and Circuit Complexity, Birkhàuser, Boston

(1994).
[11] W. Thomas, Classifying regular events in symbolic logic. J. Comput. System Sci. 25 (1982)

360-376.
[12] S. Toda, PP is as hard as the Polynomial-Time Hierarchy. SIAM J. Comput. 20 (1991)

865-877.

Communicated by J.E. Pin.
Received June, 1998. Accepted January, 1999.

