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Abstract

This paper investigates the use of a complete metric space framework for providing denota-
tional semantics to a real-time process algebra. The study is carried out in a non-interleaving
setting and is based on a timed extension of Langerak’s bundle event structures, a variant
of Winskel’s event structures. The distance function of the metric is based on the amount of
time to which event structures do ‘agree’. We show that this intuitive notion of distance is
a pseudo-metric (but not a metric) on the set of timed event structures. A generalisation to
equivalence classes of timed event structures in which we abstract from event identities and
non-executable events (events that can never occur) is shown to be a complete ultra-metric
space. We present an operational semantics for the considered language and show that the met-
ric semantics is an abstraction of it. The operational semantics is characterised by the absence of
synchronisation on the advance of time as opposed to the operational semantics of most real-time
calculi. The consistency between our metric and an existing cpo-based denotational semantics is
brie9y investigated. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Consistency of semantics; Denotational semantics; (bundle) Event structure;
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1. Introduction

In this paper we consider a metric denotational semantics for an algebraic speci=ca-
tion language that besides concurrency, synchronisation, and non-determinism,
encompasses the notion of real time. This study is carried out in a branching-time
non-interleaving context, using the model of event structures. These structures typically
consist of a set of labelled events, a causality relation (denoted �→) between events,
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and a con9ict relation (denoted #) between events. An event models the occurrence of
the action as indicated by its label. The causality relation models a ‘before’ relation
in the following sense: e �→ e′ implies that if event e′ happens then event e must have
happened before. The con9ict relation models a choice: if e # e′ then either event e or
event e′ can happen, but they cannot occur together. Usually, the event identities are
not of importance and isomorphism classes of event structures are considered. If no
confusion arises, action labels (a; b; : : :) are used instead of event identities (e; e′; : : :).

1.1. Prime event structures and TCSP

For the untimed case, Loogen and Goltz [29] propose a metric denotational semantics
for theoretical CSP using prime event structures, the most elementary form of event
structures. In prime event structures [34], the causality relation �→ is a partial-order and
the con9ict relation # is irre9exive and symmetric. Con9icts are inherited as follows:
if e1 # e2 and e1 �→ e3 then e2 # e3. Pictorially:

where dots represent events, directed arrows model �→ and dotted lines model #. The
interpretation of prime event structures is de=ned in terms of sets of con=gurations,
con9ict-free sets of events that are downwards closed under �→, ordered under set in-
clusion. For instance, the maximal con=gurations of the prime event structure above
are {a} and {b; c}. To assign a meaning to recursive TCSP speci=cations, Loogen
and Goltz apply a metric approach to (isomorphism classes of) so-called =nitely ap-
proximable prime event structures. In a nutshell, in such structures the depth of each
event – the length of the longest causal chain pointing to that event – is =nite, and for
each =nite depth, there is only a =nite number of events of that depth. The notion of
distance between prime event structures E1 and E2 is based on truncation:

d(E1;E2)=df inf {2−n |E1 � n=E2 � n}
where E � n denotes the restriction of E to all events with depth at most n. The set
of =nitely approximable prime event structures with distance d constitutes a complete
ultra-metric space, and the operators of TCSP are non-expansive with respect to d.
For example, for pre=xing and parallel composition this is guaranteed by the following
inequalities:

d(a :E; a :E′)62−1 · d(E;E′);

d(E ||A F;E′ ||A F′)6max{d(E;E′); d(F;F′)}:
The semantics for TCSP-expression P and any =xed declaration decl of processes
can then be considered as the unique =xed point of a higher-order function Fdecl over
the domain of functions from TCSP-expressions (Expr) to (isomorphism classes of)
=nitely approximable prime event structures (PES=n=�iso). The distance d is lifted to
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this function domain in the following standard way [12]:

d̃(1; 2)=df sup{d(1(P); 2(P)) |P ∈ Expr}
for 1; 2 : Expr→ PES=n=�iso. For each guarded declaration decl, function Fdecl is
contracting with respect to distance d̃. Due to Banach’s theorem, the contractiveness
of Fdecl guarantees that a =xed point of Fdecl exists and that it is unique. Declaration
decl is guarded if any process instantiation is preceded by a pre=x for each process
de=nition in decl. As a =nal result, Loogen and Goltz show that for =nite processes the
metric semantics is weakly bisimilar to the interleaving semantics of TCSP; a result
that later has been extended to recursive processes [7].

1.2. Bundle event structures and LOTOS

In this paper we consider a real-time extension of a process algebra based on the
internationally standardised speci=cation language LOTOS [13] (Language of Temporal
Ordering Speci=cation). As semantic domain we take a timed extension of Langerak’s
bundle event structures [26, 27], a variant of Winskel’s event structures that has been
shown to adequately deal with the operators of LOTOS – in particular, parallel com-
position and disruption. Bundle event structures are strictly more expressive than prime
event structures, i.e. there do exist bundle event structures for which there does not
exist a prime event structure with the same set of con=gurations (and not the reverse).
A comparison of the expressive power of bundle event structures compared to Winskel’s
stable [40] and Boudol and Castellani’s 9ow event structures [14] is given in [26].

In bundle event structures, �→ is a relation between a set of events that are in
mutual con9ict and an event. The con9ict relation is irre9exive, but not required to
be symmetric. It is denoted by  and depicted by a dotted arrow. In case e e′ and
e′ e we use a dotted line. Intuitively,

denote that (a) event c can happen if either a or b has happened before, and (b) event
c disables the occurrence of a and b, i.e. neither a nor b can happen after c happened
(notice that c can happen after a, or b, or both a and b instead). Due to the inheritance
of con9icts, the corresponding prime event structures would lead to copying of events:

This property makes prime event structures less attractive as a semantical model for a
process algebra like LOTOS. Due to the increased expressive power of bundle event
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structures, an interpretation in terms of con=gurations ordered under set inclusion is
insuMcient. For instance, the bundle event structures

have both as maximal con=guration {a; b}, whereas b can happen after the occurrence
of a in the left (a), but not in the right (b) structure. Instead, the interpretation is
de=ned in terms of labelled partial-orders ordered under pre=xing [38], or equivalently,
in terms of event traces. The maximal event traces of the structures above are (a) a b
and b a, and (b) a b and b. Langerak uses bundle event structures to give a non-
interleaving semantics to LOTOS [26, 27] and although he provides a meaning to
recursive processes using a partial-order approach, it seems that (a slight modi=cation
of) the more abstract metric approach of Loogen and Goltz can be used equally well.

1.3. Real-time event structures and timed LOTOS

In the timed extension of bundle event structures of Katoen et al. [23] the basic idea
is to associate relative delays to causality relations (the bundles) and to impose urgency
on certain events (open dots). From now on, we refer to this extension as timed event
structures. The suitability of this timed truly concurrent model for modelling time-
critical systems is addressed in [23] and is not further discussed here. The timed event
structures

denote that after the occurrence of event a, either event � happens after 7 time units,
or that c happens after time t with 26t610. In structure (b) event � is urgent, i.e. it
must happen 7 time units since the occurrence of a if c did not yet occur, so preventing
c from happening thereafter. The interpretation of timed event structures is de=ned in
terms of timed event traces. Example maximal traces of the timed structures above are
(a) (a; ta) (�; t�) with t� = ta+7 and (a; ta) (c; tc) with 26tc−ta610 and (b) (a; ta) (�; t�)
with t� = ta+7 and (a; ta) (c; tc) with 26tc−ta67.

Timed event structures are used as a non-interleaving semantical model for a real-
time process algebra where pre=xing a : P is replaced by timed pre=xing aI : P where
I denotes a set of time instants. Moreover, a timeout operator P Bt Q is included that
behaves initially like P, but in which control is passed to Q if P does not perform an
action 1 before time t.

1 Opposed to timed CSP [37] we do not distinguish between the occurrence of internal and external actions
in P.
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In order to assign a meaning to recursive speci=cations we follow a similar approach
as Loogen and Goltz. The basic idea of our metric semantics is to consider behaviours
of timed event structures up to a certain time. That is, the distance function is based
on the amount of time to which timed event structures do ‘agree’:

d(E1;E2)=df inf{2−t |E1 � t=E2 � t}
where E � t denotes the restriction of E to all events that can occur before time t.
We show that this intuitive notion of distance is a pseudo-metric (but not a metric) on
TES, the set of timed event structures. As a =rst step towards obtaining a metric (rather
than a pseudo-metric), we consider TES modulo an isomorphism �iso that abstracts
from event identities (as usual) and from non-executable events, events that can never
appear. 2 Secondly, we re=ne this notion towards =nitely approximable timed event
structures modulo �iso and show that this quotient model is a complete ultra-metric
space. A timed event structure is called =nitely approximable if the number of events
that can occur before time t is =nite, for any t. We show that the operators of our
real-time process calculus are non-expansive with respect to our notion of distance, for
instance, timed pre=xing is contractive and timeout is non-expansive:

d(aI :E; aI :E′)62−inf (I) · d(E;E′);

d(EBt F;E′
Bt F

′)6max{d(E;E′); 2−t · d(F;F′)}:
Similarly as we have discussed for the case for prime event structures, the semantics
is now de=ned as the unique =xed point of a higher-order function Fdecl . As a main
result we obtain for any expression with =xed declaration decl that

d(Fdecl(1); Fdecl(2))62−tg(decl) · d̃(1; 2)

where tg(decl), the time-guard of decl, is the minimal time between successive process
instantiations in any process de=nition in decl and 1; 2 : Expr→ TES=n=�iso. Thus,
for time-guarded processes – processes that cannot generate instantaneous recursive
process instantiations – the function Fdecl has a unique =xed point.

Finally, we present a structured operational semantics for the considered language
(recalled from Katoen et al. [23]) and show that this semantics is strongly timed
bisimilar to an interleaving perspective of our metric true concurrent semantics. The
operational semantics is characterised by the absence of synchronisation on the advance
of time as opposed to the operational semantics of most real-time process calculi [33].
The traces generated from our operational semantics can be considered as equivalence
classes (under re-ordering of causally independent events) whereas more standard op-
erational semantics for real-time calculi lead to the time-consistent representatives of
each equivalence class, and this is less abstract. We also brie9y show that the met-
ric semantics presented in this paper is an abstraction of the cpo-based semantics of
Katoen et al. [23].

2 Non-executable events do not appear in the untimed setting with prime event structures.
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1.4. Related work

Several real-time extensions of process algebras have been proposed in the literature;
for an overview see [33]. Usually, timed process algebras are provided with an oper-
ational interleaving semantics in the style of Plotkin that is based on some notion of
timed transition system. Notable exceptions are the works on timed CSP by Reed and
Roscoe [37] who de=ne a metric denotational semantics for time-guarded processes
based on timed refusals, and, more recently, on real-time LOTOS by Bryans et al.
[17] who use a (non-standard) =xed point semantics based on an advanced form of
timed refusals in order to deal with divergence. Both works consider an interleaving
semantics.

Timed extensions of partial-order models have received scant attention in the litera-
ture. For example, extensions of con=gurations [30], prime event structures [32], posets
[21], and higher-dimensional automata [20] do exist, but these models have not been
used as a semantic model for a timed process algebra and are merely of theoretical
interest. Murphy [32] uses time truncation – in a similar way as we do – as a basis
for obtaining limiting in=nite objects using ideal completions. Our approach resembles
that of Fidge [18]. Fidge proposes a real-time extension of causal trees, equivalence
classes of event structures under history-preserving bisimulation, and uses this model
to provide a semantics to a timed variant of CCS. This approach has later been ex-
tended to include time markers that facilitate the speci=cation of relative time delays
between arbitrary actions [19]. Katoen et al. [24] consider a timed variant of bundle
event structures (as in this paper), to provide a semantics for a real-time variant of
LOTOS, in which a powerful urgency-operator is incorporated. This approach requires
a time-consistent setting (unlike this paper), and uses a partial-order approach towards
recursive behaviours,
To the best of our knowledge, there are no other approaches that consider real-time
true concurrency in a metric setting.

1.5. Organisation of the paper

The organisation of the paper is as follows. Section 2 introduces the real-time process
algebra. Section 3 describes timed event structures and Section 4 presents the seman-
tical operators on these structures. The metric semantics is developed in Section 5
which is the core part of the paper. Section 6 presents the operational interleaving
semantics and investigates its consistency with the metric semantics. Concluding re-
marks are provided in Section 7.

A preliminary short version of this paper has been published as [5]; some other parts
were contained in the dissertation [22].

2. A real-time process algebra

We assume a given set of observable actions Obs and an invisible action �; � =∈Obs.
The action

√
indicates the successful termination action of a process;

√
=∈Obs and
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√ �= �. Let R+ denote the set of non-negative reals. In addition, let Act=Obs∪{�;√},
a∈Obs∪{�}, I ⊆R+ ∪{∞}, t ∈R+ ∪{∞}, A⊆Obs, � :Act→Act with �(�)= �, �
(
√

)=
√

and �(a) �= √
for a∈Obs, and Var a set of process variables with x∈Var.

The set of expressions Expr is de=ned as follows:

P ::= 0 | 1 | aI : P | P + P | P ; P | P [¿P | P ||A P |
P\A | P[�] | P Bt P | x:

The operators +, \A, and [�] are the usual process algebra operators choice, abstraction
and relabelling, respectively.
• 1 represents the successful termination process; it can only perform action

√
and

then becomes 0, the process that cannot perform any action.
• aI : P denotes the pre=x of a and P where a is allowed (but not forced) to occur at

any time t ∈ I . For I = [0;∞) the usual untimed pre=x is obtained.
• P ; Q denotes the sequential composition of P and Q; the control is passed to Q by

the termination of P as indicated by the occurrence of
√

.
• P [¿Q denotes the disruption of P by Q; i.e. P may at any point of its execution

be disrupted by Q, unless P has terminated.
• P ||A Q denotes the parallel composition of P and Q; P and Q execute actions not in
A independently from each other, while actions in A (and the successful termination
action) must be performed by both processes simultaneously.

• P Bt Q initially behaves like P, but if P does not perform an action before time t
(since its enabling) then a timeout occurs and control is passed to Q.

Using these operators a timed interrupt, for instance, can easily be modelled: the process
P [¿(0 Bt Q) speci=es that P is disrupted by Q at time t, unless P has terminated
before. Various case studies in the literature have proven that the timed operators like
aI : P and P Bt Q are convenient to specify practical real-time systems [4, 41]. This
shows the adequacy of the considered timed process algebra.

Process variables are considered in the context of a set of process de=nitions of
the form x :=P. Note that P might contain occurrences of x or of other process
variables. For process variable x let decl(x) denote the body of x, i.e. decl(x)=P
for x :=P. A process is a pair 〈decl; P〉 consisting of a declaration decl : Var→ Expr
and an expression P ∈ Expr. Let PA denote the set of all processes.

In order to avoid brackets we introduce the following precedence order of the com-
position operators, listed in decreasing binding order: aI :, +, ||A , [¿, ; , Bt , \A and
[�].

3. Timed event structures

3.1. The model

Event structures consist of events labelled with actions (an event modelling the
occurrence of its action), together with relations of causality and con9ict between



508 J.-P. Katoen et al. / Theoretical Computer Science 254 (2001) 501–542

events. We take Langerak’s (extended bundle) event structures [26, 27] and equip them
with timing information. Event structures incorporate a con=ict relation (denoted  )
that – as opposed to what is common in other types of event structures – is not required
to be symmetric, and a bundle relation (denoted �→) for modelling causality. These
two ingredients make bundle event structures suitable for providing a non-interleaving
semantics to LOTOS [26, 27].

The meaning of e e′ is that (i) if e′ occurs it disables the occurrence of e, and
(ii) if e and e′ both occur in a single system run then e precedes e′. e e′ and e′ e
is equivalent with e # e′, the usual symmetric con9ict in event structures. As explained
before, the reason for adopting  rather than # is to model the disrupt operator [¿
adequately.

Causality is represented by the bundle relation. For set X of events and an event e,
X �→ e means that if e happens in a system run, some event in X must have happened
before. X is called the bundle-set and we use �→ to denote the set of bundles of an
event structure. Empty bundles are allowed; ∅ �→ e models that e can never happen. 3

The reason for not having a binary causality relation between events (as in prime event
structures [34]) is to model parallel composition ||A in a less complex way.

Time is added to event structures in the following way [23]. Relative delays between
events are attached to bundles, and delays relative to the start of the system are attached
to events. The latter delays can be considered as absolute delays. Delays determine
when an event may happen, they do not specify that an event should happen at a
particular time. For the latter purpose we use urgent events; an urgent event should
happen as soon as it is enabled.

De�nition 1 (Timed event structure). A timed event structure (tes) E is a tuple
(E;  ; �→ ; l;A;R;U) with
• E, a set of events,
•  ⊆E × E, the (irre9exive) con=ict relation,
• �→⊆P(E)× E, the bundle relation,
• l :E→Act, the labelling function,
• A :E→P(R+ ∪ {∞}), the event delay function,
• R : �→ →P(R+ ∪ {∞}), the bundle delay function, and
• U⊆{e∈E|l(e)= �}, the set of urgent events,
such that l;A and R are total functions and for any bundle-set X :
(P1) (X × X )\IdE ⊆  
and for all e∈U:
(P2) for all e′ ∈E and bundle-set X

((e′ e∨ e e′)∧X �→ e)⇒ (X �→ e′ ∨X  e′);

3 Events that are pointed to by empty bundles are comparable to self-con9icting events in 9ow event
structures [14], but – as opposed to self-con9icting events – they have the pleasant property that they can
always be eliminated using transformations [26, 27]. The same applies to bundles like X �→ e with e∈X .
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Fig. 1. (a) An event structure and (b) a structure that violates (P2).

(P3) there exists a time point t ∈R+ such that

(A(e)∈{∅; {t}})∨ (∃X : X �→ e∧R(X; e)∈{∅; {t}}):

Here, P(·) denotes the power-set function, X  e′ denotes (∀e′′ ∈X : e′′ e′) and
IdE denotes the identity relation on set E. Note that ∅ e′ for all e′.

If no confusion arises, timed event structures will be called simply event structures
throughout this paper. Event structures are depicted as follows. Events are denoted as
dots; near the dot the action label is given. e e′ is indicated by a dotted arrow from
e to e′; if also e′ e, then a dotted line is drawn instead. A bundle X �→ e is indicated
by an arrow to which each event in X is connected via a line. Bundle and event delays
are depicted near to a bundle and event, respectively. Urgent events are denoted by
open dots, other events by closed dots. A bundle X �→ e with R(X; e)= I is denoted
by X I�→ e. Delays [t;∞) are simply denoted by t; delays [0;∞) are usually omitted.

Example 2. Fig. 1(a) shows an example event structure with e.g. timed bundles {a} [0;7]�→
b and {a} [0;5]�→ c, and con9icts b � and � b. The set of urgent events U= {�} and
the event delay A is 0 for all events.

The constraints (P1)–(P3) are justi=ed in the following.
• Constraint (P1) requires all events in bundle set X to be in mutual con9ict. This

enables us to uniquely de=ne a causal ordering between the events in a system run:
if some event, e say, occurs in a system run, then it is for each bundle X �→ e
uniquely determined which event in X has caused e. If constraint (P1) is omitted,
several interpretations turn out to be plausible with diQerent characteristics [28]. The
constraint is similar to the stability constraint in stable event structures [40].

• Constraint (P2) enforces that as soon as e is enabled either e′ is also enabled (pro-
vided e′ is not disabled in some way), or as soon as e′ occurs e will be permanently
disabled, since some bundle pointing to e is disabled by e′. Pictorially for the case
e′ e:
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The justi=cation for this constraint is to be able to “locally” decide whether an
event can occur by only considering its direct causal predecessors and con9icts.
This enables a more straightforward notion of timed event trace (see further on)
and does not impose any restriction on the usage of the model as semantics for our
language. It forbids structures like Fig. 1(b), where event e3 cannot occur, since the
urgent event e1 – which is neither in a direct causal nor con9ict relation with e3
– is forced to occur at time 1 and subsequently the urgent event e2 must occur at
time 3. That is to say, in order to decide whether event e3 can occur initially, we
have to consider the event e1 which is not in a direct relation to e3. For the sake
of convenience we like to avoid these situations. As we will see, such structures
cannot be described by the real-time process algebra of Section 2.

• Constraint (P3) ensures that urgent events are enabled at a single time instant only,
if ever. The motivation for this constraint is that urgent events are used for the sole
purpose of modelling timeouts which are internal actions of a process and typically
can appear at a single time instant only.

3.2. The interpretation of event structures

The concept of a system run for tes’s is captured by the notion of a timed event
trace.

De�nition 3 (Enabled events after �). For � a sequence of distinct events let the set
of events enabled in E after � be de=ned as 4

enE(�)=df {e∈E\�|(∀ei ∈ � : e � ei)∧ (∀X �→ e : X ∩ � �= ∅)}:

Stated in words, an event is enabled after � if it is not disabled by one of the events
in �, and if for any bundle pointing to it some event appears in �.

For events that have more than one bundle pointing to them we take the following
interpretation. Consider {a} I�→ c and {b} J�→ c. If a happens at time ta and b at time
tb, then c is enabled at any t ∈ (ta+I) ∩ (tb+J ) where for t ∈R and I ⊆R, t+I denotes
{t+t′ | t′ ∈ I}. When the intersection of two (or more) sets of time instants is empty
this means that (due to incompatible time constraints) the event at hand cannot occur
at any time and will be permanently disabled.

Let tmE
� (e) denote the set of time instants at which an enabled event e after � could

happen, given that each event ei in � occurred at time ti. Event e can occur if (i) its
absolute delay A(e) is respected, (ii) for each event ei with ei e we have that e
occurs at at least ti, and (iii) the time relative to all its immediate causal predeces-
sors is respected. Cases (ii) and (iii) take care of the fact that events cannot occur
before their causes, entailing that causal ordering implies temporal ordering. So, we
obtain

4 Often the set of events of a sequence is identi=ed with the sequence itself.
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De�nition 4 (Potential time of occurrence). For �=(e1; t1) : : : (en; tn) a timed sequ-
ence of distinct events and event e∈ enE(�) let

tmE
� (e)=df A(e) ∩ ⋂

ei e
[ti;∞) ∩ ⋂

X
I�→e;ei ∈ X

ti+I:

It is easy to check that for any urgent event e we have tmE
� (e)= ∅ or tmE

� (e)= {t}
for some t ∈R+, due to constraint (P3). In the latter case we often identify tmE

� (e)
with t. Let �i denote the ith pre=x of �, that is, �i =(e1; t1) : : : (ei; ti).

De�nition 5 (Timed event trace). Sequence �=(e1; t1) : : : (en; tn) with ei ∈E (all
events being pairwise distinct) and ti ∈R+, is a timed event trace of E∈ TES iQ for
all 0¡i6n:
(1) ej ei⇒ j¡i∧ tj6ti for all 0¡j6n

(2) X I�→ ei⇒ (∃ j :X ∩ {e1; : : : ; ei−1}= {ej}∧ ti ∈ tj+I) for all X ⊆E
(3) ti ∈A(ei)
(4) (ei e∨ e ei)⇒ ti6tmE

�i−1
(e) for all e∈U ∩ enE(�i−1). 5

The set of timed event traces of E is denoted by Traces(E).

The last constraint takes care of the fact that urgent events may prevent the events
that they disable (or by which they are disabled) to occur after a certain time. That is,
event ei can occur at time ti provided there is no enabled urgent event e that disables
ei (or that is disabled by ei) and that (if it occurs) must occur before ti.

Example 6. For the following timed sequences of events the conditions are given under
which they are timed event traces of Fig. 1(a):

(a; ta) (c; tc) (b; tb) if 06ta ∧ ta6tb6ta+4∧ ta6tc6ta+4

(a; ta) (�; t�) (d; td) if 06ta6t�6td ∧ t� = ta+4:

Note that Fig. 1(a) models a typical timeout scenario: if after the occurrence of event
a neither b nor c happen within 4 time units; then a timeout (event �) is forced to
occur. If � would not be urgent; the upper bound conditions for ta and tb in the =rst
case would be tb6ta+7 and tc6ta+5; since � would not be forced to occur and time
does not resolve the choice.

Timed event traces do respect causality, but not necessarily the advance of time. That
is, two (or more) independent events can occur in a trace in either order regardless
of their timing. For example, (a; 1)(b; 3)(c; 4) and (a; 1)(c; 4)(b; 3) are timed event
traces of Fig. 1(a). The choices correspond to the possible interleavings of the causally
independent events. This situation is similar to the untimed case, where in a true

5 Here we use 6 on sets (singletons or empty sets). By convention we use t6∅.
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concurrent setting, causally independent events can occur in either order when consid-
ering event traces, linearisations of partial orders. Since the causal ordering between
events implies their temporal ordering, the causal ordering can never contradict the
temporal order. Such traces are being referred to as “ill-timed but well-caused” [2].

The following result implies that for any ill-timed event trace � there exists a cor-
responding time-consistent event trace �′, that can be obtained from � by swapping
ill-timed pairs of timed events repeatedly.

Theorem 7. For all t′¡t and timed sequences of distinct events �; �′:

� (e; t)(e′; t′) �′ ∈Traces(E)⇒ � (e′; t′)(e; t) �′ ∈Traces(E):

Proof. Let �1 = � (e; t)(e′; t′) �′ ∈Traces(E) and assume t′¡t. We prove the theorem
by contradiction. Suppose �2 = � (e′; t′)(e; t) �′ �∈Traces(E). This can only be because
one of the following reasons:
(1) ej ei and (i) j¿i or (ii) tj¿ti. The interesting case is e e′. The case e′ e

would contradict �1 ∈Traces(E) since e occurs before e′ and in all other cases the
order and timing of events is unchanged. Consider e e′. Since �1 ∈Traces(E)
then t6t′ which contradicts t′¡t.

(2) X I�→ ei and (i) X ∩ {e1; : : : ; ei−1}= ∅ or (ii) ti �∈ tj+I where j¡i and ej ∈X . By
a similar reasoning as above, we conclude that the interesting case is X �→ e′ with
e∈X . Since �1 ∈Traces(E) then t′ ∈ t+I , so t′¿t, which contradicts t′¡t.

(3) ti �∈A(ei). This would contradict with �1 ∈Traces(E).
(4) ti¿tm�(ê) for some urgent event ê enabled after �=(e1; t1) : : : (ei−1; ti−1), a pre=x

of �2, such that (i) ei ê or (ii) ê ei. The interesting cases are (1) ei = e and
(2) ei = e′; the other cases lead directly to a contradiction with �1 ∈Traces(E).
(i1) ei ê and ei = e. So, �= �(e′; t′). For ê= e′ we have e e′ which would

lead to a contradiction, see case (1) above. Assume ê �= e′. In case ê would
be enabled after �, it follows from �1 ∈Traces(E) that ti6tm�(ê), and a
contradiction follows. Otherwise, the enabling of ê necessarily depends on e′,
i.e. X �→ ê and e′ ∈X . (In case e′ ê, ê would be enabled after �.) But then,
since e ê, it follows from condition (P2) that either X �→ e or X  e. Both
cases contradict with �1 ∈Traces(E), since e′ occurs after e in �1 and this
would not be possible if X �→ e or e′ e, given that e′ occurs in �1.

(i2) ei ê and ei = e′. So, �= �. As for case (i1), assume ê �= e. From �1 ∈Traces
(E) it follows that t6tm�(ê). Since t′¡t, it follows t′6tm�(ê). Contradic-
tion.

(ii1) ê ei and ei = e. So, �= �(e′; t′). Similar to case (i1).
(ii2) ê ei and ei = e′. So, �= �. Similar to case (i2).

Note that the reverse implication does not hold; for instance, if e causally depends
on e′ then the order of events e′ e in a trace cannot be reversed since this would
contradict their causal ordering.
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This result can be interpreted as follows: the set of timed event traces obtained from a
timed event structure can be partitioned in equivalence classes, where each equivalence
class consists of traces containing identical elements (i.e. pairs of events and time
points). An equivalence class does not distinguish among total order executions that
are equivalent up to the reordering of independent events. This leads to a more abstract
representation of concurrency than timed event traces, and is similar to the treatment
of traces by Mazurkiewicz [31].

4. Operators for timed event structures

In this section we present some operators on timed event structures that are needed to
de=ne a compositional semantics for PA. They are basically adopted from [22, 23]. We
start with some basic notions. Let Events be a set such that for any event e∈ Events,
(e; ∗); (∗; e)∈ Events, and if e; e′ ∈ Events then (e; e′)∈ Events. Let TES denote the set
of tes’s E with E⊆ Events. Let init(E) be the set of initial events of E and exit(E)
its set of successful termination events, i.e. init(E)=df {e∈E | ¬ (∃X ⊆E : X �→ e)}
and exit(E)=df {e∈E | l(e)=√}.

In the rest of this section let E;E1;E2 ∈ TES and E1 = (E1;  1; �→1; l1;A1;R1; U1),
E2 = (E2;  2; �→2; l2;A2;R2;U2) such that w.l.o.g. E1 ∩ E2 = ∅. Let �̂ denote the
urgent variant of �.

De�nition 8 (Action-pre?x). For a∈Obs∪{�; �̂} and I ⊆ [0;∞) let

aI :E1 =df (E1 ∪{ea};  1; �→ ; l1 ∪{(ea; a)};A;R;U) where

• �→= �→1 ∪ ({{ea}} × E1)
• A= {(ea; I)}∪ (E1 × {[0;∞)})
• R=R1 ∪{(({ea}; e);A1(e)) | e∈E1}
• U= if a= �̂ then U1 ∪{ea} else U1

where we assume that ea �∈E1.

�̂I :E denotes the pre=xing of �I and E where e is declared to be urgent. The
possibility �̂I :E is used to de=ne the semantics of the timeout operator B in a concise
way. Notice that for �̂I :E set I must be either empty or be a point interval in order
to guarantee constraint (P3).

In aI :E a bundle is introduced from a new event ea (labelled a) to all events in
E. The delay of each of these events becomes relative to ea, so for every such event
e each bundle {ea} �→ e is associated with a delay A(e), and A(e) becomes [0;∞).
A(ea) becomes I . In the untimed case it suMces to only introduce bundles from ea to
the initial events of E, cf. [26, 27]. The bundles to all events of E that are introduced
in the timed case are used for the sole purpose of making delays relative to ea. As an
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example of pre=xing consider 6

De�nition 9 (Choice).

E1 + E2 =df (E1 ∪E2;  ; �→1 ∪ �→2; l1 ∪ l2;A1 ∪A2;R1 ∪R2;U1 ∪U2);

where  =  1 ∪  2 ∪ (init(E1)× init(E2))∪ (init(E2)× init(E1)).

For choice consider the following example. Since the timings of events and bundles
are unaQected we omit these for convenience:

For E1 Bt E2 a new internal urgent event e with delay {t} is introduced that models
the expiration of the timer. Since either the timer expires or E1 performs an initial
event before (or at) t, event e is put in mutual con9ict with all initial events of E1,
like for choice.

De�nition 10 (Timeout). For t ∈ [0;∞) let E1 Bt E2 =df E1 + �̂{t} :E2.

As an example of the timeout operator consider

6 Recall that [t;∞) is simply denoted by t.



J.-P. Katoen et al. / Theoretical Computer Science 254 (2001) 501–542 515

De�nition 11 (Abstraction). For A⊆Obs let E\A=df (E;  ; �→ ; l′;A;R;U) where
(l(e)∈A⇒ l′(e)= �)∧ (l(e) �∈A⇒ l′(e)= l(e)):

De�nition 12 (Relabelling). For � :Act→Act with �(�)= � and �(
√

)=
√

let E[�]
=df (E;  ; �→ ; � ◦ l;A;R;U), where ◦ denotes function composition.

De�nition 13 (Sequential composition).

E1 ; E2 =df (E1 ∪E2;  ; �→ ; l;A;R;U1 ∪U2) where

•  = 1 ∪  2 ∪ (exit(E1)× exit(E1))\IdE1 ,
• �→= �→1 ∪ �→2 ∪ ({exit(E1)} × E2)),
• l=((l1 ∪ l2)\(exit(E1)× {√}))∪ (exit(E1)× {�}),
• A=A1 ∪ (E2 × {[0;∞)}),
• R=R1 ∪R2 ∪{((exit(E1); e);A2(e)) | e∈E2)}.

Bundles are introduced between the successful termination events of E1 and the
events in E2. In order to create bundles, mutual con9icts are introduced between the
successful termination events of E1. The successful termination events of E1 are rela-
belled into internal events. The reason for introducing bundles to all events (and not
only the initial ones) of E2 is to make event delays in E2 relative to the termination
of E1. This is similar as for action-pre=x. As an example of how E1 ; E2 is computed
consider

De�nition 14 (Disrupt).

E1 [¿E2 =df (E1 ∪E2;  ; �→1 ∪ �→2; l1 ∪ l2; A1 ∪A2;R1 ∪R2;U1 ∪U2)

where  = 1 ∪  2 ∪ (E1 × init(E2))∪ (init(E2)× exit(E1)).

E1 [¿E2 is equal to the union of E1 with E2 extended with some con9icts. Each
event in E1 may be disabled by an initial event of E2. This models the fact that E1

is disrupted once an initial event of E2 happens. In addition, after the occurrence of a
successful termination event in E1 no initial event of E2 can happen anymore. As an
example of how E1 [¿E2 is computed consider the following. Like for the example of
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choice, the bundle and event delays are omitted since they are unaQected by [¿.

The de=nition of parallel composition is a bit more involved. The events of E1 ||A E2

are constructed in the following way: an event e of Ei (i=1; 2) that does not need
to synchronise is paired with the auxiliary symbol ∗, and an event which is labelled
with

√
or with an action in A is paired with all events (if any) in the other tes that

are equally labelled. Two events are put in con9ict if any of their components are
in con9ict, or if diQerent events have a common component diQerent from ∗ (such
events appear if two or more events in one tes synchronise with the same event
in the other tes). For each event (e1; e2) in the parallel composition, the bundles
X �→ (e1; e2) are obtained by the “lifting” of the bundles Xi �→i ei of the components
Ei. Let for A⊆Obs; Es

i =df {e∈Ei | li(e)∈A∪{√}} be the set of synchronising events
and Ef

i =df Ei\Es
i the set of ‘free’ events.

De�nition 15 (Parallel composition). For A⊆Obs let

E1 ||A E2 =df (E;  ; �→ ; l;A;R;U) where

• E=(Ef
1 × {∗})∪ ({∗} × Ef

2 )∪{(e1; e2)∈Es
1 × Es

2 | l1(e1)= l2(e2)}
• (e1; e2) (e′1; e

′
2) iQ

• (e1 1 e′1)∨ (e2 2 e′2) or
• (e1 = e′1 �= ∗ ∧ e2 �= e′2)∨ (e2 = e′2 �= ∗ ∧ e1 �= e′1)

• X �→ (e1; e2) iQ
• (∃X1 : X1 �→1 e1 ∧X = {(e; e′)∈E | e∈X1 }) or
• (∃X2 : X2 �→2 e2 ∧X = {(ê; ê′)∈E | ê′ ∈X2 })

• l(e1; e2)= if e1 = ∗ then l2(e2) else l1(e1)
• A(e1; e2)=A1(e1)∩A2(e2) with Ai(∗)= [0;∞):
• R(X; (e1; e2))=

⋂
X1 ∈ S1

R1(X1; e1)∩
⋂

X2 ∈ S2
R2(X2; e2) with

• S1 = {X1⊆E1 |X1 �→1 e1 ∧X = {(e; e′)∈E | e∈X1 }} and
• S2 = {X2⊆E2 |X2 �→2 e2 ∧X = {(ê; ê′)∈E | ê′ ∈X2 }}

• (e1; e2)∈U iQ e1 ∈U1 ∨ e2 ∈U2 with ∗ =∈Ui :

Example 16. In the =rst example of parallel composition the timings of events and
bundles are unaQected and are omitted for convenience:
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Synchronisation leads to pairing of events, and intersection of the event delays of its
components, cf.

Intersection of bundle delays is illustrated by the following example where the left-hand
tes is composed with the empty event structure:

In Section 3 we motivated the use of bundles for modelling parallel composition in
a rather intuitive way. Due to the impossibility to have diQerent (con9icting) causes
for a single event, the de=nition of parallel composition on prime event structures
is much more involved [29, 39]. For 9ow event structures, the de=nition of parallel
composition poses some technical problems that can be solved by imposing additional
structural constraints on the event structures [15].

We can now establish the following closure result:

Theorem 17. TES is closed under aI : ;+; \A; [�]; ; ; [¿; ||A ; and Bt .

Proof. Let E1;E2 ∈ TES. We provide the proofs for [¿ and ||A ; the proofs for the
other constructs are similar (and simpler). We concentrate our proof on the constraints
(P2) and (P3) of De=nition 1. The proofs for irre9exivity of  and (P1) follow
directly from [26] and are omitted here. The fact that urgent events are internal is easy
to check and omitted.
(1) E=E1 [¿E2. The proof of (P3) is easy since the event and bundle delays are

unaQected by [¿ and no urgent events are introduced by it. Consider constraint
(P2). Let e∈U.
(i) Assume e′ e and X �→ e. If e′ 1e or e′ 2e then the validity of (P2) fol-

lows directly from E1;E2 ∈ TES. Consider e′ � 1e and e′ � 2e. From De=nition
1 it follows that we have to consider the cases e′ ∈E1 and e∈ init(E2), and
e′ ∈ init(E2) and e∈ exit(E1). For the latter (P2) follows, since e∈ exit(E1)
contradicts the assumption e∈U while urgent events are internal. For the
former case (P2) also follows, since e∈ init(E2) contradicts the assumption
X �→ e.
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(ii) Assume e e′ and X �→ e. Like for (i) consider e � 1e
′ and e � 2e

′. Con-
sider (the symmetric cases of (i)) e∈E1 and e′ ∈ init(E2), and e∈ init(E2)
and e′ ∈ exit(E1). The latter case is straightforward since e∈ init(E2) contra-
dicts X �→ e. Consider the former case. From the assumption X �→ e and Def-
inition 14 it follows X �→1 e. Since E1 ∈ TES and the fact that e′ is initial we
have X  1e′ for X ⊆E1, and consequently X  e′.

(2) E=E1 ||A E2. Let e=(e1; e2)∈U. Since urgent events are internal we have e1 = ∗
and e2 ∈E2, or the reverse. By symmetry it suMces to consider, e.g. e=(∗; e2)
with e2 ∈E2.
(P2) Let X �→ e. The cases e e′ and e′ e are proven in a similar way. We

consider e′ e. Let e′ =(e′1; e
′
2). From (e′1; e

′
2) (∗; e2) and De=nition 15

it follows that e′2 2 e2. In addition, since e=(∗; e2) we have X = {(e′′1 ; e′′2 )
∈E | e′′2 ∈X2} where X2 �→2 e2. Since E2 ∈ TES it follows X2 �→2e′2 or X2 2

e′2, and by De=nition 15, X �→ e′ or X  e′.
(P3) Since E2 ∈ TES we have that A2(e2)⊆ [t; t] or X2

I�→2 e2 with I ⊆ [t; t] for
some t. For the former case the validity of (P3) follows since A(∗; e2)= [0;
∞)∩A2(e2)=A2(e2). For the second case, it follows from De=nition 15
that there is a bundle X �→ e with delay R(X; e)⊆R2(X2; e2) and thus (P3)
is satis=ed.

5. A metric denotational semantics

In this section we provide a metric denotational semantics for our process algebra.
In Section 5.1 we summarise the main ingredients of metric spaces that are needed for
the understanding of the rest of this paper. The use of metric spaces for denotational
semantics is summarised in Section 5.2. Readers familiar with these topics might want
to skip these sections. The basis for an appropriate distance notion is time truncation
as described in Section 5.3. Section 5.4 de=nes a complete ultra-metric space based
on time truncation. Time-guardedness is de=ned in Section 5.5 and a semantics for
time-guarded speci=cations is provided in Section 5.6.

5.1. A resumAe of metric spaces

A more thorough treatment of metric spaces can be found in, for instance, [16].

De�nition 18 (Metric space). For set A and d : A×A→R, the pair 〈A; d〉 is a metric
space if for all x and y∈A:
(1) d(x; y)¿0,
(2) d(x; y)= 0⇔ x=y,
(3) d(x; z)6d(x; y) + d(y; z) for all z ∈A.
〈A; d〉 is called an ultra-metric space if constraint (3) is replaced by (the stronger) con-
straint d(x; z)6max(d(x; y); d(y; z)). If constraint (2) is weakened into d(x; y)= 0⇐ x
=y, then the pair 〈A; d〉 is called a pseudo-metric space.
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In this paper we consider one-bounded distance functions, i.e. d(x; y)61 for all
x; y∈A. We will also basically deal with ultra-metric spaces, which is quite natural
when the distance function corresponds to the reciprocal of the number of computation
steps two processes coincide.

We assume that 〈A× A; d′〉 is equipped with the distance

d′((x; y); (x′; y′))= max{d(x; x′); d(y; y′)}

for x; x′; y; y′ ∈A.
If (xn) is a sequence in 〈A; d〉 and x∈A then x is called the limit of (xn) iQ

∀#¿0: (∃N ∈N: ∀n¿N : d(xn; x)¡#):

〈A; d〉 is a complete metric space (cms) if each Cauchy sequence has a limit, where a
Cauchy sequence is a sequence (xn) xi ∈A, such that

∀#¿0: (∃N ∈N: ∀m; n¿N : d(xm; xn)¡#):

De�nition 19 (Contracting). For 〈A; d〉 a metric space, function f :A→A is contract-
ing if there exists a real number c∈ [0; 1) such that

∀x; y∈A: d(f(x); f(y))6c · d(x; y):

In that case, c is called a contraction coeBcient of f. Function f is called non-distance
increasing or non-expansive iQ

∀x; y∈A: d(f(x); f(y))6d(x; y):

Banach’s =xed point theorem now says that for each contracting function on a cms
there exists a unique =xed point.

Theorem 20 (Banach’s =xed point theorem). For 〈A; d〉 with A �= ∅ a complete metric
space and f :A→A a contracting function on 〈A; d〉 we have
(1) f has a unique ?xed point; say x; and
(2) any sequence (xn) such that xi+1 =f(xi) has limit x.

5.2. Denotational semantics

We only give a brief account of our approach; see [35, 10, 6, 11] for more information
on the use of metrics for denotational semantics. The semantic domain S – in our case
a suitable variant of TES – for PA is equipped with a set Op′ of operators that re9ect
the operators Op of Expr. For any =xed declaration decl, the function P �→M(decl ; P)
for P ∈ Expr is a homomorphism from (Expr;Op) to (S;Op′) such that the meaning of
process variable x is given by decl(x). The requirement of being a homomorphism is
an algebraic characterisation of the fact that M is compositional, that is, the meaning
of a composed program op(P1; : : : ; Pn) with op∈Op can be obtained by applying the
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corresponding semantic operator op′ ∈Op′ to the meanings M(Pi) of the modules Pi,
shortly

M(decl ; op(P1; : : : ; Pn))= op′(M(decl ; P1); : : : ;M(decl ; Pn)):

Function M satis=es these conditions iQ, for any =xed declaration decl, the func-
tion P �→M(decl ; P) is a =xed point of the higher-order function Fdecl : [Expr→ S]→
[Expr→ S], de=ned (in our case) by

Fdecl()(0)=df 0′

Fdecl()(1)=df 1′

Fdecl()(x)=df (decl(x))

Fdecl()(op P)=df op′ Fdecl()(P) for unary op

Fdecl()(P op Q)=df Fdecl()(P) op′ Fdecl()(Q) for binary op:

By Banach’s =xpoint theorem, Fdecl has a unique =xed point, provided that Fdecl is con-
tracting with respect to a distance function d̃ where 〈[Expr→ S];d̃〉 is a cms. Distance
d̃ is obtained from the cms 〈S; d〉 where

d̃(1; 2)=df sup{d(1(P); 2(P)) |P ∈ Expr} (1)

for 1; 2 : Expr→ S. Function Fdecl is contracting on 〈[Expr→ S];d̃〉 if its constituents
; ; Bt ; ||A and so on, are non-distance increasing on 〈S; d〉 and contracting in certain ar-
guments [6, 12]. Our =rst concern is to =nd an appropriate function d on the semantical
domain S, in our case TES. The semantics of PA is then obtained by M(decl ; P)=df

decl(P), where decl : Expr→ S is the unique =xed point of Fdecl .

5.3. Time truncation

The basis of our distance function d is time truncation. The minimal time at which
e can occur in E is de=ned by

mintimeE(e)=df inf{t ∈R+ | ∃ �∈Traces(E): (e; t)∈ �};

where by convention inf ∅=df ∞. For t ∈R+ and X ⊆E let X � t=df {e∈X |
mintimeE(e)¡t}, the set of events in X that can occur strictly before t. Notice that
X � 0= ∅ for any X . Let X �∞=df

⋃
t¿0 X � t, i.e. X �∞ is the set of events that can

occur. Event e is called executable iQ e∈E�∞, i.e. if mintimeE(e)¡∞.

De�nition 21 (Time truncation). The truncation of E up to t ∈R+ ∪{∞} is de=ned
by E� t=df (E� t;  t ; �→t ; lt ;At ;Rt ;Ut) where lt = l� (E� t); At(e)=A(e)∩ [0; t);
Ut =U � t, and
•  t = ∩ (E� t × E� t),
• X �→t e iQ there exists Y �→ e with Y� t=X .
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Fig. 2. Time truncation.

• Rt(X; e) is the set of all time points u∈ [0; t[ such that there is some timed event
trace (e1; t1)(e2; t2) : : : (en; tn) for which the following conditions hold:
• tn¡t and en = e,
• there is some j¡n with ej ∈X and u= tn−tj.

Remark that E � 0 is the empty tes. By straightforward proof one can establish that

Lemma 22. TES is closed under time truncation.

Lemma 23. ∀t¿0: E � t=(E �∞)� t.

Example 24. Time truncation is illustrated in Fig. 2. It depicts (a) a tes E and (b) its
truncation E� 6 up to time 6. Events b; f and g are eliminated in E � 6, since the mini-
mal time at which they can occur, time 11, 8 and 6, respectively, is at least 6. Note that

{a} [1;3]�→ 6 c, since the minimal delay between events a and c is 1 ([1;∞)∩ [0; 9]= [1; 9]

since {a; b} 1�→ c and {a} [0;9]�→ c), whereas the maximal delay is at most 3 time units
(in the scenario in which a happens at time 3, and c should happen before 6). In a

similar way, we obtain {c} [1;2)�→ d.

The idea of time truncation is that by enlarging the time span during which an
event structure is considered, we obtain more information about its behaviour. In the
limit, that is for an in=nite time span, we would expect to capture the entire behaviour
of the event structure. The next theorem says that the behaviour of E can indeed be
approximated by its time truncations. In order to pave the way towards its proof we
provide the following lemma.

Lemma 25. For �=(e1; t1) : : : (en; tn)∈Traces(E) such that ti¡t for all 0¡i6n:

enE(e1 : : : en)� t= enE� t(e1 : : : en):

Proof. By checking inclusion in both directions.
(i) ‘⊆ ’: let e∈ enE(e1 : : : en)� t. Then e � ei, for 0¡i6n, and by De=nition 21 it fol-

lows e � t ei. If there is no bundle in E � t pointing to e, then we yield e∈ enE� t(e1
: : : en). Suppose that X �→t e. Then, according to De=nition 21, Y �→ e for some Y
with Y� t=X . Since ti¡t for 0¡i6n, we have that (X ∩{e1; : : : ; en} �= ∅)⇔ (Y ∩
{e1; : : : ; en} �= ∅), and e∈ enE� t(e1 : : : en).
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(ii) ‘⊇ ’: let e∈ enE� t(e1 : : : en). Then e � t ei, for 0¡i6n, and by De=nition 21 it
follows that e � ei. If there is no bundle in E pointing to e then the property
follows directly. Suppose X �→ e. Then, by De=nition 21, X � t �→t e. But then,
(X ∩{e1; : : : ; en} �= ∅)⇔ ((X � t)∩{e1; : : : ; en} �= ∅) since ti¡t for 0¡i6n, and e∈
enE(e1 : : : en)� t.

From the de=nition of time truncation and the previous lemma, it is not diMcult to
show that:

Theorem 26. Traces(E)=
⋃

t¿0 Traces(E � t).

5.4. A complete ultra-metric space

The idea is to use time truncation as a basis for de=ning a distance d on TES. In
particular, the distance between two tes’s will be determined by the maximum amount
of time they “agree”, that is

d(E1;E2)=df inf{2−t |E1 � t=E2 � t}: (2)

Remark that E � 0 is the empty tes, so each pair of tes’s agrees at least up to time 0.
Also notice that d(E;E � t)62−t for all t. Although this basic notion of distance is
rather intuitive, it is, unfortunately, too naive. The problem is that some distinct tes’s
cannot be distinguished according to d. This means that d is a pseudo-metric rather
than a metric. For instance, the tes consisting of a single event e with an empty bun-
dle pointing to e is indistinguishable from the empty tes, since their time truncations
are all empty. That is, according to (2) their distance is 0. The problem is that tes’s
may contain events that can never appear. This is due, for example, to empty bundles,
circular bundles, or inconsistent timing constraints. Such events can, for instance, ap-
pear in the semantics for expressions like 0 ||a a : 0, a : b : 0 ||{a;b} b : a : 0, or when timing
constraints are speci=ed that avoid certain actions from happening, like in a2 : 0 B1 b : 0
where a will never happen. Such events can be removed by applying the transforma-
tions exposed in [27, 22] that preserve timed event traces, but it is hard to adapt the
de=nitions of the operators on event structures such that these events are eliminated
during construction.

A solution to this problem is to impose an equivalence relation, � say, on TES,
while aiming at d(E1;E2)= 0⇔E1 � E2. Stated in other words, where d is the equiv-
alent of d on TES=� and Ei denotes the equivalence class of Ei under �, we aim at
d(E1;E2)= 0⇔E1 =E2: In order to obtain �, the examples suggest to abstract from
events that can never be executed. This motivates the use of restrictions of E to its
set E �∞ of executable events. In the above example with ∅ �→ e it would mean that
event e is not considered. The idea of those restrictions is that executable events are
unaQected. This follows from:

Lemma 27. Traces(E �∞)=Traces(E).
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Proof.

Traces(E �∞)

= {Theorem 26}
⋃

t¿0 Traces((E �∞) � t)

= {Lemma 23}
⋃

t¿0 Traces(E � t)

= {Theorem 26}
Traces(E):

The equivalence � intended above is now de=ned by E1 � E2 if and only if E1 �
∞=E2 �∞.

It is quite standard to abstract from event identities in metric semantics [11, 29],
i.e. to deal with isomorphism classes of semantic structures. The event identities are
only needed for technical reasons but they are meaningless for the semantics of an
expression. The following de=nition is the usual notion of isomorphism with the only
exception that the bijection is de=ned over the executable events.

De�nition 28 (Isomorphism). Tes’s Ei =(Ei; i ; �→i ; li;Ai ;Ri ;Ui) for i=1; 2 are iso-
morphic if there exists a bijection f :E1→E2 such that l2 ◦ f= l1, A2 ◦ f=A1

and
(1) e1 1 e2 iQ f(e1) 2 f(e2) for all e1; e2 ∈E1,
(2) X I�→1 e iQ f(X ) I�→2 f(e) for all e∈E1; X ⊆E1, and
(3) e∈U1 �∞ iQ f(e)∈U2.
E1 and E!2 are called timed isomorphic, denoted E1�isoE2, iQ the tes’s E1 �∞ and
E2 �∞ are isomorphic.

Note that E�isoE �∞. We write f :E1→E2 to denote that f is an isomorphism
from E1 to E2. For E∈ TES let EE denote the equivalence class of E under �iso. For
E∈ TES=�iso let E � t=df EE � t , where E is a representative of E. The distance between
equivalence classes (under �iso) of tes’s is given by

d(E1;E2)=df inf{2−t |E1 � t=E2 � t}: (3)

Recall that d(E;E � t)62−t for all t¿0.
In order to motivate the next step towards (isomorphism classes of) =nite approx-

imable timed event structures consider the following example.

Example 29. Let Ei =(Ei; ∅; �→i ; Ei × {a};Ai ;Ri ; ∅), for i=1; 2 where
• E1 = {(k; j) | j¿1∧ 0¡k6j} and E2 =E1 ∪{(k; 0) | k¿1}
• {(k; j)} �→i (k+1; j) for 0¡k¡j and {(k; 0)} �→2 (k+1; 0) for k¿1
• Ai(k; j)= [k; k] for all (k; j)∈Ei, and
• Ri({(k; j)}; (k+1; j))= [1; 1].
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Fig. 3. Two non-isomorphic tes’s for which all timed truncations are isomorphic.

E1 and E2 are depicted in Fig. 3(a) and (b), respectively. For simplicity, event labels,
bundle delays and event identi=ers are omitted. Then, E1 ��isoE2 while E1 � t�isoE2 � t for
all t¿0. If we now would de=ne d as suggested in (3) on TES=�iso then d(E1;E2)= 0,
although E1 and E2 are not isomorphic, thus yielding a pseudo-metric.

The problem with this example is that both tes’s allow an in=nite number of events
to occur in a =nite amount of time. This is avoided by considering =nitely approximable
tes’s, a timed analogon of approximable event structures [29]. Note that this is not a
real restriction, since for timed systems it is quite natural to avoid the execution of an
in=nite number of events in a =nite time span (so called Zeno behaviours) [3, 33].

De�nition 30 (Finite approximable). E is called ?nitely approximable iQ E � t is =nite
for all t ∈R+.

Let TES=n=�iso denote the isomorphism classes of =nitely approximable tes’s.

Lemma 31. 〈TES=n=�iso; d〉 is an ultra-metric space.

Proof. It is straightforward to check that d is a pseudo-ultra-metric on TES=n=�iso. We,
therefore, concentrate on showing that d(E;E′)= 0⇒E=E′. Let E, E′ ∈ TES=n=�iso

such that d(E;E′)=0 and let E=(E; ; �→; l;A;R;U), E′ =(E′; ′; �→′; l′;A′;R′;U′)
be representatives of E and E′, respectively. The proof obligation is E�isoE

′. (Then it
follows, E=E′.) Since d(E;E′)= 0 it follows from the de=nition of d that E � t and
E′ � t coincide for all t. The proof technique for showing E=E′ is to use the thus
existing isomorphisms between E � t and E′ � t to construct an isomorphism between
E and E′.
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Let (tn)n¿0 be a strictly monotonic sequence of non-negative reals with t0 = 0 and
sup(tn)=∞. Let fn :E � tn→E′ � tn be an isomorphism. (From the above it follows that
such isomorphism exists.) Clearly, mintimeE(e)=mintimeE′(fk(e)) for all executable
events e in E. Moreover, for any event e in E � t and any time point t, we have
mintimeE(e)=mintimeE � t(e). (And the corresponding result for E′.) This yields the
following. If e∈E � tn then fk(e)∈E′ � tn for all k¿n. We now de=ne for k¿n,
functions hk; n :E � tn→E′ � tn by hk; n(e)=fk(e).

The idea is to de=ne (by induction on n¿0) isomorphisms gn :E � tn→E′ � tn and
in=nite sets In of natural numbers such that
(1) I0⊇ I1⊇ I2⊇ · · · and
(2) gn = hk; n(=fk) for all k ∈ In.
Base case: let g0 be the empty function and I0 = {n | n¿0}.
Induction step: let n¿1 and assume gk and Ik have been de=ned for all 06k ¡ n.

Since E � tn and E′ � tn are =nite, the set of all functions from E � tn to E′ � tn is =nite.
As In−1 is in=nite and the set of all functions from E � tn to E′ � tn is =nite, there exists
some function gn :E � tn→E′ � tn and some in=nite subset In of In−1 with gn = hk; n for
all k ∈ In.
This completes the de=nition of gn and In for n¿0. Let the function f :E �∞→E′ �∞
be de=ned as follows: for event e∈E with mintimeE(e)= t and tn¿t, let f(e)=
gn(e). (Note that, if k¿n and tn¿t then gk(e)= gn(e) for all e∈E � t.) We now
show that f is an isomorphism E→E′. From the construction of f in terms of the
isomorphisms gn, it follows that f is a bijection with l= l′ ◦f, A=A′ ◦f, e∈U iQ
f(e)∈U′ and
• e e′ iQ f(e) ′ f(e′),
• mintimeE(e)=mintimeE′(f(e)), and
• f(X ) � tn = gn(X � tn) for all n¿0.
It remains to consider the bundle relations. Let �→n (Rn) and �→′

n (R′
n) be the bun-

dle relation (the bundle delay functions) of E � tn and E′ � tn, respectively. Let e∈E,
n0 a natural number with tn0¿mintimeE(e) and assume X �→ e is a bundle in E �∞
with R∞(X; e)= I . By De=nition 21 it follows X � tn �→n e for all n¿n0 where
⋃
Rn(X � tn; e)=R∞(X; e)= I . Since gn :E � tn→E′ � tn is an isomorphism, it follows

f(X ) � tn = gn(X � tn) �→′
n gn(e)=f(e)

and R′
n(f(X ) � tn; f(e))=R′

n(gn(X � tn); gn(e))=Rn(X � tn; e) for all n¿n0. Thus,

f(X ) I�→ ′f(e). In a similar way, we can show that f(X ) I�→ ′f(e) implies X I�→ e.
This proves that f is an isomorphism from E1 to E2, and consequently, that E1�iso

E2. Hence, E1 =E2.

The main result that we need in order to de=ne the metric semantics for PA as the
unique =xed point of some higher-order function is completeness of the metric space
that is considered.
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Theorem 32. The ultra-metric space 〈TES=n=�iso; d〉 is complete.

Proof. We show that each Cauchy sequence has a limit in TES=n=�iso in the following
way. Given an arbitrary Cauchy sequence (En): (i) we provide a recipe on how to
construct a structure F that is (ii) a member of TES, is (iii) =nitely approximable,
and (iv) for which d(En;EF)62−n for all n¿1.

We start with some preliminaries. Let (En) be a Cauchy sequence in TES=n=�iso.
Assume that d(En;Ek)61=2n for all k¿n¿1. 7 Let En =(En; n; �→n; ln;An;Rn;Un)
be a representative of En and, for k¿n¿1, fn; k :En � n→Ek � n an isomorphism. Let
En � n=(En � n; ′

n; �→′
n; l

′
n;A

′
n;R

′
n;U

′
n). We assume w.l.o.g. En ∩Ek = ∅ if n �= k. Let

E=
⋃

n¿1 En � n, and let ≡ be the smallest equivalence relation on E that identi=es e
and fn; k(e) for all e∈En � n and k¿n. Let F =E= ≡ and gn :En � n→F the canonical
function that assigns to each e∈En � n its equivalence class under ≡, [e]≡, that is
{e; fn; n(e); fn; n+1(e); fn; n+2(e); : : :}. For f∈F we de=ne

rank(f)=df min{n¿1 | ∃ e∈En � n : f= gn(e)}:

Stated in words, the rank of f is the minimal time instant such that f is the image
of some event e under gn. Let Fn = {f∈F | rank(f)6n}, and for rank(f)6n, let
,n(f) be the unique element in En � n with gn(,n(f))=f (the ‘generator’ of [e]≡).
Then,
• ,n(gn(e))= e for all e∈En � n,
• fn; k(,n(f))= ,k(f) for all k¿n¿1 and f∈Fn,
• l′k(,k(f))= l′k(fn; k(,n(f))= l′n(,n(f)) for all k¿n¿1 and f∈Fn,
• A′

k(,k(f))⊇A′
n(,n(f)) for all k¿n¿1 and f∈Fn,

• ,n(f) ′
n ,n(f

′) iQ ,k(f) ′
k ,k(f

′) for all k¿n¿1 and f, f′ ∈Fn.
For Y ⊆F let ,n(Y )= {e∈En � n |gn(e)∈Y}. Clearly, ,n(Y )= ,n(Y ∩Fn) for all
Y ⊆F .
(i) We de=ne F=(F; ; �→ ; l;A;R;U) as follows.

• f f′ iQ ,n(f) ′
n ,n(f

′) for all n¿max{rank(f); rank(f′)},
• Y �→f iQ, for each n¿rank(f), ,n(Y ) �→′

n ,n(f) is a bundle in En � n,
• l(f)= l′n(,n(f)) for all n¿rank(f),
• A(f)=

⋃
n¿rank(f) A

′
n(,n(f)),

• R(Y; f)=
⋃

n¿rank(f) R
′
n(,n(Y ); ,n(f)) for Y �→f,

• U=
⋃

n¿1{gn(e) | e∈U′
n}.

Clearly, if ,k(Y ) �→′
k ,k(f) and rank(f)6n¡k then

,n(Y )=f−1
n; k (,k(Y ) � n) �→′

n f
−1
n; k (,k(f))= ,n(f)

7 From the theory of metric spaces [16] it is known that for any Cauchy sequence (En) there exists a
subsequence (Ein ) with d(Ein ;Eik )61=2n for all k¿n¿1. Moreover, the limit of (En) (if any) is identical
to the limit of (Ein ).
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and R′
n(,n(Y ); ,n(f))⊆R′

k(,k(Y ); ,k(f)). Thus, Y �→f iQ ,n(Y ) �→′
n ,n(f) for

in=nitely many n¿rank(f) and

R(Y; f)=
⋃

i¿1
R′
ni(,ni(Y ); ,ni(f))

for each sequence n1¡n2¡ · · · :
(ii) We now prove that F∈ TES. It is easy to see that F satis=es constraint (P1) of

De=nition 1 and that  as de=ned under (i) is irre9exive.
(P2) Let Y �→f be a bundle in F, f∈U and either f f′ or f′ f. If ,n(Y ) n

,n(f′) in En for all n¿rank(f′) then by the construction in (i), Y  f′, and
(P2) is satis=ed. Otherwise there is some n0¿rank(f′) and some e∈ ,n0 (Y ) with
e � n0 ,n0 (f

′). For all n¿n0, fn0 ; n(e)∈ ,n(Y ) and fn0 ; n(e) � n ,n(f′) (†). For
each n¿n0, we choose a bundle Xn �→n ,n(f) in En with Xn � n= ,n(Y ) (which
exists as Y �→f, thus ,n(Y ) �→′

n ,n(f) in En � n). By (†) and (P2), it follows
Xn �→n ,n(f′) for all n¿n0. (Note that ,n(f)∈Un.) Thus, ,n(Y ) �→′

n ,n(f
′) is

a bundle in En � n. By de=nition of the bundle relation �→ in F, Y �→f′.
(P3) Let f∈U such that A(f) consists of at least two elements. Since A′

n(,n(f))
⊆A′

n+1(,n+1(f)) there is some n0¿rank(f) such that A′
n(,n(f)) contains at

least two elements for all n¿n0. By (P3), for each n¿n0, there is some tn ∈R+

and a bundle Xn �→n ,n(f) in En with Rn(Xn; ,n(f))= {tn} 8 Thus,

(∗∗) Xn � n �→′
n ,n(f) is a bundle in En � n with R′

n(Xn � n; ,n(f))= {tn}:
By induction on n we de=ne subsets Yn of Fn and in=nite sets In of natural numbers
such that I0⊇ I2⊇ · · · and Yn = gk(Xk � n) for all k ∈ In.

Let I0 = {n | n¿n0}. We suppose that n¿1 and that Y1; : : : ; Yn−1 and I0; : : : ; In−1

are already de=ned. As Fn = gn(En � n) is =nite (since En is =nitely approximable)
and gk(Xk � n)⊆Fn for all k ∈ In−1 there exist Yn⊆Fn and an in=nite subset In of
In−1 with Yn = gk(Xk � n) for all k ∈ In. Let

Y =
⋃

n¿1
Yn:

Clearly, Yn = {f∈Y | rank(f)6n}=Y ∩ Fn. Thus, ,n(Y )= ,n(Y ∩Fn)= ,n(Yn).
We show that Y �→f is a bundle in F with R(Y; f)= {t} for some t ∈R+.

Let �→k; n and Rk; n be the bundle relation and bundle delay function of Ek � n
respectively. (Thus, �→′

n = �→n; n and R′
n =Rn; n.) Let n¿n0. We choose some

k ∈ In with k¿n. Then,

Xk � n= ,k(gk(Xk � n))=fn; k(,n(Y )):

Since Xk �→k ,k(f) we have Xk � n �→k; n ,k(f). As fn; k is an isomorphism
En � n→Ek � n and ,k(f)=fn; k(,n(f)) we obtain ,n(Y ) �→′

n ,n(f): Thus, Y �→f.
Moreover, for all n¿n0, {tn0}=R′

n0
(,n0 (Y ); ,n0 (f))=Rn;n0 (Xn � n0; ,n(f))⊆

Rn(Xn; ,n(f))= {tn}: Thus, tn = tn0 for all n¿n0 and R(Y; f)= {tn0}.

8 The case Rn(Xn; ,n(f))= ∅ is not of interest here, since then event ,n(f) would not be executable.
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(iii) As a next step we prove that F is =nitely approximable. Let (f1; u1) : : : (fk;
uk)∈Traces(F). Then, (,n(f1); u1) · · · (,n(fk); uk)∈Traces(En � n) for all n¿
max{u1; : : : ; uk}. Vice versa, if (e1; u1) : : : (en; un)∈Traces(En � n) then (gn(e1); u1)
· · · (gn(ek); uk)∈Traces(F). Thus, mintimeF(f)=mintimeEn � n(,n(f)) for all
f∈F with n¿rank(f). Hence, F � n= {gn(e) | e∈En � n}. In particular, as En � n
is =nite, F � t is =nite for all t¿0. Hence, F is =nitely approximable.

(iv) Finally, we show that F is a limit, or more precisely, that EF is the limit of the
Cauchy sequence (En). It is easy to see that fn :En � n→F � n, fn(e)= gn(e),
is an isomorphism En � n→F � n. We obtain d(En;F)62−n for all n¿1. Thus,
d(En;EF)62−n for all n¿1.Therefore, limEn =EF.

5.5. Time-guardedness

We now give a metric denotational semantics for (a subset of) PA based on equiva-
lence classes (under �iso) of timed event structures. With slight modi=cations we use
the standard procedure (as explained in Section 5.2) to de=ne a denotational seman-
tics on complete metric spaces which is based on non-expansive=contracting semantic
operators and Banach’s =xed point theorem. The main diQerence with the standard
(untimed) case is the notion of ‘guardedness’ which ensures the well-de=nedness of
recursive programs. While in the untimed case [7, 29] guardedness ensures that each
process instantiation is preceded by an action-pre=x, we use a notion of time guarded-
ness (like in timed CSP [37]) which guarantees that a recursive process instantiation
can only happen after a positive amount of time. In other words, time guardedness
prevents a process instantiation to take place at time 0 like e.g. in x + a[1;2) : 1 or
a[0;∞) : x. Formally, the time guard of expression P is derived from the syntax of P
and yields a lower bound for the minimal time instant where a process instantiation is
possible. As a subsidiary notion we de=ne the minimal time at which an expression
can successfully terminate.

De�nition 33 (Minimal time of termination). Function
√

min : Expr→R+ ∪{∞} is
de=ned by

√
min (0)=df ∞;

√
min (1)=df 0;√
min (x)=df 0;√
min (aI : P)=df inf (I) +

√
min (P);

√
min (op P)=df

√
min (P) for op∈{\A; [�]};

√
min (P ; Q)=df

√
min (P) +

√
min (Q);

√
min (P op Q)=df min{√min (P);

√
min (Q)} for op∈{+; [¿};

√
min (P ||A Q)=df max{√min (P);

√
min (Q)};

√
min (P Bt Q)=df min{√min (P); t +

√
min (Q)}:
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Most of the rules are self-explanatory. For process variable x the minimal time of
termination is supposed to be ‘unknown’ (as it depends on the declaration). Thus, we
use 0 as the lower bound of the minimal time of termination for expressions of the
form x. If P ; Q terminates successfully at time t, then t is of the form t= tP + tQ
where tP is the time at which P has successfully terminated (thus, tP¿

√
min (P)) and

tQ is the time at which Q can perform a successful termination event when started at
time point 0 (thus, tQ¿

√
min (Q)).

Example 34. For instance, for the expression P ; Q where

P= a[1;2] : ( b[3;∞) : 0 [¿1) and Q= c[0;1] : 1

we have

√
min (P ; Q)=

√
min (P) +

√
min (Q)= (1 + min{3 +∞; 0}) + 0=1:

The rule for
√

min (P ||A Q) is based on the fact that P ||A Q can only perform a
successful termination event if both components P and Q are ready to do so. Since√

min (P) is derived from the syntax of P (rather than the semantics) we cannot ex-
pect that

√
min (P) yields the exact minimal termination time. For instance, for the

expression P= a[1;2] : 1 ||{a} b[1;5) : 1, we obtain
√

min (P)= 1 while P cannot terminate
as its left component waits forever for the synchronisation on a. (So, the exact minimal
termination time of P is ∞.)

By structural induction on terms we de=ne the time guard of an expression. Intu-
itively, the time guard is the minimal time instant at which a process instantiation can
take place. For instance, for an expression of the form P ; Q we distinguish between
two kinds of process instantiations:
• a process instantiation that is in the scope of P which happens at the earliest at time
tg(P),

• a process instantiation that is in the scope of Q which happens at time t+u where
t is the time instant at which P performs a successful termination event (hence,
t¿
√

min (P)) and u is the time at which Q (when started at time 0) instantiates the
process (hence, u¿tg(Q)).

For the expression P= x∈Var the process instantiation takes place at time 0. Thus,
the time guard of x has to be de=ned as 0.

De�nition 35 (Time guard). Function tg : Expr→R+ ∪{∞} is de=ned by:

tg(0)=df ∞;

tg(1) =df ∞;

tg(x) =df 0;

tg(aI : P) =df inf (I) + tg(P);

tg(op P) =df tg(P) for op∈{\A; [�]};
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tg(P op Q) =df min{tg(P); tg(Q)} for op∈{+; ||A ; [¿};
tg(P ; Q) =df min{tg(P);

√
min (P) + tg(Q)};

tg(P Bt Q) =df min{tg(P); t + tg(Q)}:
For declaration decl let tg(decl)=df inf{tg(decl(x)) | x∈Var}. decl is called time-
guarded iQ tg(decl)¿ 0.

Example 36. For the expressions

P1 = x + a[1;∞) : y;

P2 = a[0;∞) : x;

P3 = b(7;8] : 0 B5 (P2 ||{a} y);
P4 = c[2;3] : (x [¿b[1;∞) : 1);

we have

tg(P1) = min{tg(x); tg(a[1;∞) : y)}= min{0; 1 + 0}=0;

tg(P2) = 0 + tg(x)= 0 + 0=0;

tg(P3) = min{7; 5 + tg(P2)}= min{7; 5 + 0}=5;

tg(P4) = 2 + tg(x [¿b[1;∞) : 1)= 2 + min{0; 1 + 0}=2:

Thus, if Var= {x; y} and decl1(x)=P3, decl1(y)=P4, decl2(x)=P1, decl2(y)= 0 then

tg(decl1)= inf{5; 2}=2; tg(decl2)= inf{0;∞}=0:

Hence, decl1 is time-guarded while decl2 is not.

Similar to the observation we made for
√

min ( · ), tg( · ) is only a lower bound for
the minimal time instant at which a process instantiation is possible rather than the
exact time. For instance, for P= a[1;2] : x ||{a} b[1;5) : 1 we have tg(P)= 1, while the
process instantiation x is never possible.

5.6. A metric semantics for TGPA

We give a metric semantics to TGPA, the set of time-guarded processes, i.e. the set
of pairs 〈decl ; P〉 where decl is a time-guarded declaration and P an expression. For
the de=nition of the meaning function M : TGPA→ TES=n=�iso we lift the semantic
operators of Section 4 to operators on TES=n=�iso. Given that all operators de=ned in
Section 4 preserve �iso and =nitely approximability (as can be shown by straightfor-
ward proof) we may de=ne for E, F∈ TES=n=�iso:

opE=df EopE for op∈{aI : ; \A; [�]}
and

E opF=df EE opF for op∈{+; ; ; ||A ; [¿; Bt }
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where E, F are representatives of E and F, respectively. Let E0 be the equivalence
class of the empty tes and E1 the equivalence class of the tes

E1 =df ({e}; ∅; ∅; {(e;√)}; {(e; [0;∞))}; ∅; ∅): (4)

Together with these semantic operators, TES=n=�iso constitutes a PA-algebra. The fol-
lowing theorem states the non-expansiveness of the operators in our process algebra
with respect to distance d. Moreover, it shows that timed pre=xing is contracting (if
inf (I) �=0) and that timeout is contracting in its second argument (if t ¿ 0).

Theorem 37. For E;E′;F;F′ ∈ TES=n=�iso we have
(1) d(aI :E; aI :E′)= 2− inf (I) · d(E;E′);
(2) d(E opF;E′opF′)6max{ d(E;E′); d(F;F′)} for op∈{+; ||A ; [¿};
(3) d(opE; opE′)6d(E;E′) for op∈{\A; [�]};
(4) d(E Bt F;E′ Bt F′)6max{d(E;E′); 2−t · d(F;F′)};
(5) d(E ; F;E′ ; F′)6max{d(E;E′); 2−

√
min (E) · d(F;F′)};

where
√

min (EE)=df inf {mintimeE(e) | e∈E ∧ l(e)=
√}.

Proof. Let E;E′;F and F′ be representatives of E, E′, F and F′, respectively.
(1) It is easy to check that mintimeaI : E(e)=mintimeE(e) + inf (I) for e∈E, since

these events can only occur if the new event labelled a has occurred before,
which causes a delay of at least inf (I). So, if E and E′ agree up to time u, say,
then aI :E and aI :E′ agree up to time inf (I)+u. That is,

d(aI :E; aI :E′)= 2− inf (I)+u =2− inf (I) · 2−u =2− inf (I) ·d(E;E′):

(2) We consider +; the proofs for the other cases go along similar lines. Assume that
E and E′ agree up to time u and F and F′ agree up to time v. From De=nition 9 it
is not diMcult to see that mintimeE+F(e)=mintimeE(e) if e∈E and mintimeF(e)
if e∈F. 9 So, mintimeE+F(e)6min{mintimeE(e);mintimeF(e)}. An analogous
reasoning applies to E′ +F′. This means that E+F and E′ +F′ agree at least
up to time min{u; v}. But then we have

d(E +F;E′ +F′)6max{2−u; 2−v}= max{d(E;E′); d(F;F′)}:
(3) Straightforward, since abstraction and relabelling do only change the labels of

events and do not aQect the timing of events.
(4) Easy from the de=nition of the timeout operator and the results for choice and

pre=x in this theorem.
(5) Assume E and E′ agree up to time u and F and F′ agree up to time v. Recall

that
√

min (E) is the minimal time at which E can perform an event labelled with√
. Since events in F can only occur after the occurrence of a

√
in E we have

that mintimeE ;F(e)=mintimeE(e) if e∈E and equals
√

min (E) + mintimeF(e)
if e∈F. So, mintimeE ;F(e)6min{mintimeE(e); √min (E) + mintimeF(e)}. For

9 Recall that mintimeE(e)=∞ if e �∈E.
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E′ ; F′ we obtain a similar result. Now distinguish between (a)
√

min (E)¿u and
(b)

√
min (E)6u. For these cases we have:

(a)
√

min (E)¿u, or equivalently, 2−
√

min (E) ¡d(E;E′). Since E and E′ agree up
to time u it follows that

√
min (E′)¿u. An event of F (resp. F′) can only

happen after the successful termination of E (resp. E′). From
√

min (E)¿u
and

√
min (E′)¿u it now follows that E ; F and E′ ; F′ agree at least up to

time u. So, in this case d(E ; F;E′ ; F′)6d(E;E′), and hence

d(E ; F;E′ ; F′)6max{d(E;E′); 2−
√

min (E) ·d(F;F′)}:

(b)
√

min (E)6u, or equivalently, 2−
√

min (E)¿d(E;E′). Since E and E′ agree up
to time u it follows

√
min (E)=

√
min (E′). Now distinguish between (i) u6√

min (E) + v and (ii) u¿
√

min (E) + v. For case (i) we have that E ; F and
E′ ; F′ agree at least up to time u, whereas for case (ii) they agree at least
up to time

√
min (E) + v. So in this case,

d(E ; F;E′ ; F′)6max{d(E;E′); 2−
√

min (E) ·d(F;F′)}:

As a next step we prove that Fdecl is contractive with respect to d̃ where d̃ is de=ned
by d̃(1; 2)= sup{d(1(P); 2(P)) |P ∈ Expr} for homomorphisms 1, 2 : Expr→
TES=n=�iso. In order to prove that Fdecl is contracting we use the following two lem-
mata.

Lemma 38. For homomorphism  : Expr → TES=n=�iso and P ∈ Expr :
√

min ((P))¿
√

min (P):

Proof. Straightforward by structural induction on P.

Lemma 39. For homomorphisms 1; 2 : Expr→ TES=n=�iso and P ∈ Expr :

d(1(P); 2(P))62−tg(P) · d̃(1; 2):

Proof. By induction on the structure of P.
Base: the cases P= 0 and P= 1 are straightforward, e.g. for 0 we have

d(1(0); 2(0))

={1 and 2 are homomorphisms}
d(E0;E0)

={〈TES=n=�iso; d〉 is an ultra-metric space}
If P= x∈Var then tg(P)= 0 and, by de=nition of d̃, it follows d(1(P); 2(P))6
d̃(1; 2).
Induction Step: we illustrate this case for timed action-pre=x and sequential com-

position; the proofs for the other cases are similar and are omitted here.
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(1) Consider P= aI : Q. Then we derive

d(1(aI : Q); 2(aI : Q))

6 {Theorem 37; 1 and 2 are homomorphisms}
2− inf (I) · d(1(Q); 2(Q))

6 {induction hypothesis}
2− inf (I) · 2−tg(Q) · d̃(1; 2)

= {de=nition of tg}
2−tg(P) · d̃(1; 2):

(2) Let P=Q ; R. Then we derive:

d(1(Q ; R); 2(Q ; R))

6 {Theorem 37; 1 and 2 are homomorphisms}
max{d(1(Q); 2(Q)); 2−

√
min (1(Q)) · d(1(R); 2(R))}

6 {Lemma 38}
max{d(1(Q); 2(Q)); 2−

√
min (Q) · d(1(R); 2(R))}

6 {induction hypothesis (twice)}
max{2−tg(Q) · d̃(1; 2); 2−(

√
min (Q)+tg(R)) · d̃(1; 2)}

= {de=nition of tg}
2−tg(P) ·d(1; 2):

Theorem 40. For each decl and homomorphisms 1, 2 : Expr→ TES=n=�iso :

d̃(Fdecl(1); Fdecl(2))62−tg(decl) · d̃(1; 2):

Proof. By structural induction on P we show that

d(Fdecl(1)(P); Fdecl(2)(P))62−tg(decl) · d̃(1; 2):

Base: for P ∈{0; 1} the result follows directly. For case P= x we derive

d(Fdecl(1)(x); Fdecl(2)(x))

= {de=nition of Fdecl}
d(1(decl(x)); 2(decl(x)))

6 {Lemma 39}
2−tg(decl(x)) · d̃(1; 2)

6 {tg(decl) = inf{tg(decl(x)) | x ∈ Var}}
2−tg(decl) · d̃(1; 2)
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Induction step: from Theorem 37 it follows

d(E opF;E′ opF′)6max{d(E;E′); d(F;F′)} (5)

for op∈{+; ; ; [¿; Bt ; ||A }. Using this result we derive:

d(Fdecl(1)(P opQ); Fdecl(2)(P opQ))

6 {(5)}
max{d(Fdecl(1)(P); Fdecl(2)(P)); d(Fdecl(1)(Q); Fdecl(2)(Q))}

6 {induction hypothesis (twice)}
2−tg(decl) · d̃(1; 2):

A similar reasoning applies to the unary operators {aI : ; \A; [�]}.

This result says that Fdecl is contracting with contraction coeMcient 2−tg(decl) provided
that decl is time-guarded, that is, tg(decl)¿ 0. Thus, for time-guarded declaration decl,
the higher-order function Fdecl has a unique =xed point, say decl . The metric semantics
M : TGPA→ TES=n=�iso is now de=ned by M(decl ; P)=df decl(P).

6. A consistent operational interleaving semantics

Most timed process algebras are based on an interleaving semantics. In order to
facilitate a comparison with these existing approaches and to investigate the ‘compati-
bility’ of our proposal with the standard interleaving semantics of LOTOS (in a sense
which will be clari=ed later) we present an operational interleaving semantics for PA
and investigate its relation to our metric semantics. We start by introducing the notions
of timed transition system and (strong) timed bisimulation. Then we present the op-
erational interleaving semantics of PA, after which we study the consistency between
this interleaving and the non-interleaving semantics.

6.1. Timed transition systems

The notions of timed transition system and timed bisimulation, a timed variant of
Milner’s and Park’s strong bisimulation are de=ned as follows (see also [33, 25]).

De�nition 41 (Timed transition system). A timed transition system is a quadruple
(S; L; → ; s0) with
• S, a non-empty set of states
• L⊆Act× R+, a set of labels
• → ⊆ S × L× S, a transition relation
• s0 ∈ S, the initial state.
We will write p

a;t→ q rather than (p; (a; t); q)∈ → .
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Table 1
Operational interleaving semantics for PA

� 1
√
;t→ 0

t ∈ I � aI : P
a; t→ t [P]

P
a;t→P′ � t′ [P]

a;t+t′→ t′ [P′]

P
a;t→P′ t6mt(Q) � P + Q

a;t→P′

Q
a;t→Q′ t6mt(P) � P + Q

a;t→Q′

P
a;t→P′a �= √ � P ; Q

a;t→P′ ; Q

P
√
;t→ P′ � P ; Q

�;t→ t [Q]

P
a;t→P′ (a �= √∧ t6mt(Q)) � P [¿Q

a;t→P′ [¿t{Q}
P

√
;t→ P′ t6mt(Q) � P [¿Q

√
;t→ P′

Q
a;t→Q′ t6mt(P) � P [¿Q

a;t→Q′

P
a;t→P′ t¿t′ � t′{P} a;t→ t′{P′}

P
a;t→P′ a �∈A∪{√} � P ||A Q a;t→P′ ||A Q

Q
a;t→Q′ a �∈A∪{√} � P ||A Q a;t→P ||A Q′

P
a;t→P′ ∧ Q

a;t→Q′ a∈A∪{√} � P ||A Q a;t→P′ ||A Q′

P
a;t→P′ a �∈A � P\A a;t→P′\A

P
a;t→P′ a∈A � P\A �;t→ P′\A

P
a;t→P′ � P[�]

�(a);t→ P′[�]

P
a;t′→ P′ t′6t � P Bt Q

a;t′→ P′

t6mt(P) � P Bt Q
�;t→ t [Q]

P
a;t→P′ decl(x)=P � x

a;t→P′

De�nition 42 (Timed bisimulation). Two equally labelled timed transition systems Ti
=(Si; L; → i ; s0i) are timed bisimilar, denoted T1∼T2, if there exists a bisimulation,
i.e. a relation R⊆ S1× S2 with (s01; s02)∈R and for which for all (p; q)∈R we have
(1) whenever p

a; t→ 1 p′ for some p′ ∈ S1 then there exists some q′ ∈ S2 with (p′; q′)∈R

and q
a; t→ 2 q′, and

(2) whenever q
a; t→ 1 q′ for some q′ ∈ S2 then there exists some p′ ∈ S1 with (p′; q′)∈R

and p
a; t→ 2 p′.

6.2. A timed interleaving semantics

The operational semantics de=nes a set of transition relations
a; t→. Proposition P

a; t→ P′

denotes that P can perform action a∈Act, at time t, and subsequently evolve into P′.
Let → be the smallest relation closed under all inference rules of Table 1.

Let ut(P) denote the set of time instants at which P can initially perform an urgent
action. Let PA+ denote PA including the auxiliary operators t[] and t{}.
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De�nition 43 (Time to initial urgent event). Function ut : PA+→P(R+ ∪{∞}) is
de=ned by

ut(t[P]) =df t + ut(P)

ut(PopQ) =df ut(P)∪ ut(Q) for op∈{+; [¿; ||A }
ut(t{P}) =df {t′ ∈ ut(P) | t′¿t}
ut(P ; Q) =df ut(P)

ut(opP) =df ut(P) for op∈{\A; [�]}
ut(P Bt Q) =df ut(P)∪{t}
ut(x) =df ut(P) for x :=P:

For all other syntactical constructs let ut(P)=df ∅.

Let mt(P) abbreviate min(ut(P)), where min ∅ equals ∞. In order to let ut be
well-de=ned we require process instantiations to be guarded.

Process 1 can perform the successful termination action
√

at any time t. aI : P can
perform action a at time t ∈ I while evolving into t[P]. Process t′ [P] can be considered
as process P shifted t′ time units in advance. That is, if P can perform action a, say,
at time t, then t′ [P] can perform a at time t+t′. Note that t′ [P] is only an auxiliary
construct; it has no counterpart at the language level.

The rules for P+Q are somewhat adapted since (initial) urgent events in P or Q can
decide the choice. E.g., in a4+(b3 B2 Q), the time-out will occur at time 2, and resolve
the choice in favour of Q. In general, if P performs an action at time t then P + Q
can perform the same provided that Q cannot perform a time-out at any time earlier,
i.e., if t6mt(Q). By symmetry, a similar condition is obtained for Q performing an
action. Similar conditions appear for [¿, and B .

The rules for ; are a straightforward extension of the rules for the untimed case
except that in case P performs a successful termination action

√
at time t, then P ; Q

evolves into t[Q] rather than Q. This represents that t time units have passed before
Q can start with its execution.

If P performs an action at t and evolves into P′ then P [¿Q can do the same
while evolving into P′ [¿t{Q}. Process t{Q} behaves like Q except that it is unable
to perform events before t. This ensures that Q cannot disrupt P′ [¿Q by performing
an action at time t′, say, while P has performed an action at time t ¿ t′. The other
inference rules for disrupt are straightforward extensions of the rules for the untimed
case.

The inference rule for t′{P} is that if P can perform an action at time t, then t′{P}
can do so if t¿t′. Note that t′{P} is, like t′ [P], an auxiliary operator that cannot be
used by the speci=er.
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The rules for independent parallel composition, hiding, and relabelling are straight-
forward extensions of the untimed rules. Synchronisation can only take place when
both participants can perform an equally labelled action whose label is in A (or equals√

) at time t.
If P performs an action at time t′, with t′6t, and evolves into P′ then P Bt Q can do

the same; in this case the possibility that Q happens is dropped, since P has performed
an action before (or at) time t. At time t the time-out can happen and the resulting
process is t[Q]. This can only be done if t6mt(P), which ensures that the time-out is
not performed if P can perform another time-out before t.

For expression P and declaration decl we denote by O(decl ; P) the timed transition
system obtained from the inference rules of Table 1, that is

O(decl ; P) =df (TGPA+;Act× R+; → ; P):

6.3. Consistency of metric and operational semantics

In order to assess the relationship between our timed event structure and the oper-
ationally de=ned interleaving semantics we =rst de=ne an “interleaving view” of the
true concurrency semantics (like in [6, 26, 29]) and prove that this perspective is timed
bisimilar to the operational semantics.

De�nition 44 (Interleaving view on event structure semantics). The transition relation
→ ⊆ TES=n=�iso× (Act×R+)× TES=n=�iso on timed event structures is de=ned by
E

a; t→E′ iQ there exists some event e∈ init(E) such that
(1) l(e) = a,
(2) t ∈A(e),
(3) ∀e′ ∈ init(E)∩U : (e e′ ∨ e′ e) ⇒ t6A(e′), and
(3) E′ =(E′; ′; �→′; l′;A′;R′;U′) with
• E′ =E − {e}
•  ′ = ∩ (E′×E′)
• �→′ =(�→ −{(X; e′)∈ �→ | e∈X }) ∪ {(∅; e′) | e′ e}
• l′ = l � E′

• A′(e′)=A(e′)∩ ⋂
e e′ [t;∞)∩ ⋂

X
I�→e′ ; e∈X

t+I

• R′ =(R ��→′)∪{((∅; e′); [0;∞)) | ∅ �→′ e′}
• U′ =U∩E′:

The interleaving semantics of E, denoted I(E), is de=ned as

I(E)=df (TES=n=�iso;Act×R+; → ;E):

It is not diMcult to check that in the above de=nition, the structure E′ is indeed a
timed event structure. We leave the proof of this fact to the interested reader.

Constraints (1) and (2) are straightforward. Constraint (3) checks whether there
does not exist an initial urgent event that might prevent event e from happening at
time t. This constraint is closely related to a similar condition in the de=nition of
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Fig. 4. Some example transitions for a timed event structure.

timed event trace, cf. De=nition 5. The intuitive interpretation of constraint (4) is as
follows. First, the event e labelled with a is removed from the set of events and the
con9icts between the remaining events are retained. Each bundle X �→ e′ with e∈X
is removed, because the condition that this bundle poses, namely some event in X
must have happened before e′ can happen, has now been satis=ed. Each event e′ that
is disabled by e cannot happen anymore, and is made impossible by introducing an
empty bundle pointing to it.

In addition, the delay of an event e′ which has a bundle pointing to it originating
from event e has to be checked: if t plus the required relative time, I say, between e and
e′ is larger than the delay of e′; e′ should be postponed to (at least) t+I . Because this
should hold for all bundles pointing to e′ originating from e, the intersection of bundle
delays is taken such that all required relative delays are satis=ed. Finally, in order to
enforce that the causal relation between e and e′ induces a temporal precedence, the
delay of e′ becomes at least t in case e e′.

Some example transitions of a timed event structure are depicted in Fig. 4.

Theorem 45 (Consistency theorem). For any 〈decl ; P〉 ∈ TGPA:

I(M(decl ; P))∼O(decl ; P):

Proof. We provide the proof here for =nite behaviours only; the proof for recursive
behaviours can be provided in a similar way as the consistency proof provided in [7]
for the untimed case. For =nite behaviours we can consider M(P) and O(P), i.e. the
declarations decl can be omitted, and prove that for P∼M(P):
(1) if P

a; t→P′ then ∃E′ :M(P)
a; t→E′ and P′∼E′, and

(2) if M(P)
a; t→E′ then ∃P′ :P a; t→P′ and E′∼P′.

The proofs of both facts are by induction on the structure of P.
(1) Base case: for P= 0 the proposition follows easily, since 0 has no derivations. For

P= 1 the only possible transition is labelled with
√
; t for any t, while evolving

into 0. It is easy to see from (4) and De=nition 44 that M(P)=E1

√
; t→ E0 and that

0∼E0.
Induction step: consider the Q and R with Q∼M(Q) and R∼M(R) and assume
the proposition holds for Q and R. We provide the proofs for pre=x, time-out
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and disrupt. The proofs for the other cases are conducted in a similar way. Let
M(Q)=EQ =(EQ; Q; �→Q; lQ;AQ;RQ;UQ) and de=ne M(R) and M(P) in a
similar way.
(a) P= aI : Q. Let P

a; t→P′. Since pre=xing has only one possible derivation for
any t ∈ I , it follows P′ = t[Q] and t ∈ I . From De=nition 8 it follows that
M(P) equals M(Q) where all events in EQ are pointed to by a new con9ict-
free event e with lP(e)= a and AP(e)= I . By De=nition 44 it follows that
M(P)

a; t→E′ for any t ∈ I . From the structure of M(P)= aI :M(Q) and M(P)
a; t→E′ it follows that E′ equals M(Q) where all events e′ ∈EQ have an event
delay AQ(e′)+t, the bundle delay of {e} �→ e′ plus the time of occurrence of
e. Since Q∼M(Q) it now follows P′∼E′.

(b) P=Q Bt R. Let P
a; t′→ P′. According to the inference rules of Table 1 we have

either
• Q

a; t′→ Q′ and t′6t. Then P′ =Q′. From De=nition 10 it follows that M(P)
equals M(Q) + �̂{t} :M(R). Let e be the new urgent event labelled with
� and delay t. From the structure of M(P) and De=nition 44 it follows
that any event of M(Q) can be performed with a delay smaller than t, the
delay of the con9icting event e. From the induction hypothesis it follows

M(Q)
a; t′→ E′ and Q∼E′. Since P′ =Q′ it now follows P′∼E′.

• t6mt(Q). Then P′ = t[R]. The structure of M(P) is as described just above.
It follows from De=nition 44 that M(P) can execute the initial event e if
there is no con9icting initial urgent event, e′ say, with a delay smaller than
t. From the structure of M(P) it follows that such event (if any) is in EQ.
It is straightforward to see that this condition on the execution of e corre-
sponds to t6mt(Q). From the case for pre=x we infer that �̂{t} :M(R)

�; t→
E′ where E′ equals M(R) with all events having an event delay AR(e′)+ t.
Since R∼M(R) it now follows P′∼E′.

(c) P=Q [¿R. Let P
a; t→P′. According to the inference rules of Table 1 we have

either
• R

a; t→R′ and t6mt(Q). Then P′ =R′. It follows from De=nitions 14 and
44 that M(P)=M(Q) [¿M(R) can execute an initial event of M(R)
provided there is no con9icting urgent event in M(Q) that is forced to
occur earlier. This condition corresponds to t6mt(Q). The proposition now
follows directly from the induction hypothesis.

• Q
√
; t→ Q′ and t6mt(R). Similar to the previous case.

• Q
a; t→Q′ with a �= √ and t6mt(R). Then P′ =Q′ [¿t{R }. From De=nition

14 it follows that all initial events in M(R) are in con9ict with any event
in M(Q). M(P) can execute an initial event of M(Q) provided there is
no con9icting urgent event in M(R) that is forced to occur earlier. This
condition corresponds to t6mt(R). Under this condition M(P)

a; t→E′ where
E′ equals M(Q) [¿E, where E is representing M(t{R }). Since the event
e labelled with a is in con9ict with any initial event of M(R) it follows
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from De=nition 44 that in E all the initial events of M(R) are postponed
with t. Using this fact, and the fact that Q∼M(Q) and R∼M(R) it follows
P′∼E′.

(2) By induction on the structure of P; similar to the proof of (1).

6.4. Consistency with a cpo-based semantics

We conclude this section with a brief comparison of our metric semantics and
the cpo-based operational semantics Mcpo of Katoen et al. [23]. The formal rela-
tionship between our cpo and metric semantics is as follows. Let TES=n be the set
of timed event structures that are =nitely approximable. For time-guarded 〈decl ; P〉 it
follows that Mcpo(decl ; P) is =nitely approximable. Function f : TES=n→ TES=n=�iso

with f(E)=df EE is a homomorphism between the PA-algebras TES=n and TES=n=�iso.
Then, according to the results of [8], we obtain for any time-guarded process 〈decl ; P〉:
f(Mcpo(decl ; P))=M(decl ; P). This entails that the presented metric semantics is sig-
ni=cantly more abstract than the cpo-based semantics of TGPA.

7. Concluding remarks

In this paper we have extensively studied the use of a metric denotational semantics
for a real-time process algebra in a branching-time non-interleaving setting. This study
can be seen as a continuation of the work of Loogen and Goltz in the setting of
prime event structures for TCSP. In this untimed case the notion of distance is based
on the number of discrete computation steps to which two prime event structures do
agree. In our real-time setting a continuous version of this notion is adopted, and the
distance is based on the amount of time to which two timed event structures do agree.
Apart from some technical diQerences – like the restriction to executable events – that
appeared due to the use of Langerak’s bundle event structures rather than the more
primitive prime event structures, we can conclude that the approach of Loogen and
Goltz is well adaptable to the real-time case. Finally, we extended the consistency
result between the prime event structure semantics and the operational semantics of
(guarded) theoretical CSP to a consistency result between our timed event structure
semantics and an operational interleaving semantics for our timed version of LOTOS.
This consistency is de=ned in terms of a timed notion of strong bisimilarity.
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