Skip to main content

Image density is complete for non-interactive-SZK

Extended abstract

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1443))

Included in the following conference series:

Abstract

We show that the class NISZK of languages that admit non-interactive statistical zero-knowledge proof system has a natural complete promise problem. This characterizes statistical zero-knowledge in the public random string model without reference to the public random string or to zero knowledge.

Building on this result we are able to show structural properties of NISZK such as closure under OR composition and closure under complement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Aiello and J. Håstad, Statistical Zero Knowledge Can Be Recognized in Two Rounds, Journal of Computer and System Sciences, 42, 1991, pp. 327–345.

    Article  MATH  MathSciNet  Google Scholar 

  2. W. Aiello, M. Bellare and R. Venkatesan, Knowledge on the average — Perfect, Statistical and Logarithmic, in Proc. of STOC 95.

    Google Scholar 

  3. L. Babai and S. Moran, Arthur-Merlin Games: A Randomized Proof System and a Hierarchy of Complexity Classes, Journal of Computer and System Sciences, vol. 36, 1988, pp. 254–276.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Rogaway, Everything Provable is Provable in Zero Knowledge, in CRYPTO 88.

    Google Scholar 

  5. M. Blum, A. De Santis, S. Micali, and G. Persiano, Non-Interactive Zero-Knowledge, SIAM Journal of Computing, vol. 20, no. 6, Dec 1991, pp. 1084–1118.

    Article  MATH  Google Scholar 

  6. M. Blum, P. Feldman, and S. Micali, Non-Interactive Zero-Knowledge and Applications, in STOC 88.

    Google Scholar 

  7. L. Carter and M. Wegman, Universal Classes of Hash Functions, Journal of Computer and System Sciences, vol. 18, 1979, pp. 143–154.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. De Santis, G. Di Crescenzo, G. Persiano, The Knowledge Complexity of Quadratic Residuosity Languages, Theoretical Computer Science, vol. 132, (1994), pag. 291–317.

    Article  MATH  MathSciNet  Google Scholar 

  9. A. De Santis, G. Di Crescenzo, G. Persiano, Randomness-Efficient Non-Interactive Zero-Knowledge, in Proc. of ICALP 97.

    Google Scholar 

  10. A. De Santis, G. Di Crescenzo, P. Persiano, and M. Yung, On Monotone Formula Closure of SZK, in FOCS 94.

    Google Scholar 

  11. L. Fortnow, The Complexity of Perfect Zero Knowledge, in STOC 87.

    Google Scholar 

  12. M. Garey e D. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, W. H. Freeman & Co., New York, 1979.

    Google Scholar 

  13. O. Goldreich, S. Micali, and A. Wigderson, Proofs that Yield Nothing but their Validity or All Languages in NP Have Zero-Knowledge Proof Systems, Journal of the ACM, vol. 38, n. 1, 1991, pp. 691–729.

    MATH  MathSciNet  Google Scholar 

  14. O. Goldreich and Y. Oren, Definitions and Properties of Zero-Knowledge Proof Systems, Journal of Cryptology, v. 7, n. 1, 1994.

    Google Scholar 

  15. S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive Proof-Systems, SIAM Journal on Computing, vol. 18, n. 1, February 1989.

    Google Scholar 

  16. S. Goldwasser and M. Sipser, Private Coins versus Public Coins in Interactive Proof-Systems, in STOC 1986.

    Google Scholar 

  17. J. Håstad, R. Impagliazzo, L. Levin, and M. Luby, Construction of a Pseudo-Random Generator from One-Way Function, to appear in SIAM J. on Computing.

    Google Scholar 

  18. R. Impagliazzo and M. Yung, Direct Minimum Knowledge Computations, in CRYPTO 87.

    Google Scholar 

  19. R. Impagliazzo and D. Zuckerman, How to recycle random bits, in FOCS 89.

    Google Scholar 

  20. M. Naor and M. Yung, Public-Key Crypto systems Provably Secure against Chosen Ciphertext Attack, in STOC 90.

    Google Scholar 

  21. T. Okamoto, On Relationships Between Statistical Zero-Knowledge Proofs, in STOC 96.

    Google Scholar 

  22. R. Ostrovsky and A. Wigderson, One-way Functions are Essential for Non-Trivial Zero-Knowledge, in ISTCS 93.

    Google Scholar 

  23. A. Sahai and S. Vadhan, A Complete Promise Problem for Statistical Zero-Knowledge, in FOCS 97.

    Google Scholar 

  24. M. Sipser, A Complexity Theoretic Approach to Randomness, in STOC 83.

    Google Scholar 

  25. A. Shamir, IP=PSPACE, in FOCS 90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kim G. Larsen Sven Skyum Glynn Winskel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

De Santis, A., Di Crescenzo, G., Persiano, G., Yung, M. (1998). Image density is complete for non-interactive-SZK. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055102

Download citation

  • DOI: https://doi.org/10.1007/BFb0055102

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64781-2

  • Online ISBN: 978-3-540-68681-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics