
Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen

1467

Chris Clack Kevin Hammond
Tony Davie (Eds.)

Implementation of
Functional Languages

9th International Workshop, IFL'97
St. Andrews, Scotland, UK
September 10-12, 1997
Selected Papers

Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, CorneU University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Chris Clack
University College London, Department of Computer Science
Gower Street, London WC1E 6BT, UK
E-mail: clack@cs.ucl.ac.uk

Kevin Hammond
Tony Davie
University of St. Andrews, Division of Computer Science
North Haugh, St. Andrews, Scotland KY16 9SS, UK
E-mail: {kh,ad } @ dcs.st-and.ac.uk

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Implementation of functional languages : 9th international
workshop ; selected papers / IFL '97, St. Andrews, Scotland, UK,
September 10 - 12, 1997. Chris Clack ... (ed.). - Berlin ; Heidelberg ;
New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ;
Paris ; Singapore ; Tokyo : Spr!nger, 1998

(Lecture notes in computer science ; Vol. 1467)
ISBN 3-540-64849-6

CR Subject Classification (1991): D.3, D.I.1, F.3

ISSN 0302-9743
ISBN 3-540-64849-6 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

�9 Springer-Verlag Berlin Heidelberg 1998
Printed in Germany

Typesetting: Camera-ready by author
SPIN 10638546 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

P r e f a c e a n d O v e r v i e w o f P a p e r s

This volume contains a selection of papers presented at the 1997 International
Workshop on the Implementation of Functional Languages (IFL '97), held at
St. Andrews in Scotland, September 10-12, 1997. This is the ninth in a series
of workshops that were previously held in The Netherlands, Germany, Sweden,
and the UK, and the second to be published in the Springer-Verlag series of
Lecture Notes in Computer Science (selected papers from IFL '96 are published
in LNCS Volume 1268).

The workshop has been growing over the years, and the 1997 meeting was
perhaps the largest to date, attracting over 50 researchers from the international
functional language community, the majority of whom presented papers at the
workshop. We are pleased to be able to publish the selection of refereed and
revised papers that appear herein.

While the original focus of the workshop was on parallel implementation, it
has broadened over time to include compilation, type systems, language issues,
benchmarking and profiling, parallelism, language issues, memory management,
applications, and some theoretical work. It thus represents a cross-section of
the active research community. The papers presented in this volume have been
grouped under seven topic headings as follows:

Compilation. In keeping with the theme of the workshop, several papers
deal with abstract machines and compilation techniques. Peyton Jones et al.
identify problems with using C as a compiler target language and suggest an
alternative language which they call C--; Holyer and Spiliopoulou present the
Brisk Machine, a simplified STG machine that is specifically designed to support
multiple paradigms such as computational mobility, dynamic loading and logic
programming; Wakeling investigates how compilation to the Java Virtual Ma-
chine (JVM) can support the use of Haskell to program embedded processors and
provides an interesting comparison between the G-machine and the JVM; Chitil
demonstrates that the application of the compile-time optimisation technique of
common subexpression elimination to a lazy functional language compiler can
lead to an unexpected conclusion; and finally, Scholz presents a technique for
producing efficient code from high-level array operations.

Types. Exploitation of type information for compilation continues to be an
attractive and fertile area of research. Agat presents a typed intermediate lan-
guage and a type and effect system which can be used in the register-allocation
phase of a compiler; and Mogensen describes a refined program analysis which
extends previous work to detect zero uses of an argument, thereby supporting
finer compile-time optimisation: for example to avoid updates during garbage
collection, or for a limited form of compile-time garbage collection.

Benchmarking and Profiling. In order to ensure acceptable performance from
functional programs, it is important for programmers to understand how differ-
ent data-structuring techniques perform and it is vital for systems developers
to provide good benchmarking and profiling techniques. Erwig analyses bench-
marking results for two different implementations of purely functional graph data
structures tested against three patterns of graph utilisation; Moss and Runci-

VI Preface and Overview of Papers

man present Auburn, a system tool which uses the concept of a "datatype usage
graph" (DUG) to synthesise code for benchmarking different implementations of
an Abstract Data Type; and Sparud and Runciman describe how the tradition-
ally resource-hungry technique of recording execution traces ("redex trails") can
be managed parsimoniously - - this is dramatically illustrated by their results
from tracing a large computation.

Parallelism. Parallel implementation has always been a strong theme of the
IFL workshops and this year is no exception. Loidl and Trinder analyse the
use of "evaluation strategies" together with system tools such as the GranSim
simulator, the instrumented GUM implementation and high-level profiling tools
in order to parallelise three large programs; Loidl et al. provide an in-depth
discussion of the parallelisation of LOLITA, which is claimed to be the largest
existing non-strict functional program (at 47000 lines); Junaidu et al. discuss
their experience of using GranSim and GUM to parallelise Naira (a compiler
for a parallel dialect of Haskell which has itself been parallelised); Chakravarty
investigates the benefits of distinguishing remote tasks from local threads, and
of generating tasks and threads lazily, in order to alleviate the problem of idle
processors in a message-passing parallel system with high message latencies;
Breitinger et al. present a distributed-memory parallel system that comprises
Eden (which extends Haskell with a coordination language), PEARL (which
extends the STG language with message-passing and processes) and DREAM
(which extends the STG machine to provide a distributed run-time environment
for Eden programs); and Serrarens illustrates how support for multicasting can
improve the efficiency of data-parallel programs in Concurrent Clean.

Interaction. Managing events and other forms of user-interaction has long
been a b~te-noir of functional programming systems and at last support for such
interaction is maturing. Karlsen and Westmeier provide a uniform framework
for event handling that is independent of the source of the event; and Achten
and Plasmeijer explain how the new Clean IO model (using new Clean features
such as existential types and constructor classes) can support event-driven user
interfaces with call-back functions, local state, and message-passing communi-
cation.

Language Design. Large-scale and real-world programming is also an impor-
tant issue for sequential systems. Didrich et al. consider two issues related to
programming in the large - - modularisation and name spaces - - and describe
the design of the corresponding concepts to support large scale functional pro-
gra.rnming in the language Opal 2a; and Mohnen proposes the use of "extended
context patterns" (together with additional typing rules and inference rules) in
order to support the highly expressive language feature of context patterns (see
LNCS 1268) whilst overcoming the efficiency problems associated with imple-
menting the technique.

Garbage Collection. The final paper presented in this volume addresses the
issue of memory management in the programming language Erlang. Given the
unusual characteristic of Erlang that all heap pointers point from newer to older
objects, Boortz and Sahlin present a compacting garbage collection algorithm

Preface and Overview of Papers VII

which has zero memory overheads and takes linear time with respect to the size
of the data area.

The papers published in this volume were selected using a rigorous a poste-
r~or~ refereeing process from the 34 papers that were presented at the workshop.
The reviewing was shared among the program committee, which comprised:

Warren Burton Simon Fraser University Canada
Chris Clack University College London UK
Tony Davie University of St. Andrews UK
Martin Erwig Fern Universit~t Hagen Germany
Pascal Fradet IRISA/INR/A France
Kevin Hammond University of St. Andrews UK
Pieter Hartel University of Southampton UK
Fritz Henglein University of Copenhagen Denmark
John Hughes Chalmers University Sweden

of Technology
Werner Kluge University of Kiel Germany
Herbert Kuchen Westf~lische Germany

Wilhelms-Universit~t Miinster
University of Canterbury
University of Utrecht
Yale University
University of Nijmegen
University of York

Bruce McKenzie
Erik Meijer
John Peterson
Rinns Plasmeijer
Colin Runciman

New Zealand
The Netherlands
USA
The Netherlands
UK

The overall balance of the papers is representative, both in scope and technical
substance, of the contributions made to the St. Andrews workshop as well as to
those that preceded it. Publication in the LNCS series is not only intended to
make these contributions more widely known in the computer science community
but also to encourage researchers in the field to participate in future workshops,
of which the next one will be held in London, UK, September 9-11, 1998 (for
more information see ht tp: / /www, cs. uc l . ac. u k / s t a f f / i f 198/).

April 1998 Chris Clack, Tony Davie, and Kevin Hammond

T a b l e o f C o n t e n t s

Compilation

C--: A Portable Assembly Language . 1
Simon Peyton Jones, Thomas Nordin, and Dino Oliva

The Brisk Machine: A Simplified STG Machine . 20
Ian Holyer and Eleni Spiliopoulou

A Haskell to Java Virtual Machine Code Compiler . 39
David Wakeling

Common Subexpressions Are Uncommon in Lazy
Functional Languages . 53
Olaf Chitil

WITH-Loop Folding in SAC - Condensing Consecutive
Array Operations . 72
Sven-Bodo Scholz

Types

Types for Register Allocation . 92
Johan Agat

Types for 0, 1 or Many Uses . 112
Torben ~ . Mogensen

B e n c h m a r k i n g and P r o f i l i n g

Fully Persistent Graphs - Which One To Choose? . 123
Martin Erwig

Auburn: A Kit for Benchmarking Functional Data Structures 141
Graeme E. Moss, and Colin Runciman

Complete and Part ial Redex Trails of Functional Computations 160
Jan Sparud and Colin Runciman

Parallelism

Engineering Large Parallel Functional Programs . 178
Hans-Wolfgang Loidl and Phil Trinder

X Table of Contents

Parallelising a Large Functional P rogram
or: Keeping LOLITA Busy . 198
Hans-Wolfgang Loidl, Richard Morgan, Phil Trinder, Sanjay Poria,
Chris Cooper, Simon Peyton Jones, and Roberto Garigliano

Naira: A Parallel 2 Haskell Compiler . 214
Sahalu Junaidu, Antony Davie, and Kevin Hammond

Lazy Thread and Task Creation in Parallel Graph Reduction 231
Manuel M. T. Chakravarty

DREAM: The DistRibuted Eden Abstract Machine . 250
Silvia Breitinger, Ulrike Klusik, Rita Loogen,
Yolanda Ortega-Malldn, and Ricardo Pe~a

Using Multicasting for Optimising Data-Paral lel ism . 270
Pascal R. Serrarens

Interaction

Using Concurrent Haskell to Develop Views over
an Active Reposi tory . 285
Einar W. Karlsen and Stefan Westmeier

Interactive Functional Objects in Clean . 304
Peter Achten and Rinus Plasmeijer

Language Design

Programming in the Large: The Algebraic-Functional
Language Opal 2~ . 322
Klaus Didrich, Wolfgang Grieskamp, Christian Maeder,
and Peter Pepper

Context Pat terns , Par t II . 338
Markus Mohnen

Garbage Collection

A Compact ing Garbage Collector for Unidirectional Heaps 358
Kent Boortz and Dan Sahlin

Author Index . 375

