
Unfold/Fold Transformations of CCP Programs 

Sandro Etalle 1, Maurizio Gabbrielli 2, Maria Chiara Meo 3 

i Universiteit Maastricht, P.O. Box 616, 6200MD Maastricht, The Netherlands. 
e t a l l e @ c s ,  unimaas, nl 

2 Dipaxtimento di hfformatica, Universith di Pisa, Corso Italia 40, 56125 Pisa, Italy. 
gabbri~di, unipi, it. 

3 Diaprtimento di Matematica Pura e Applicata, UniversitY. di L'Aquila, Loc. Coppito, 
67010 L'Aquila, Italy. meo@univaq, i t .  t 

Abstract.  We introduce a transformation system for concurrent constraint 
programming (CCP). We define suitable applicability conditions for the trans- 
formations which guarantee that the input/output ccp semantics is prcserved 
also when distinguishing deadlocked computations from successful ones. 
The systems alh)ws to optimize CCP programs while preserving their in- 
tended meaning, l~lrthermore, since it preserves the deadlock behaviour of 
programs, it can be used for proving deadlock freencss of a class of queries 
in a given program. 

Keywords: Transformation, Concurrent Constraint Programming, Deadlock. 

1 I n t r o d u c t i o n  

Optimization techniques, in the case of logic-based languages, fall into two main 
categories: on one hand, there exist methods for compile-time and low-level opti- 
mizations such as tile ones presented for constraint logic programs in [10], which are 
usually based on program analysis methodologies (e.g. abstract interpretation). On 
the other hand, we find source to source transformation techniques such as partial 
evaluation (see [15]) (which in the field of logic programming is mostly referred to 
as partial deduction and is due to Komorowski [11]), and more general techniques 
based on the unfold and/old or on the replacement operation. 

Unfold/fold transformation techniques were first introduced for flmctional pro- 
grains in [2], and then adapted to logic progranuning (LP) both for program synthesis 
[3, 9], and for program specialization and optimization [11]. Tamaki and Sato in [22] 
proposed a general framework for the unfold/fold transformation of logic programs, 
which has remained in the years the main historical reference of the field, and has 
recently been extended to constraint logic programming (CLP) in [1, 5, 13] (for ml 
overview of the subject, see the survey by Pettorossi and Proietti [16]). As shown 
by a number of applications, these techniques provide powerful methodology for the 
development and optimization of large programs, and can be regarded as the basic 
transformations techniques, which might be further adapted to be used for partial 
evaluation. 

t The work of the third author was partially supported by the MURST 40% project: 
Teeniche speciali per la verifica, l'analisi, la sinte~qi e la trasformazione di programmi'. 



349 

Despite a large literature in the field of sequential languages, unfold/fold trans- 
formation sequences have hardly been applied to concurrent logic languages. No- 
table exceptions are the papers of Ueda and Fukurawa [23], Sahlin [17], and of de 
Francesco and Santone [8] (their relations with this paper are discussed in Section 5). 
This situation is partially due to the fact that the non-determinism and the synchro- 
nization mcchanisnm present in concurrent languages substantially complicate their 
semantics, thus complicating also the definition of correct transformation systems. 
Nevertheless, as argued below, transformation techniques can be be more useful for 
concurrent languages than they already are for sequential ones. 

In this paper we introduce a transformation system for concurrent constraint 
programming (CCP) [18, 19, 20]. This paradigm derives from replacing the store- 
as-valuation concept of yon Neumann computing by the store-as-constraint model: 
Its computational model is based on a global store, which consists of the conjunc- 
tion of all the constraints established until that moment and expresses some partial 
information on the vahms of the variables involved in the computation. Concurrent 
processes synchronize and communicate asynchronously via the store by using ele- 
mentary actions (ask and tell) which can be expressed in a logical form (essentially 
implication and conjunction [4]). On one hand, CCP enjoys a clean logical seman- 
tics, avoiding many of the complications arising in the concurrent imperative sel, ting; 
as argued in the position paper [6] this aspect is of great help in the development 
of effective transformation (and partial evaluation) tools. On the other hand, CCP 
benefits of a number of existing implementations, an example being Oz [21]; thus, in 
contrast to other models for concurrency such as the ~r-calculus, in this framework 
transformation techniques can be readily applied to practical problems. 

The transformation system we are going to introduce is originally inspired by the 
system of Tamaki and Sato [22], on which it improves in three main ways: firstly, 
by taking full advantage of the flexibility and expressivity of CCP, it introduces a 
number of new important transformation operations, allowing optimizations that 
would not be possible in the LP or CLP context; secondly, our system we man- 
aged to eliminate the limitation that in a folding operation the/olding clause has 
to be nonrecursive, a limitation which is present in virtually all other unfold/fold 
transformation systems, this improvement possibly leads to the use of new more 
sophisticated transformation strategies; finally, the applicability conditions we pro- 
lJose for the folding operation are now independent from the trans]ormation history, 
making the operation much easier to understand and, possibly, to be implemented. 

We will show show with a practical example how our transformation system for 
CCP can be even more useful than its predecessors for sequential logic languages. 
Indeed, in addition to the usual benefits, in this context the transformations can also 
yield to the elimination of communication channels and of synchronization points, 
to the transformation of non-deterministic computations into deterministic ones, 
and to the crucial saving of computational space. It is also worth mentioning that 
the declarative nature of CCP allows us to define reasonably simple applicability 
conditions which ensure the correctness of our system. 

Our results show that the original and the transformed program have the same 
input/output  behaviour both for successful and for deadlocked derivations. As a 
corollary, we obtain that the original program is deadlock free iff the transformed 
one is, and this allows to employ the transformation as an effective tool for proving 



350 

deadlock-freeness: if, after the transformation, we can prove or see that the process 
we are considering never deadlocks (in some cases the transformation simplifies the 
program's behaviour so that this can be immediately checked), then we are also sure 
that does not deadlock before the transformation either. 

2 P r e l i m i n a r i e s  

The basic idea underlying CCP is that computation progresses via monotonic accu- 
mulation of information in a global store. Information is produced by the concurrent 
and asynchronous activity of several agents which can add a constraint c to the 
store by performing the basic action tell(c). Dually, agents can also check whether 
a constraint c is entailed by the store by using an ask(c) action. This allows the 
synchronization of different agents. 

Concurrent constraint languages are defined paranmtrically wrt to the notion of 
constraint system, which is usually formalized ill all abstract way and is provided 
along with the guidelines of Scott's treatment of information systems (see t19]). Here, 
we consider a more concrete notion of constraint which is based on first-order logic 
and which coincides with the one used for constraint logic programming. This will 
allow us to define the transformation operations in a more comprehensible way, while 
retaining a sufficient expressive power. Thus a constraint c is a first-order formula 
built by using predefined predicates (called primitive constraints) over a computa- 
tional domain :D. Formally,/)  is a structure which determines the interpretation of 
the constraints. 

In the sequel, terms will be indicated with t , s , . . . ,  variables with X,Y, Z, . . . ,  
filrther, as a notational convention, ~ and )( denote a tuple of terms and a tuple of 
distinct variables, resl)ectively. 3_~ c stands for the existential closure of c except 

for the variables in )( which remain unquantified. The formula l:) ~ 3_~c states that 
3_~c is valid in the interpretation provided by / ) ,  i.e. that it is true for every binding 
in the free variables of 3_~c. The empty conjunction of primitive constraints will 
be identified with true. We also denote Vat(e) the set of variables occurring in the 
expression e. 

The notation and the semantics of programs and agents is virtually the same 
one of [19]. In particular, the [] operator allows one to express parallel composi- 
tion of two agents and it is usually described in terms of interleaving, while non- 
determinism arises by introducing a (global) choice operator ~i"--1 ask(ci) -~ hi: the 
agent )-~i~1 ask(ci) -r Ai nondeterministically selects one ask(ci) which is enabled in 
the current store, and then behaves like Ai. Thus, the syntax of CCP declarations 
and agents is given by the following granunar: 

Declarations D ::= ~ [ p(~) ~- A [ D, D 
Agents A ::-- stop [ tell(c) [ ~i"--1 ask(ci) -4 Ai[A [[ A[ p(~) 
Processes Proc ::-- D.A 

where c and ci's are constraints. Note that, differently from [19], here we allow 
terms as arguments to predicate symbols. Due to the presence of an explicit choice 
operator, ,'m usual we ,~qsume (without loss of generality) that each predicate symbol 



351 

is defined by exactly one declaration. In the following, following the usual practice, 
we call program a set of declarations. 

An important aspect for which we slightly depart from the usual formalization of 
CCP regards the notion of locality. In [19] locality is obtained by using the operator 
3, and the bchaviour of the agent 3x A is defined like the one of A, with the variable 
X considered as local to it. tIere we do not use such an explicit operator: analogously 
to the standard CLP setting, locality is introduced implicitly by assuming~ that  if a 
process is defined by p(X) ~ A and a variable Y occurs in A but not in X, then Y 
has to be considered local to A. 

The operational model of CCP is described by a transition system T = (Conf, -4) 
where configurations (in) Conf are pairs consisting of a process and a constraint 
(representing the common store), while the transition relation -4 C_ Conf • Conf is 
described by the (least relation satisfying the) rules R 1 - R 4  of Table 1 which should 
be self-explaining. Here and in the following we assume given a set D of declarations 
and we denote by defno(p) the set of variants 5 of the (unique) declaration in D for the 
predicate symbol p. Due to the presence of terms as arguments to predicates symbols, 
diiferently from the standard setting in rule R 4  l)arameter passing is performed by 
a tell action. We assuute also the presence of a renanfing mechanism that  takes care 
of using fresh varial)lcs each time a (lechtration is consi(lered ~. 

We denote by -4* the reflexive and transitive closure of the relation -4 defined 
by the transition system, and we denote by Stop any agent which contains only stop 
and H constructs. A finite derivation (or computation) is called successful if it is 
of the form (D.A, c) -4* (D.Stop, d) 74 while it is called deadlocked if it is of the 
form (D.A,c) -4* (D.B,d) 7zr with B different from Stop (i.e., B contains at least one 
suspended agent). As it results form the transition system above, we consider here 
the so called "eventual tell" CCP, i.e. when adding constraints to tlm store (via tell 
operations) there is no consistency check. 

R 1  

R2 

R3  

(D.tel l(c),d) - }  (D.stop, c A d) 

(D. ~ = I  ask(c,) --~ Ai, d) --} (D.Aj, d) if j e [1, n] and Z) ~ d --} Q 

ID.A, c) -4 (D.A', c'} 
(D.(A II B), c) - ,  (D.(A' II B), c') 
(D.(B II A), c) -~ (D.(B II A'), c') 

R 4  (D.p(E), c) -~ (D.A II tell({ = ~.), c) 

Table 1. Tile (standard) transition system. 

if p(']) (-- A E defnD(p) 

Using the transition system in Table 1 we define the notion of observables as 
follows. Here and in the sequel we say that a constraint c is satisfiable if[ D ~ 3 c. 

5 A variant of a declaration d is obtained by replacing the tuple X of all the variables 
appearing in d for another tuple ~'. 
For the sake of simplicity we do not describe this renaming mechanism in the transition 
system. The interested reader can find in [19, 20] various formal approaches to this 
1)rolflem. 



352 

Def in i t ion  I ( O b s e r v a b l e s ) .  Let D.A be a CCP process. We define 

O(D.A) = {(c, :::]_Var(A,c)d, ss) I C and d are satisfiable, and there exists 
a derivation (D.A, c) -->* (D.Stop, d)} 

U 
{(c, 3_w,(A,r dd) I c and d are satisfiable, and there exists 

a derivation (D.A,c) --~* (O.B,d) 7 ~, B ~ Stop} [] 

Thus what we observe are the results of finite computations (if consistent), ab- 
stracting from the values for the local variables in the results, and distinguishing the 
successful computations from the deadlocked ones (by using the termination modes 
ss and dd, respectively). This provides the intended semantics to be preserved by the 
transformation system: we will call correct a transformation which maps a program 
into another one having the same observables; given the above definition, this will 
allow us to compare with each other the "deadlocks" and the "successes" of the 
original and the transformed programs. 

3 The Transformation 

In order to illustrate the application of our methodology we'll adopt a working 
example. We consider an auction problem in which two bidders participate: bidder_a 
and bidder_b; each bidder takes as input the list of the bids of the other one and 
produces as output the list of his own bids. When one of the two bidders wants to 
quit the auction, it produces in its own output stream the token quit. This protocol 
is implemented by the following program AUCTION. 

auction(LeftBids,RightBids) <-- bidder_a([01RightBids],LeftBids ) II bidder.b(LeftBids,RightBids) 

bidder_a(HisList, MyList) ~-- 
ask(3HisBia,Hist|$t, HisList -- [HisBidlHisList' ] A HisBid = quit) --~ stop 

+ ask(3HisBid,HisList' HisList ----- [HisBidlHisList' ] A HisBid ~: quit) -~ 
tell(HisList = [HisBidlHisList']) II 
rna ke_new_bid_a(HisBid,MyBid) II 

ask(MyBid --- quit) -~ tell(MyList -- [MyBidlMyList']) II broadcast("a quits") 
-F ask(MyBid ~ quit) --r tell(MyList -- [MyBidlMyList']) II 

teJl(MyBid # quit) II 
bidder.a (HisList ',MyList') 

plus an analogous definition for bidder_b , 

Here, tile agent make_new_bid_a(HisBid,MyBid) is in charge of producing a new offer 
in presence of the competitor 's offer HisBid; the agent will produce MyBid = quit if 
it evaluates that  HisBid is to high to be topped, and decides to leave the auction. 
Notice that  in order to avoid deadlock, auction initializes the auction by inserting a 
fictitious zero bid in the input of bidder a s . 

s In the above program the agent tell(HisList = [HisBidlHisList']) is needed to bind the 
local variables (HiSBid, HisList') to the global one (HisList): Ill fact, as resulting from 
the operational semantics, such a binding is not performed by the ask agent. On the 



353 

3 . 1  I n t r o d u c t i o n  o f  a n e w  def in i t ion  

The introduction of a new definition is virtually always the first step of a trans- 
formation sequence. Since the new definition is going to be the main target of the 
transformation operation, this step will actually determine the very direction of the 
suhsequent transformation, and thus the degree of its effectiveness. 

Dctermining which definitions shouhl be introduced is a potentially very difficult 
t,~sk which falls into the area of strategies. To give a simple exmnple, if we wanted 
to apply partial evaluation to our program w.r.t, a given agent A (i.e. if we wanted 
to specialize our program so that  it would execute the partially instantiated agent 
A in a more efficient way), then a good starting point would most likely be the 
introduction of the definition p(X) ~- A, where X is an appropriate tuple of variables 
and p is a new predicate symbol. Now, a different strategy would probably determine 
the introduction of a different new definition. For a survey of the other possibilities 
we refer to [16]. 

In this paper we are not going to be concerned with the strategies, but only 
with the basic transformation operations and their correctness: we aim at defining a 
transformation system which is general enough so to be applied in combination with 
different strategies. In order to simplify the terminology aml the technicalities, we 
;L~smne that these new declarations are added once for all to the original program 
before starting the transformation itself. Note that this is clearly not restrictive. As 
a notational convention we call Do the program obtained after the introduction of 
new definitions. In the case of program AUCTION, we assume that  the following new 
declarations are added to the original program. 

auctionJeft(LastBid) ~-tell(LastBid ~ quit) l] bidder-a([LastBidlBs],As) II bidder_b(As,Bs). 
auctionJight(LastBid) ~-tell(LastBid ~: quit) II bidder_a(Bs,As) II bidder-b([LastBidlAs],Bs)' 

The agent auctionJeft(LastBid) engages an auction starting from the bid LastBid 
(which cannot be quit) and expecting the bidder "a" to be the next one in the licit. 
The agent auction_left(LastBid) is symmetric. 

3 . 2  Unfo ld ing  

The first transformation we consider is the unfolding. This operation consists essen- 
tially in the replacement of a procedure call by its definition. The syntax of CCP 
agents allows us to define it in a very simple way by using the notion of context. A 
context, denoted by C[ ], is simply an agent with a "hole". C[A] denotes the agent 
obtained by replacing the hole in C[ ] for the agent A, in the obvious way. 

Def in i t ion  2 (Unfo ld ing) .  Consider a set of declarations D containing 

d :  H ~- C[p(~)] 

u : p(~) ~-  B 

Then unfolding p(~) in d consists simply in replacing d by 

d~: H ~- C[B II tell(g = ~)] 

contrary the agent tell(MyBid r quit) is redundant: We have introduced it in order to 
simplify the following transformations. Actually this introduction of redundant tell's is a 
transformation operation which is omitted here for space reasons. 



354 

in D. Here d is the unfolded definition and u is the unfolding one; d and u are assumed 
to be renamed so that  they do not share variables. [] 

After an unfolding we often need to evaluate some of the newly introduced teWs 
ill order to "clean up" the resulting declarations. To this aim we introduce the 
h)llowing ol)eration. IIere we assunm that tile reader is acquainted with tile notion 
of substitution and of (relevant) most general unifier (evt. see [12]). We denote by 
ea the application of a substitution a to an expression e. 

Def in i t i on  3 (Tell evaluation). A declaration 

d : H ~ C[tell(~ = i )  II B] 

is transformed by tell evaluation to 

d' : H ~ C[Ba] 

where a is a relevant most general unifier of s and t, and the variables in the domain ~ 
of a do not occur neither in C[ ] nor in H. [] 

These applicability conditions can in practice be weakened by appropriately re- 
naming some local variables. In fact, if all the occurrences of a local variable in C[ ] 
are in choice branches different from the one the "hole" lies in, then we can safely 
rename apart  each one of these occurrences. 

In our AUCTION example, we start  working on the definition of auction_right, and 
we unfold the agent bidder_b([kastBid[As], Bs) and then we perform the subsequent 
tell evaluations. The result of these operations is the following program. 

auction_right(LastBid) ~-tell(LastBid ~ quit) [[ 
bidder_a(Bs, As) II 

ask(:lHisSld,HisList, [LastBidlAs ] = [HisBidlHisList' ] A HisBid = quit) -+ stop 
+ ask(:l~isBid,HisUst, [LastBidJAs] = [HisBidlHisList' ] A HisBid ~: quit) -~ 

tell([LastBidlAs] = [HisBidlHisList']) II 
ma ke_new_bid_b(HisBid, MyBid) II 

ask(MyBid = quit) --~ tell(Bs = [MyBidlBs']) II broadcast("b quits") 
4- ask(MyBid ~: quit) -~ tell(Bs = [MyBidlBs']) II 

tell(MyBid ~ quit) II 
bidderJ0(HisList',Bs') 

3.3 G u a r d  S impl i f i ca t ion  

A new important operation is the one which allows us to modify the ask guards 
occurring in a program. Consider an agent of the form C[ask(c) -~ A + ask(d) -~ B] 
and a given set of declarations. Let us call weakest produced constraint of C[ ] the 
conjunction of all the constraints appearing in ask and tell actions which certainly 
have to be evaluated before [ ] is reached (in the context C[ ]). Now, if a is the context 
constraint of C[ ] and ~D ~ a ~ c then clearly we can simplify the previous agent to 

9 We recall that, given a substitution a, the domain of o is the finite ~ t  of variables 
(x I x,-, # x}. 



355 

C[ask(true) -+ A+ask(d)  ~ B] l~ In general, if a is the context  constraint  of C[ ], and 
for some constraint  c' we have t h a t / )  ~ 3_~ a A c ~ a A c t (where ~ = Var(C,A)), 
then we can replace c with d .  In particular,  if we have tha t  a A c is unsatisfiable, 
then c call immediately be replaced with false (the unsatisfiable constraint) .  In order 
to formalize this intuitive idea, we s tar t  with the following definition. 

D e f i n i t i o n  4. Let D be a (fixed) set of declarations, and s be a set of predicates. 
Given an agent  A, its weakest produced constraint (w.r.t. s), denoted by wpc~(A), is 
defined by structural  induction as follows: 

wpcs(stop) = true 
wpcs(tell(c)) = c 
wpc,(A II B) = wpc,(A) A wpc,(B) 

wpcs(~]i ask(q) -+ Ai) = true 
~' wpc(su{p})(A) if p r s and p(t) e- A E defnD(p(t)) 

wpcs (p( t ) )  = t true if p E s 

s contains then the set of predicates which should not be taken into consideration. 
Given a context C[ ] and a set of predicate syml)ols s the wcakcst produced constraint, 
of C[] (w.r.t. s) wpcs(C[ ]), is inductively defined as follows: 

wpc,([ 1) -- true 
wpc,(C'[ ] II B) = wpc,(B) ^ wpc~(C'[ ]) 
wpcs(~E]i"_-1 ask(q) -r Ai) = c i A wpcs(C'[ ]) where j E [1, n] and A i = C'[ ] 

Notice tha t  the weakest produced constraint  depends on the set of declarations D 
under consideration. We are now ready to define the operat ion of guard simplifica- 
tion. 

D e f i n i t i o n  5 ( G u a r d  S i m p l i f i c a t i o n ) .  Let D be a set of declarations, and 

d : H e- C[~..i"=l ask(q) -~ Ai] 

be a declaration of O. Assume tha t  for some constraints c ~ , . . . ,  c~ we have tha t  for 
j e [1,n], 

V ~ 3_~j wpc~(C[ ]) A c i ~-~ wpcg(C [ ]) A c~ (where zi = Vat(C, H,Ai)), then 

we can replace d with 

" ' hi] 0 d' : H * -  C [ ~ =  1 ask(q) 

In our AUCTION example,  we can consider the weakest produced constraint  of 
tell(LastBid r quit), and modify the subsequent ask constructs as follows 

auction.right(LastBid) ~-tell(LastBid r quit) II 
bidder_a(Bs, As) II 

ask(:lHisSld,Hi,U,e [LastBidlhs ] = [HisBidlHisList '] A LastBid ~- quit ^ HisBid -- quit) -~ 
stop 

+ ask(=lHiseld,HisList, [LastBidlAs ] = [HisBidlHisList']) -~  
tell([LastBidlAs ] = [HisBidlHisList']) II 

l0 Note that in general the further simplification to C[A + ask(d) --~ B] is not correct, while 
we can transform C[ask(true) --4 A] into C[A]. 



356 

Via the same operation, we can immediately simplify this to. 

auction_right(LastBid) ~-tell(LastBid ~: quit) H bidder.a(Bs, As) H 
ask(false) -~ stop 

+ ask(true) --~ tell([LastBidlAs ] --- [HisBidlHisList']) II 

B r a n c h  E l i m i n a t i o n  a n d  C o n s e r v a t i v e  G u a r d  E v a l u a t i o n  Notice that  in the 
above program, we have a guard ask(false) which of course will never be satisfied. 
The first important application of the guard simplification operation regards then 
the elimination of unreachable branches. 

D e f i n i t i o n 6  ( B r a n c h  e l imina t ion ) .  Let 

d : H <- C[~':.i"__ 1 ask(q) -~ Ai] 

be a declaration. Assume that n > 1 and that for some j E [1,hi, we have that  
c i - false, then we can replace d with 

i - 1  n 
d' : H +- C[(~-~i= 1 ask(q) -~ Ai) + (~-~i=i41 ask(q) ~ Ai)] [] 

The condition that n > 1 ensures that we are not eliminating all the branches (if we 
wanted to do so, and of course if we were allowed to, that  is, if all the guards are 
unsatisfiable, then we could do so by replacing the whole choice with a new special 
agent, say dead whose semantics would be of always deadlocking, never affecting the 
constraint store). 

By applying this operation to the above piece of example, we can eliminate 
ask(false) -~ stop, obtaining 

auction_right(LastBid) ~-tell(LastBid ~ quit) II 
bidder_a(Bs, As) II 
ask(true) -~tell([LastBidlAs ] = [HisBidlHisList']) tl 

Now we don' t  see any reason for not eliminating the guard ask(true) altogether. This 
can indeed be done via the following operation 

Def in i t ion  7 ( C o n s e r v a t i v e  ask  eva lua t ion ) .  Consider the declaration 

d : H ~- C[ask(true) -~ B] 

We can transform d into the declaration 

d ' :  H~-C[B]  [] 

This operation, although trivial, is subject of debate. In fact, Sahlin in [17] defines a 
similar operation, with the crucial distinction that  the choice might still have more 
than one branch, in other words, in the system of [17] one is allowed to simplify 
the agent C[ask(tme) -~ A + ask(b) ~ B] to the agent C[A], even if b is satisfiable. 
Ultimately, one is allowed to replace the agent C[ask(tme) ~ A + ask(true) -+ B] ei- 
ttmr with C[A] or with C[B], indifferently. Such an operation is clearly more widely 
applicable than the one we have presented (hence the attribute "conservative" for 



357 

the operation we present) but is bound to be incomplete, i.e. to lead to the lost of 
potentially successful branches. Nevertheless, Sahlin argues that an ask evaluation 
such as the one defined above is potentially too restrictive for a number of useful 
optimization. We agree with the statement only partially, nevertheless, the system 
we propose will eventually be equil)ped with a non-conservative guard evaluation op- 
eration as well (which of course, if employed, will lead to weaker correctness results). 
Such operation is, for space reasons, now omitted. 

In our example program, the application of these branch elimination and conser- 
vative ask evaluation leads to the following: 

auction_right(kastBid) ~-tell(LastBid ~ quit) II 
bidder_a(Bs, As) II 
tell([LastBidIAs] = [HisBidlHisList']) II 
ma ke_new_bid.b(HisBid,MyBid) II 

ask(MyBid = quit) -~ tell(Bs = [quitIBs']) II broadcast("b quits") 
+ ask(MyBid ~ quit) -~ tell(Bs = [MyBidlBs']) II 

tell(MyBid ~ quit) II 
bidder_b(HisList',Bs') 

Via a tell evaluation of tell([LastBidlAs ] = [HisBidlHisList']), this simplifies to: 

auction_right(LastBid) +--tell(LastBid ~ quit) II 
bidder_a(Bs, As) II 
make_new_bid_b(LastBid,MyBid) II 

ask(MyBid = quit) -~ tell(Bs = [quitlBs']) II broadcast("b quits") 
+ ask(MyBicl r quit) -~ tell(Bs = [iyBidlBs']) II 

tell(MyBid r quit) II 
bidder_b(As,Bs') 

3.4 D i s t r i b u t i o n  

A crucial operation in our transformation system is the distribution, which consists 
of bringing an agent inside a choice as follows: from the agent A II ~ i  ask(q) -~ Bh 
we want to obtain the agent ~--]~i ask(q) ~ (A II Bi). This operation was introduced 
for the first time in the context of CLP in [7], and requires delicate applicability 
conditions, as it can easily introduce deadlock situation: consider for instance the 
following contrived program D. 

p(Y) ~ q(X) il (ask(X > =  o) - ,  tell(Y=0)) 
q(0) ~- stop 

In this program, the process D.p(Y) originates the derivation (D.p(Y),true) -~* 
(D.stop, Y = 0). Ilowevcr, if we blindly apply the distrilmtion operation to the first 
definition we would change O into: 

p(Y) +- ask(X >= 0) -+ (q(X) II tell(Y=0)) 

and now we have that (D.p(Y), true) generates only deadlocking derivations. 
This situation is avoided by demanding that the agent being distributed will in 

any case not be able to produce any output before the choice is entered. This is done 
using the following notions of required variable. Recall that we denote by Stop any 
agent which contains only stop and II constructs. 



358 

Def in i t i on  8 (Required  Variable) .  Let D.A be a process. We say that  D.A re- 
quires the variable X iff, for each satisfiable constraint c such that  D ~ 3xC ~ c, 
(D.A, c) has at least one finite derivation and moreover (D.A, c) ~ *  (D.A t, c') implies 
that • ~ 3-z c ~-~ 3-z c', where E = Vat(A). O 

Ill other words, the process D.A requires the variable X if, in tile moment that 
the global store does not contain any information on X, then D.A cannot produce 
any information which affect the variables occurring in A and has at least one fi- 
nite derivation. Even though the above notion is not decidable in general, in some 
cases it is easy to individuate required variables. For example it is inunediate to 
see that, in our program, bidder_a(Bs, As) requires Bs: in fact the derivation start- 
ing in bidder_a(Bs, As) suspends (without having provided any output) after one 
step and resumes only when Bs has been instantiated. This example could be easily 
generalized. We can now give the formal dcfinition of the distribution operation. 

Def in i t ion  9 ( D i s t r i b u t i o n ) .  Consider a declaration 

d :  H ~ C[A II Ei"--~ ask(q) -~ Bi] 

Tile distribution of A in d yields as result tile definition 

d': H ~- CtE,"_-~ ask(q) --+ (A II Bi)] 

provided that  A requires a variable which does not occur in H nor in C. [] 

The above applicability condition ensures that bringing A in the scope of the 
ask(ci)'s will not introduce deadlocking derivations: In fact it is intuitively clear that 
the fact that  A requires a variable X implies, by definition, that  A can produce some 
output only in the moment that X is instantiated, but since X does not occur in H 
nor in C, we have that  this can only hal)pen once the choice is entered. Summarizing, 
the applicability conditions ensure that (in the initial definition) A might produce an 
output only after the choice is entered. This ensures that A cannot have an influence 
on the choice itself, and can be thus safely brought inside. 

In our example, since the agent bidder_a(Bs, As) requires the variable Bs, which 
occurs only inside the ask guards, we can safely apply the distributive operation. 
The result is the following program. 

auction_right(LastBid) <- tell(LastBid ~: quit) II make_new_bid.b(LastBid,MyBid) tl 
ask(MyBid = quit) - r  tell(Bs = [quitlBs']) II broadcast("b quits") II bidder_a(Bs, As) 

+ ask(MyBid p quit) -+ tell(Bs = [MyBidIBs']) II 
tell(MyBid ~ quit) II 
bidder_a(Bs, As) II 
bidder.b(As, Bs') 

In this program we can now evaluate the construct tell(Bs = [MyBidlBs']) obtain- 
ing (it is true that  the variable Bs here occurs also elsewhere in the definition, but 
since it occurs only on choice-branches different than the one on which the considered 
agent lies, we can assume it to be renamed): 

auction_right(LastBid) <---tell(LastBid p quit) II make_new_bid_b(LastBid,MyBid) II 
ask(MyBid = quit) ~ tell(Bs = [quitlBs']) II broadcast("b quits") ]} bidder_a(Bs, As) 



359 

4- ask(MyBid ~ quit) -+ tell(MyBid p quit) II 
bidder-a([MyBidlBs' ], As) II 
bidder_b(As, Bs') 

Before we introduce the fold operation, let us clean up the program a bit further: by 
properly transforming the agent bidder_a(Bs, As) in the first ask branch, we easily 
obtain: 

auction_right(LastBid) 4--tell(LastBid ~: quit) II make_new.bid_b(LastBid,MyBid) II 
ask(MyBid = quit) -4 tell(Bs = [quitlBs']) II broadcast("b quits") II stop 

4- ask(MyBid ~ quit) -} tell(MyBid ~ quit) U 
bidder_a([MyBidlBs'], As) II 
bidder_b(As, Bs') 

The just introduced stop agent can then safely be removed. 

3.5 Folding 

The folding operation has a special r61e in the panorama of the transformation 
operations. This is due to tile fact that it allows to introduce recursion in a definition, 
often making it independent front the previous definitions. As previously mentioned, 
the applicability conditions that we use here for the folding operation do not depend 
on the transformation history, nevertheless, we require that the declarations used to 
fold an agent appear in the initial program. Thus, before defining the fold operation, 
we need the following. 

Def in i t ion  10. A transformation sequence is a sequence of programs Do, . . . ,  D., in 
which Do is an initial program and each Di+l, is obtained from Di via one of the 
fi)llowing transformation operations: definition introduction, unfolding, distribution, 
guard simplification, branch elimination, conservative guard evaluation and folding. 

We also need the notion of guarding context. Intuitively, a context C[ ] is guarding 
if the "hole" appears in the scope of an ask guard 11. Itere - indicates syntactic 
equality. 

Def in i t ion  11 ( G u a r d i n g  Con tex t ) .  A context C[ ] is a guarding context iff 
t n C[ ] - C [~i=t ask(q) -~ All and A i = C"[ ] for some j E [1, n]. [] 

We can finally give the definition of folding: 

Def in i t ion  12 (Folding).  Let Do, . . . ,  Dh i >__ 0, be a transformation sequence. Con- 
sider two definitions. 

d : H ~ C[A] e Di 
f :  B ~ - A  EDo 

If C[ ] is a guarding context then folding A in d consists of replacing d by 

d':  H~-C[B]  EDi+ I  

(it is assumed here that d and f are suitably renamed so that the variable they have 
in common are only the ones occurring in A). 0 

H Clearly, the scope of the ask guard in ask(c) -~ A is A. 



360 

The reach of this operation is best shown via our example. We can now fold auc- 
tionJeft(MyBid) in the above definition, and obtain: 

auction_right(LastBid) <--tell(LastBid ~ quit) I[ make_new_bid_b(LastBid,MyBid) [[ 
ask(MyBid = quit) --~ tell(Bs -- [quitlBs']) II broadcast("b quits") 

+ ask(MyBid ~ quit) -~ auction.Jeft(MyBid) 

Now, by performing an identical optimization on auction_left, we can also obtain: 

auction_left(LastBid) ~-tell(LastBid ~: quit) ][ make_new_bid_a(LastBid,MyBid) [[ 
ask(MyBid --- quit) --~ tell(Bs -- [quitlBs']) It broadcast("a quits") 

+ ask(MyBid ~ quit) -~ auction_right(MyBid) 

This part  of the transformation shows in a striking way one of the main benefits 
of the folding operation: the saving of synchronization points. Notice that  in the 
initial program the two bidders had to "wait" for each other. In principle they were 
working in parallel, but in practice they were always acting sequentially, since one 
always had to wait for the bid of the competitor. The transformation allowed us 
to discover this sequentiality and to obtain an equivalent program in which the 
SC(luentiality is exploited to eliminate all SUSl)ension points, which are known to 
be one of the major overhead sources, l,hrthernmre, tim transformation allows a 
dra~stic save of computational space. Notice that in the initial definition the parallel 
composition of the two bidders leads to the construction of two lists containing all 
the bids done so far. After the transformation we have a definition which does not 
build the list any longer, and which, by exploiting a straightforward optimization 
can employ only constant  space. 

4 C o r r e c t n e s s  

Any transformation system must be useful (i.e. allow useful transformations and 
optimization) and - most importantly - correct, i.e., it must guarantee that  the 
resulting program is in some sense equivalent to the one we have started with. Having 
at hand a formal semantics for our paradigm, we defines correctness as follows. 

Def in i t i on  13 ( C o r r e c t n e s s ) .  A transformation sequence Do, . . . ,  D, is called 

- partially correct iff for each agent A we have that  O(Oo.A) _D O(D,.A) 
- complete  iff for each agent A we have that O(D0.A) _C O(D,.A) 
- totally correct iff it is both partially corrcct and complete. [] 

So a transformation is partially correct iff nothing is added to the semantics of 
the initial program and is complete itf no semantic information is lost during the 
transformation. We can now state the main result of this paper. 

T h e o r e m  14 (To ta l  C o r r e c t n e s s ) .  Let Do, . . . ,  Dn be a transformation sequence. 
Then Do, . . . ,  O, is totally correct. [] 

This theorem is originally inspired by the one of Tamaki and Sato for pure logic 
programs [22], and has retained some of its notation. Of course the similarities don't  
go nnlch further, as d(:nlonstratc(J by the fact that in our (,r;tnsfornlation system the 



361 

applicability conditions of folding operation do not depend on the transformation 
history (while allowing the introduction of recursion), and that  the folding definitions 
are allowed to be recursive (the distinction between Pne,, and Pold of [22] is now 
superfluous). 

It  is iml)ortant to notice that  -- given the definition of observable we are adopt- 
ing (Delinition 1) - the initial l)rogram Do and the final one D, have exactly the 
santo successfifl derivation and the same deadlocked derivation. The first feature 
(regarding successful derivations) is to some extent the one we expect and require 
from a transformation, because it corresponds to the intuition that  D, "produces the 
same results" of Do. Nevertheless, also the second feature (preservation of deadlock 
derivation) has an important r61e. Firstly, it ensures that  the transformation does 
not introduce deadlock point, which is of crucial importance when we are using the 
transformation for optimizing a program. Secondly, this feature allows to use the 
transformation as a tool for proving deadlock freeness (i.e., absence of deadlock). In 
fact, if, aftcr the transformation we can prove or or sce that  the process Dn.A does 
never deadlock, then we are also sure that D0.A does not deadlock either. 

5 Related Work 

In the literature, there exist three paper which are relatively closely related to the 
present one: de Francesco and Santone's [8], Ueda and Furukawa's [23], and Sahlin's 
[17]: in [8] it is presented a transformation system for CCS [14], in [23] it is defined 
a transformation system for Guarded Horn Clauses, while in [17] it is presented a 
transformation system for AKL. 

Common to all three cases is that  our proposal improves on them by introduc- 
ing new operations such as the distribution, the techniques for the simplification 
of constraint, branch elimination and conservative guard evaluation (though, some 
constraint simplification is done in [17] as well). Because of this, the transformation 
system we are proposing can be regarded as an extension of the ones in the paper 
above. Notice that  without the above-mentioned operations the transformation of 
our example would not be possible. Further, we provide a more flexible definition 
for the folding operation, which allows the folding clause to be recursive, and frees 
the initial program from having to be partitioned in Pnew and Fold. 

Other minor differences between our paper and the [23, 17] are the following ones. 
Compared to [23], our systems takes advantage of the greater flexibility of the CCP 
(wrt GHC). For instance, we can define the unfolding as a simple body replacement 
operation without any additional applicability condition, while this is not the case 
for GIIC. Going on to [17], all interesting difference between it and this paper which 
is worth remarking is the one we have already mentioned in the discussion after Def- 
inition 7: in [17] it is considered a definition of ask evaluation which allows to remove 
potentially selectable branches; the consequence is that the resulting transformation 
system is only partially (thus not totally) correct. However, we should mention that  
in [17] two preliminary assumptions on the "scheduling" are made in such a way 
that  this limitation is actually less constraining that  it might appear. In any case, as 
we already said, the extended version of this transformation system will encompass 
an operation of non-conservative guard expansion, analogous to the one of [17] (and 
which - if employed - will necessarily lead to weaker correctness results). 



362 

Concluding, we want to mention that  a previous work of the authors on the 
subject is [7] which focuses primarily on CLP paradigm (with dynamic scheduling), 
and is concerned with the preservation of deadlock derivation along a transformation. 
In [7], for the first time, it was employed a transformation system in order to prove 
absence of deadlock of a program (HAMMING). The second part  of [7] contains a 
sketch of a primitive version of all unfold/fold transformation for CCP programs. 
Nevertheless, the system we are presenting here is (not only much more extended, 
but also) different in nature from [7]. This is clear if one compares the definitions 
of folding, which, it is worth reminding, is the central operation in an Unfold/Fold 
transformation system. In [7] this operation requires severe constraints on the initial 
program and applicability conditions whidl rely on the transformation history, while 
here tile only requirement is that  tile folding has to take place inside a guarding 
context, which is a plain syntactic condition. As a consequence we have that  

- This system is - generally speaking - of nmch broader applicability. 

All limitations on the initial programs are dropped. Ultimately, the folding definition 
is allowed to be recursive (which is really a step forward in the context of folding 
Ol)crations which arc themselves cal)able of introducing recursion). Of course -- I)eing 
the two systems of different nal,ure - one can invent an example transformation which 
is doable with the tools of [7] but not with the ones here presented. We strongly 
believe that  such cases regard contrived examples of no practical relevances. 

- The folding operation presented here is much simpler. 

This is of relevance given the fact that tile complexity of applicability of the folding 
operation has always been one of the major obstacle both in implementing it and in 
making it accessible to a wider audience. 

In 1)articular, as opl)osed to virtually all fold ol)erations which enable to introduce 
recursion presented so far (the only exception being [8]), the applicability of the 
folding operation does not depend on the transformation history, (which has always 
been one of the "obscure sides" of it) but it relies on plain syntactic criteria. 

We also should mention that  because of the structural differences, the proofs for 
this paper are necessarily completely different. 

Moreover, we have introduced new operations. In particular the guard simplifi- 
cation (which brings along the branch elimination and the conservative guard eval- 
uation) is of crucial importance in order to have a transformation system which 
allows fruitful optimizations. Concluding, another fundamental operation for CCP 
- the distributive operation - has now simpler applicability conditions, which help 
in checking it in a much more straightforward way. 

R e f e r e n c e s  

1. N. Bensaou and I. Guessarian. Transforming Constraint Logic Programs. In F. Turini, 
editor, Proc. Fourth Workshop on Logic Program Synthesis and ~nsformation, 1994. 

2. R.M. Burstall and J. Darlington. A transformation system for developing recursive 
programs. Journal of the ACM, 24(1):44-67, January 1977. 

3. K.L. Clark and S. Sickel. Predicate logic: a calculus for deriving programs. In Proceed- 
ings of IJCAl'77, pages 419-120, 1977. 



363 

4. F.S. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi. Proving concurrent con- 
straint programs correct. A CM Tcansactions on Programming Languages and Systems, 
1998. to appear. 

5. S. Etaile and M. Gabbriclli. Transformations of CLP modules. Theoretical Computer 
Science, 166(1):101-146, 1996. 

6. S. Etalle and M. Gabbrielli. Partial evahtation of concurrent constraint languages. 
A CM Computing Surveys, 1998. to appear. 

7. S. Etaile, M. Gabbrielli, and E. Marchiori. A Transformation System for CLP with 
Dynamic Scheduling and CCP. In ACM-SIGPLAN Symposium on Partial Evaluation 
and Semantic Based Program Manipulation. ACM Press, 1997. 

8. N. De Francesco and A. Santone. Unfold/fold transformation of concurrent processes. 
In H. Kuehen and S.Doaitse Swierstra, editors, Proc. 8th lnt'l Syrup. on Program- 
ming Languages: Implementations, Logics and Programs, volume 1140, pages 167-181. 
Springer-Verlag, 1996. 

9. C.J. Hogger. Derivation of logic programs. Journal of the ACM, 28(2):372-392, April 
1981. 

10. N. J~rgensen, K. Marriot, and S. Michaylov. Some Global Compile-Time Optimiza- 
tions for CLP(T~). In Proc. 1991 lnt'l Symposium on Logic Programming, pages 420- 
434, 1991. 

11. tI. Komorowski. Partial evaluat, ion ~ a means for infercncing data structures ill all ap- 
plicative language: A theory and implementation in the case of Prolog. In Proe. Ninth 
ACM Symposium on Principles of Programming Languages, pages 255-267. ACM, 
1982. 

12. J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation - Artificial 
Intelligence. Springer-Verlag, Berlin, 1987. Second edition. 

13. M.J. Maher. A transformation system for deductive databases with perfect model 
semantics. Theoretical Computer Science, 110(2):377-403, March 1993. 

14. R. Milner. Communication and Concurrency. Prentice-Hall, 1989. 
15. T Mogensen and P Sestoft. Partial evaluation. In A. Kent and J.G. Williams, ed- 

itors, Encyclopedia of Computer Science and Technology, volume 37, pages 247-279. 
M. Dekker, 1997. 

16. A. Pettorossi and M. Proietti. Transformation of logic programs: Foundations and 
techniques. Journal of Logic Programming, 19,20:261-320, 1994. 

17. D. Sahlin. Partial Evaluation of AKL. In Proceedings of the First International Con- 
ference on Concurrent Constraint Programming, 1995. 

18. V .A.  Saraswat. Concurrent Constraint Programming Languages. PhD thesis, 
Carnegie-Mellon University, January 1989. 

19. V.A. Saraswat and M. Rinard. Concurrent constraint programming. In Proe. of the 
Seventeenth ACM Symposium on Principles of Programming Languages, pages 232- 
245. ACM, New York, 1990. 

20. V.A. Saraswat, M. l'tinard, and P. Panangaden. Semantics foundations of concurrent 
constraint programmiug. In Proc. Eighteenth Annual ACM Syrup. on Principles of 
Programming Languages. ACM Press, 1991. 

21. G. Smolka. The Oz programming model. In Jan van Leeuwen, editor, Computer Sci- 
ence Today, number 1000 in LNCS. Springer-Verlag, 1995. see www.ps.uni-sb.de/oz/. 

22. H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. In Sten- 
Ake T~irnlund, editor, Proc. Second Int 'i Conf. on Logic Programming, pages 127-139, 
1984. 

23. K. Ueda and K. Furukawa. Transformation rules for GHC Programs. In Proc. Int'l 
Conf. on Fifth Generation Computer Systems, pages 582-591. Institute for New Gen- 
eration Computer Technology, Tokyo, 1988. 


