Skip to main content

Stochastic process algebras benefits for performance evaluation and challenges

Extended abstract

  • Conference paper
  • First Online:
CONCUR'98 Concurrency Theory (CONCUR 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1466))

Included in the following conference series:

  • 99 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bernardo and R. Gorrieri. Extended Markovian Process Algebra. In CONCUR '96. Springer, 1996.

    Google Scholar 

  2. E. Brinksma, J.P. Katoen, R. Langerak, and D. Latella. A stochastic causality-based process algebra. In Gilmore and Hillston [4].

    Google Scholar 

  3. P. Buchholz. Markovian Process Algebra: Composition and Equivalence. In U. Herzog and M. Rettelbach, editors, Proc. of the 2nd Workshop on Process Algebras and Performance Modelling, Regensberg/Erlangen, July 1994. Arbeitsberichte des IMMD, Universität Erlangen-Nürnberg.

    Google Scholar 

  4. S. Gilmore and J. Hillston, editors. Proc. of the 3rd Workshop on Process Algebras and Performance Modelling. Oxford University Press, Special Issue of “The Computer Journal”, 38(7) 1995.

    Google Scholar 

  5. N. Götz, H. Hermanns, U. Herzog, V. Mertsiotakis, and M. Rettelbach. Quantitative Methods in Parallel Systems, chapter Stochastic Process Algebras — Constructive Specification Techniques Integrating Functional, Performance and Dependability Aspects. Springer, 1995.

    Google Scholar 

  6. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system design: The integration of functional specification and performance analysis using stochastic process algebras. In Tutorial Proc. of the 16th Int. Symposium on Computer Performance Modelling, Measurement and Evaluation, PERFORMANCE '93. Springer, 1993. LNCS 729.

    Google Scholar 

  7. H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras — Between LOTOS and Markov Chains. Computer Networks and ISDN Systems, 30(9–10):901–924, May 1998.

    Article  Google Scholar 

  8. H. Hermanns and M. Rettelbach. Syntax, Semantics, Equivalences, and Axioms for MTIPP. In U. Herzog and M. Rettelbach, editors, Proc. of the 2nd Workshop on Process Algebras and Performance Modelling, Erlangen-Regensberg, July 1994. IMMD, Universität Erlangen-Nürnberg.

    Google Scholar 

  9. H. Hermanns and M. Rettelbach. A Superset of Basic LOTOS for Performance Prediction. In Ribaudo [16].

    Google Scholar 

  10. U. Herzog. A Concept for Graph-Based Stochastic Process Algebras, Generally Distributed Activity Times and Hierarchical Modelling. In Ribaudo [16].

    Google Scholar 

  11. J. Hillston. A Compositional Approach to Performance Modelling. PhD thesis, University of Edinburgh, 1994.

    Google Scholar 

  12. J.P. Katoen, D. Latella, R. Langerak, and E. Brinksma. Partial Order Models for Quantitative Extensions of LOTOS. Computer Networks and ISDN Systems, 1997. submitted, this volume.

    Google Scholar 

  13. K. Larsen and A. Skou. Bisimulation through Probabilistic Testing. Information and Computation, 94(1), September 1991.

    Google Scholar 

  14. N. Nounou and Y. Yemini. Algebraic Specification-Based Performance Analysis of Communication Protocols. In Y. Yemini, R. Strom, and S. Yemini, editors, Protocol Specification, Testing and Verification, volume IV. North Holland (IFIP), 1985.

    Google Scholar 

  15. C. Priami. Stochastic π-calculus. In Gilmore and Hillston [4].

    Google Scholar 

  16. M. Ribaudo, editor. Proc. of the 4th Workshop on Process Algebras and Performance Modelling. Universita di Torino, CLUT, 1996.

    Google Scholar 

  17. W.J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University Press, 1994.

    Google Scholar 

  18. B. Strulo. Process Algebra for Discrete Event Simulation. PhD thesis, Imperial College, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Davide Sangiorgi Robert de Simone

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Herzog, U. (1998). Stochastic process algebras benefits for performance evaluation and challenges. In: Sangiorgi, D., de Simone, R. (eds) CONCUR'98 Concurrency Theory. CONCUR 1998. Lecture Notes in Computer Science, vol 1466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055635

Download citation

  • DOI: https://doi.org/10.1007/BFb0055635

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64896-3

  • Online ISBN: 978-3-540-68455-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics