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A b s t r a c t .  This contribution describes an automatic 3D surface model- 
ing system that  extracts dense metric 3D surfaces from an ancalibrated 
video sequence. A static 3D scene is observed from multiple viewpoints 
by freely moving a video camera around the object. No restrictions on 
camera movement and internal camera parameters like zoom are im- 
posed, as the camera pose and intrinsic parameters are calibrated from 
the sequence. 
Dense surface reconstructions are obtained by first treating consecutive 
images of the sequence as stereoscopic pairs and computing dense dispar- 
ity maps for all image pairs. All viewpoints are then linked by controlled 
correspondence linking for each image pixel. The correspondence linking 
algorithm allows for accurate depth estimation as well as image texture 
fusion from all viewpoints simultaneously. By keeping track of surface 
visibility and measurement uncertainty it can cope with occlusions and 
measurement outliers. The correspondence linking is applied to increase 
the robustness and geometrical resolution of surface depth as well as to 
remove highlights and specular reflections, and to create super-resolution 
texture maps for increased realism. 
The major impact of this work is the ability to automatically generate 
geometrically correct and visually pleasing 3D surface models from image 
sequences alone, which allows the economic model generation ~or a wide 
range of appfications. The resulting textured 3D surface model are highly 
realistic VRML representations of the scene. 

1 I n t r o d u c t i o n  

3D surface recons t ruc t ion  f rom image  sequences is an ongoing research topic  in 
the  c o m p u t e r  vis ion society. For  ca l ib ra t ed  sequences good  resul ts  were o b t a i n e d  
by s t r u c t u r e - f r o m - m o t i o n  a lgor i thms  or s tereoscopic image  sequences (see [10, 26, 
16]). Con t r ibu t ions  were m a d e  for mul t i  basel ine s tereo [19], inc rementa l  d e p t h  
e s t ima t ion  [18] and mul t i  v iewpoin t  analysis  [9] fi 'om known c a m e r a  posi t ions .  

Met r ic  recons t ruc t ion  f rom uncMibra ted  sequences is s t i l l  under  inves t iga t ion .  
In the  unca l ib r a t ed  case all p a r a m e t e r s  - c a m e r a  pose and int r ins ic  ca l ib ra t ion  
as well as the  3D scene s t ruc ture  - have to be e s t ima ted  f rom the 2D image  
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sequence alone. Paugeras and Hartley first demonstrated how to obtain projec- 
tive reconstructions from such image sequences [6, 11]. Since then, researchers 
tried to find ways to upgrade these reconstructions to metric (i.e. Euclidean but 
unknown scale, see for example [7, 22, 25]). 

They mostly restricted themselves to constant intrinsic parameters. Recently, 
extensions of this work to varying intrinsic camera parameters were proposed [21, 
12,23]. 

To employ these self-calibration methods for sequence analysis they must 
be embedded in a complete scene reconstruction system. Beardsley et al. [1] 
proposed a scheme to obtain projective calibration and 3D structure by robustly 
tracking salient scene feature points throughout an image sequence. This sparse 
object representation outlines the object shape, but gives insufficient surface 
detail for visual reconstruction. Highly realistic 3D surface models need dense 
depth snaps and can not rely on relatively few feature points. 

In [23] the method of Beardsley et al. [1] was extended in two directions: 
On the one hand the projective reconstruction was updated to metric even for 
varying internal camera parameters. On the other hand a dense stereo matching 
technique [4] was applied between two selected images of the sequence to obtain 
a dense depth map for a single viewpoint. From this depth map a triangular 
surface wire-frame was constructed and texture snapping from one image was 
applied to obtain realistic surface models. 

In this contribution we extend the dense surface reconstruction as proposed 
in [23] to sequence analysis. An algorithm is proposed that links image corre- 
spondences over the image sequence and allows to integrate both depth and 
image texture. Only weak restrictions are imposed on the camera motion and 
on scene geometry, and the approach is embedded in a completely uncalibrated 
and automatic framework. It will be shown how the analysis of surface depth 
and surface texture from the image sequence will improve the accuracy of the 
surface model. At the same time texture integration opens new means to en- 
hance the object texture quality. The creation of super-resolution texture maps 
and removal of imaging artifacts or specular reflections are additional features 
of the proposed algorithm. 

1.1 O v e r v i e w  of  3-D R e c o n s t r u c t i o n  S y s t e m  

The complete 3-D surface reconstruction system consists of several modules to 
be executed in a processing pipeline. Some modules were discussed in earlier 
publications and will be sketched only. The system structure can be summarized 
as follows: 

1. Sparse Point Tracking and Calibration. Section 2 reviews the feature point 
tracking algorithm. It uses a 2 step approach: 
(a) obtain projective calibration and 3D point reconstruction, 
(b) upgrade to metric calibration and structure through self-calibration based 

on constraints applied to the absolute quadric. 
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2. Pairwise Dense Disparity Matching. Section 3 deals with dense disparity 
measurements from image pairs. Adjacent images of the sequence are treated 
as stereo image pairs and dense correspondence maps are computed between 
these pairs [4]. 

3. Correspondence Linking Algorithm. In Sect. 4 the correspondence linking 
algorithm is developed which links all possible image point correspondences 
over the sequence, guided by a depth verification that allows to test for 
outliers and occlusions. Depth and texture fusion are derived from the basic 
linking scheme. 

4. 3-D Surface Reconstruction. Textured triangular surface meshes are then 
generated from refined depth and texture maps to build highly realistic scene 
models, as described in Sect. 5. 

2 C a m e r a  C a l i b r a t i o n  t h r o u g h  F e a t u r e  P o i n t  T r a c k i n g  

Two things are needed to build a 3D model from an image sequence: (1) the 
calibration 1 of the sequence and (2) the correspondences between the images. 
Starting from an image sequence acquired by an uncalibrated video camera, both 
these prerequisites are unknown and therefore have to be retrieved from image 
data. Only a few but very reliable image correspondences are needed to retrieve 
the calibration of the camera setup. Salient feature points like strong intensity 
corners are robustly tracked throughout the image sequence for that purpose. In 
a two-step approach a projective calibration and feature point reconstruction is 
recovered from the image sequence which is then upgraded to metric calibration 
with a self-calibration approach. 

2.1 Retrieving the Projective Framework 

At first, feature correspondences are found by extracting intensity corners in 
different images and matching them using a robust corner matcher [24]. In con- 
junction with the matching of the corners a restricted calibration of the setup is 
calculated (i.e. only determined up to an arbitrary projective transformation). 
This allows to eliminate matches which are inconsistent with the calibration. 
The 3D position of a point is restricted to the line passing through its image 
point and the camera projection center. Therefore the corresponding point is 
restricted to the projection of this line in the other image. Using this constraint, 
more matches can easily be found and used to refine this calibration. The prin- 
ciple is explained in Fig. 1. 

The matching is first carried out on the first two images. This defines a 
projective framework in which the projection matrices of the other views are 
retrieved one by one. In this approach we follow the procedure proposed by 
Beardsley et al. [1]. We therefore obtain projection matrices (3 • 4) of the form 

1 By calibration we mean the actual internal calibration of the camera as well as the 
relative position and orientation of the camera for the different viewpoints. 
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Fig. 1. Images with (a) a priori search region, (b) search region based on the epipolar 
constraint, (c) prediction of search region in the sequence after projective reconstruction 
of the point (used for refinement). 

P~ = [II0] and Pi = [Hlileli] (1) 

with Hi/  the homography for some reference plane from view 1 to view i and 
eli the corresponding epipole. 

2.2 Retr ieving the Metric Framework 

Such a projective calibration is certainly not satisfactory for the purpose of 3D 
modeling. A reconstruction obtained up to a projective transformation can differ 
very much from the original scene according to human perception: orthogonality 
and parallelism are in general not preserved, part of the scene can be warped to 
infinity, etc. To obtain a better calibration, constraints on the internal camera 
parameters can be imposed (e.g. absence of skew, known aspect ratio . . . .  ). By 
exploiting these constraints, the projective reconstruction can be upgraded to 
metric (Euclidean up to scale). 

In that case the camera projection matrices should have the following form: 

Pi = Ki [Ri]-Riti] with Ki = fy (2) 

where Ri and ti indicate the orientation and position of the camera for view i, 
Ki contains the internal camera parameters, f~ and fy stand for the horizontal 
and vertical focal length (in pixels), u = (ux, Uu) is the principal point and s is 
a measure of the skew. 

A practical way to obtain the calibration parameters from constraints on 
the internal camera parameters is through application of the concept of the 
absolute quadric [25,23]. In space, exactly one degenerate quadric of planes 
exists which has the property to be invariant under all rigid transformations. In 
a metric frame it is represented by the following 4 • 4 symmetric rank 3 matr ix  

I t  0] If T transf~ points M --* T M  (and thus P -~ p T - 1 ) ,  then it g2= 0 " 

transforms f2 ~ T f2T  -c (which can be verified to yield ~'? when T is a similarity 
transformation) 2. The projection of the absolute quadric onto the image yields 

Using (2) this can be verified for a metric basis. Transforming P ---* P T  -1 and 
f2 --~ T/2T r will not change the projection. 
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the intrinsic camera parameters independent of the chosen projective basis: 

KiK~ ~x PiY2P~ (3) 

where oc means equal up to an arbitrary non-zero scale factor. Therefore con- 
straints on the internal camera parameters in Ki can be translated to constraints 
on the absolute quadric. If enough constraints are at hand, only one quadric will 
satisfy them all, i.e. the absolute quadrie. At that point the scene can be trans- 
formed to the metric frame (which brings l? to its canonical form). 

3 D e n s e  Stereo  Pair M a t c h i n g  

With the camera calibration given for all viewpoints of the sequence, we can pro- 
ceed with methods developed for calibrated structure from motion algorithms. 
The feature tracking algorithm already delivers a sparse surface model based on 
distinct feature points. This however is not sufficient to reconstruct geometri- 
cally correct and visually pleasing surface models. This task is accomplished by 
a dense disparity matching that estimates correspondences from the grey level 
images directly by exploiting additional geometrical constraints. 

3.1 Exploiting Scene Constraints 

The epipolar constraint obtained from 
age points to lie in the epipolar plane 3 
surface of the scene objects. The profile 
lar lines in the images Ii and I k where 
correspondences (see left of Fig. 2). 

calibration restricts corresponding im- 
which also cuts a 3D profile out of the 
projects onto the corresponding epipo- 
it forms an ordered set of neighboring 

For well behaved surfaces this ordering is preserved and delivers an addi- 
tional constraint, known as ordering constraint. Scene constraints like this can 
be applied by making weak assumptions about the object geometry. In many real 
applications the observed objects will be opaque and composed out of piecewise 
continuous surfaces. If this restriction holds then additional constraints can be 
imposed on the correspondence estimation. Kochan [17] listed as many as 12 
different constraints for correspondence estimation in stereo pairs. Of them, the 
two most important  apart from the epipolar constraint are: 

1. Ordering Constraint: For opaque surfaces the order of neighboring corre- 
spondences on the corresponding epipolar lines is always preserved. This 
ordering allows the construction of a dynamic programming scheme which 
is employed by many dense disparity estimation algorithms [3, 4, 8]. 

2. Uniqueness Conslraint: The correspondence between any two corresponding 
points is bidirectional as long as there is no occlusion in one of the images. 
A correspondence vector pointing from an image point to its corresponding 
point in the other image always has a corresponding reverse vector pointing 
back. This test is used to to detect outliers and occlusions. 

3 The epipolar plane is the plane defined by the the image point and the camera 
projection centers. 
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Fig. 2. Left: Object profile triangulation from ordered neighboring correspon- 
dences.Right: Rectification and correspondence between viewpoints i and k 

3.2 I m a g e  Rec t i f i c a t i on  

All above mentioned constraints operate along the epipolar lines which may have 
an arbitrary orientation in the image planes. The matching procedure is greatly 
simplified if the image pair is rectified to a standard geometry. In standard ge- 
ometry both image planes are coplanar and the epipoles are projected to infinity. 
The rectified image planes can further be oriented such that the epipolar lines 
coincide with the image scan lines. Image rectification then involves a planar 
projective mapping fl'om the original towards the rectified image planes. Note 
that the rectification process is under-determined and there is an additional de- 
gree of freedom to be set. Conveniently the projective mapping transformation 
H is chosen such that the resulting image distortions are minimized. Possible 
criteria can be to minimize the change of camera orientation [16] or the deviation 
of the image corner angles from right angles [5]. 

Figure 2 (right) clarifies the relation between the original and rectified images 
and cameras, as well as the correspondence matching process that links the 
viewpoints i and k. Viewpoint i is treated as the left member of the pair, k 
as right member. For identification purposes they are indexed with superscript 
(1,r), respectively. The camera and image (Ii, Pi) is then rectified to (I~, P{), 
while (Ik, Pk) is rectified to (I[~, P[,). 

3.3 C o n s t r a i n e d  M a t c h i n g  

For dense correspondence matching a disparity estimator based on the dynamic 
programming scheme of Cox et al. [3], is employed that incorporates the above 
mentioned constraints. It operates on rectified image pairs where the epipolar 
lines coincide with image scan lines. The matcher searches at each pixel in image 
I[ for maximum normalized cross correlation in I~ by shifting a small measure- 
ment window (kernel size 5x5 or 7x7) along the corresponding scan line. The 
selected search step-size AD (usually 1 pixel) determines the search resolution. 
Matching ambiguities are resolved by exploiting the ordering constraint in the 
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dynanfic programming approach [16]. The algorithm was further adapted to em- 
ploy extended neighborhood relationships and a pyramidal estimation scheme to 
reliably deal with very large disparity ranges of over 50% of the image size [4]. 
The estimate is stored in a disparity map D(i,k) with one of the following values: 

a valid correspondence Xlk = D(i,k)[x[], 
- an undetected search failure which leads to an outlier, 
- a detected search failure with no correspondence. 
The matching algorithm was tested extensively on different scenes under lab- 

oratory and real outdoor conditions. To verify ground truth the system estimates 
were compared with synthetic data of known ground truth and with a high res- 
olution active scanning system that projects coded light stripe patterns on the 
scene. It was found that the relative depth error of the matching system ranged 
between 0.3% to 1%. For further details see [16]. 

4 M u l t i  V i e w p o i n t  L i n k i n g  

The pairwise disparity estimation allows to compute image to image correspon- 
dence between adjacent rectified image pairs, and independent depth estimates 
for each camera viewpoint. An optimal joint estimate will be achieved by fusing 
all independent estimates into a common 3D model. The fusion can be performed 
in an economical way through controlled correspondence linking as described in 
this contribution. The approach utilizes a flexible multi viewpoint scheme by 
combining the advantages of small baseline and wide baseline stereo. 

As small baseline stereo we define viewpoints where the baseline is much 
smaller than the observed average scene depth. This configuration is usually 
valid for image sequences were the images are taken as a spatial sequence from 
many slightly varying view points. The advantages (+) and disadvantages ( ) 
a r e  

+ easy correspondence estimation, since the views are similar, 
+ small regions of viewpoint related occlusions 4, 

small triangulation angle, hence small depth accuracy. 

The wide baseline stereo in contrast is used mostly with still ilnage pho- 
tographs of a scene where few images are taken from a very different viewpoint. 
Here the depth accuracy is better but correspondence and occlusion problems 
appear 

- difficult correspondence estimation, since the views are not similar, 
- large regions of viewpoint related occlusions, 
+ big triangulation angle, hence high depth accuracy. 

The multi viewpoint linking combines the virtues of both approaches. In ad- 
dition it will produce denser depth maps than either of the other techniques, 

4 As view point related occlusions we consider those parts of the object that are visible 
in one image only, due to object self-occlusion. 
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and allows additional features for depth and texture fusion. Advantages of multi 
viewpoint linking are 

�9 very dense depth maps for each viewpoint, 
�9 no viewpoint dependent occlusions, 
�9 high depth accuracy through viewpoint fusion, 
�9 texture enhancement through texture fusion. 

4.1 C o r r e s p o n d e n c e  L ink ing  A l g o r i t h m  

The correspondence linking is described in the following section. It concatenates 
corresponding image points over nmltiple viewpoints by correspondence tracking 
over adjacent image pairs. 

Consider an image sequence taken from i = [1, N] viewpoints with camera 
projection matrices calibrated as described in Sect. 2. Assume that the sequence 
is taken by a camera moving sideways while keeping the object in view. For 
any view point i let us consider the image triple [Ii-1, fi, Ii+l]. The image pairs 
(Ii-1,/~i) and (Ii, Ii+l) form two stereoscopic image pairs with correspondence 
estimates as described above. 

We can now create two chains of correspondence links for an image point xi, 
one up and one down the image index i. 

r - - 1  I Upwards linking: xi+x = (Hi+x) D(i,i+l)[Hixi ], 
1 - 1  Downwards linking: x i -x  = (Hi_x) D(i,i-1)[Hrxi]. 

H denotes the transformation for image rectification and D(Lk ) the corre- 
spondence between the rectified images. The linking process is repeated along 
the image sequence to create a chain of correspondences upwards and down- 
wards. Every correspondence link requires 2 mappings and 1 disparity lookup. 
Throughout  the sequence of N images, 2(N - 1) disparity maps are computed. 
The multi viewpoint linking is then performed efficiently via fast lookup func- 
tions on the pre-eomputed estimates. 

Occ lus ions  a n d  Vis ibi l i ty .  In a triangulation sensor with two viewpoints i 
and k two types of occlusion occur. If parts of the object are hidden in both 
viewpoints due to object self-occlusion, then we speak of object occlusions which 
cannot be resolved from this viewpoint. If a surface region is visible in viewpoint 
i but not in k, we speak of a shadow occlusion. The regions have a shadow- 
like appearance of undefined disparity values since the occlusions at view k cast 
a shadow on the object as seen from view i. Shadow occlusions are in fact 
detected by the uniqueness constraint discussed in Sect. 3. A solution to avoid 
shadow occlusions is to incorporate a symmetrical multi viewpoint matcher as 
proposed in this contribution. Points that are shadowed in the (right) view i + 1 
are normally visible in the (left) view i - 1 and vice versa. The exploitation of 
up-and down-links will resolve for the shadow occlusions. A helpful measure in 
this context is the visibility V that. defines for a pixel in view i the maxinmm 
nmnber of possible correspondences in the sequence. V = 1 is caused by a shadow 
occlusion, V > =  2 allows a depth estimate. 
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Fig. 3. Left: Depth fusion and uncertainty reduction from correspondence linking. 
Right: detection of correspondence outliers by depth interval testing. 

D e p t h  E s t i m a t i o n  a n d  O u t l i e r  D e t e c t i o n .  Care must be taken to exclude 
invalid disparity values or outliers from the chain. If an invalid disparity value is 
encountered, the chain is terminated immediately. 0utliers are detected by the 
statistics of the depth estimate computed from the correspondences. Inliers will 
update the depth estimate using a 1-D Kalman filter. 

Depth and Uncertainty. Consider a 3D surface point X that  is projected onto its 
corresponding image points xi = PtX,  Xk = PkX.  The inverse process holds for 
triangulating X from the corresponding point pair (xl, Xk). We can in fact exploit 
the calibrated camera geometry and express the 3D point X as a depth value d,: 
along the known line of sight Sxl that extends from the camera projection center 
through the image correspondence xl. Triangulation computes the depth as the 
length of Sxi between the camera projection center and the locus of minimum 
distance between the corresponding lines of sight. The triangulation is computed 
for each image point and stored in a depth map associated with the viewpoint. 

The depth for each reference image point xl is improved by the correspon- 
dence linking that  delivers two lists of image correspondences relative to the 
reference, one linking down from i --~ 1 and one linking up from i + N. For each 
valid corresponding point pair (xl ,xk) we can triangulate a consistent depth 
estimate d(xi, xk) along S• with ek representing the depth uncertainty. Fig- 
ure 3(left) visualizes the decreasing uncertainty interval during linking. While 
the disparity measurement resolution A D  in the image is kept constant (at 1 
pixel), the reprojected depth error ek decreases with the baseline. 

Outlier Detection and Inlier Fusion. As measurement noise we assume a con- 
taminated Gaussian distribution with a main peak within a small interval (of 1 
pixel) and a small percentage of outliers. Inlier noise is caused by the limited 
resolution of the disparity matcher. Outliers are undetected correspondence fail- 
ures and may be arbitrarily large. As threshold to detect the outliers we utilize 
the depth uncertainty interval ek. The detection of an outlier at k terminates 
the linking at k - 1. All depth values [di, di+l, ..., dk-1] are inlier depth values 
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that fall within the uncertainty interval around the mean depth estimate. They 
are fused by a simple 1-D kalman filter to obtain a mean depth estimate. 

Figure 3 (right) explains the outlier selection and link termination. The out- 
lier detection scheme is not optimal since it relies on the position of the outlier 
in the chain. Valid correspondences behind the outlier are not considered any 
more. It will, however, always be as good as a single estimate and ill general 
superior to it. In addition, since we process bidirectionally up- and down-link, 
we always have two correspondence chains to fuse which allows for one outlier 
per chain. 

4.2 T e x t u r e  E n h a n c e m e n t  

The correspondence linking builds a controlled chain of correspondences that 
can be used for texture enhancement as well. At each reference pixel one may 
collect a sorted list of image color values from the corresponding image positions. 
This allows to enhance the original texture in many ways by accessing the color 
statistics. Some features that are derived naturally from the linking algorithm 
a r e :  

1. H i g h l i g h t  a n d  r e f l e c t i on  remova l :  A median or robust mean of the corre- 
sponding texture values is computed to discard imaging artifacts like sensor 
noise, specular reflections and highlights [20]. 

2. S u p e r - r e s o l u t i o n  t e x t u r e :  The correspondence linking is not restricted 
to pixel-resolution, since each sub-pixel-position in the reference image can 
be used to start a correspondence chain. The correspondence values are 
obtained from the disparity map through interpolation. The object is viewed 
with a camera of limited pixel resolution but from many slightly displaced 
viewpoints. This can be exploited to create super-resolution texture by fusing 
all images on a finer resampling grid [13]. 

3. B e s t  v iew se l ec t i on  for  h ighes t  t e x t u r e  r e so lu t i o n :  For each surface 
region around a pixel the image which has the highest possible texture res- 
olution is selected, based on the object distance and viewing angle. The 
composite image takes the highest possible resolution from all images into 
account. 

A detailed discussion of texture fusion is out of the scope of this contribution 
but we will give some examples of it in the experiment section. 

5 3 D  S u r f a c e  M o d e l i n g  

The dense depth maps as computed by the correspondence linking need to be 
approximated by a 3D surface representation suitable for visualization. So far 
each object point was treated independently. To achieve spatial coherence and 
a connected surface, the depth map is spatially interpolated using a parametric 
surface model. We employ a bounded thin plate model with a second order spline 
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to smooth the surface and to interpolate small surface gaps in regions that could 
not be measured. This spatially smoothed surface is then approximated by a 
triangular wire frame to reduce geometric complexity and tailor the model for 
visualization [15]. Texture mapping of the texture onto the wire frame model 
greatly enhances the realism of the models which are stored in VRML file format 
for easy exchange with visualization systems. 

The mesh triangulation currently utilizes the reference view only to build 
the model. It can deal with shadow occlusions but not with true 3D object 
occlusions. In a next step a viewpoint independent mesh generation will be 
implemented to allow closure of the object surface. We will incorporate a surface 
registration scheme based on the Iterated Closest Point algorithm ICP [2] to fit 
surfaces from different view points. The surface parts that are overlapping are 
then retriangulated to allow for one consistent surface mesh [14]. 

Another problem to be tackled is the fusion of different projective frames 
into a global coordinate system. Often it is not possible to record a contiguous 
video stream of an extended object where all views are calibrated in the same 
projective frame. When moving around or inside of a building, for example, scene 
cuts are inevitable and the system will generate an independent calibration for 
each scene cut. Registration of the independent frames consists of 3D position 
and scale adaptation. We are developing an interactive 3D interface where the 
user can easily register those frames. 

6 Experiments 

In this section the performance of the algorithm is tested on the two outdoor 
sequences Castle and Fountain. 

6.1 C a s t l e  S e q u e n c e  

The Castle sequence consists of 22 images of 720x576 pixel resolution taken 
with a standard semi-professional camcorder that was moved freely in front of 
a building. Figure 4 shows results from camera tracking. Four of the images 
(left) and the estimated 3D-structure of the building with calibrated camera 
positions are displayed from a front view (right). The rectangular appearance of 
the building, the regular spacing of camera positions, and measurements on the 
reconstructed surface [23] confirm the metric qualities of the calibration. 

To judge the geometric and visual quality of the reconstruction, different 
perspective views of the model were computed and displayed in Fig. 5. In the 
shaded view (left), the geometric details like the window and door niches are 
seen. A close-up look from a position that a human observer would take reveals 
the high visual quality of the model (center). To demonstrate the texture fusion 
capabilities of the algorithm, the specular reflection in the upper right window 
was removed by a texture median filtering and a super-resolution texture with 
zoom factor of 4 was generated from the image sequence (right). The region 
shows the reference image (above) and the generated median super-resolution 
texture without reflection (below). 
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Fig. 4. Left: 4 of 22 images of the castle which were used for the reconstruction. Right: 
a view of the 3D model with feature points superimposed in black and the calibrated 
camera positions visualized as pyramids. 

P e r f o r m a n c e  E v a l u a t i o n  for  t he  Cas t l e  Sequence .  The above reconstruc- 
tions showed some qualitative results. The quantitative performance of corre- 
spondence linking can be tested in different ways. One measure already men- 
tioned is the visibility of an object point. In connection with correspondence 
linking, we have defined visibility V as the number of views linked to the refer- 
ence view. Another important feature of the algorithm is the density and accu- 
racy of the depth maps. To describe its improvement over the 2-view estimator, 
we define the fill rate F and the average relative depth error E as additional 
measures. 

Fig. 5. Left: shaded view. Center: close-up view. Right: 4x zoomed original region 
(above), generation of median-filtered super-resolution texture (below). 
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V i s i b i l i t y  V[views]: average number of views linked to the reference image. 
Fi l l  R a t e  F[%]: Number  of valid pixels 

Total number of pixels 
D e p t h  e r r o r  El%I: relative depth error ed for all valid pixels. 

The 2-view disparity est imator is a special case of the proposed linking al- 
gorithm, hence both can be compared on an equal basis. The 2-view est imator  
operates on the image pair (i, i +  1) only, while the multi view estimator operates 
on a sequence 1 < i < N with N > =  3. The above defined statistical measures 
were computed for different sequence lengths N. Figure 6 displays visibility and 
relative depth error for sequences from 2 to 15 images, chosen symmetrical ly 
around the reference image. The average visibility V shows that  for up to 5 im- 
ages nearly all views are utilized. For 15 images, at average 9 images are linked. 
The amount  of linking is reflected in the relative depth error that  drops from 
5% in the 2 view estimator to about 1.2% for 15 images. 

Linking two views is the minimum case that  allows triangulation. To increase 
the reliability of the estimates, a surface point should occur in more than two 
images. We can therefore impose a mininmm visibility V,~i, on a depth estimate.  
This will reject unreliable depth estimates effectively, but will also reduce the 
fill-rate of the depth map.  

The graphs in Fig. 6(center) show the dependency of the fill rate and depth 
error on minimum visibility for N = l l .  The fill rate drops from 92% to about  
70%, but at the same t ime the depth error is reduced to 0.5% due to outlier 
rejection. The depth map  and the relative error distribution over the depth map  

Fig. 6. Statistics of the castle sequence. Left: Influence of sequence length N on visibil- 
ity V and relative depth error E. Center: Influence of minimum visibifity V,,~, on fill 
rate F and depth error E for N = 11. Right: Depth map (above: dark=near, light=far) 
and error map (below: dark=large error, light=small error) for N = 11 and V;~in = 3. 
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is displayed in Fig. 6(right). The error distribution shows a periodic structure 
that  in fact reflects the quantization uncertainty of the disparity resolution when 
it switches from one disparity value to the next. 

6.2 F o u n t a i n  S e q u e n c e  

The Fountain sequence consists of 5 images of the back wall of a fountain at 
the archaeological site of Sagalassos in Turkey, taken with a digital camera with 
573x764 pixel resolution. It shows a concavity in which once a statue was situ- 
ated. Figure 7 shows from left to right images 1 and 3 of the sequence, the depth 
map  as computed with the 2-view estimator,  and the depth map  when using 
all 5 images. The white (undefined) regions in the 2-view depth map  are due 
to shadow occlusions which are almost completely removed in the 5-view depth 
map.  This is reflected in the fill rate that  increases from 89 to 96%. It  should 
be noted that  for this sequence a very large search range of 400 pixels was used, 
which is over 70% of the image width. Despite this large search range only few 
matching errors occurred. 

Fig. 7. Left: First and last image of sequence. Right: Depth maps from the 2-view and 
the 5-view estimator (from left to right) showing the very dense depth maps. 

The performance characteristics are displayed in the Table 1. The fill rate is 
high and the relative error is rather low because of a fairly wide baseline between 
views. This is reflected in the high geometric quality of depth the map  and the 
reconstruction. 

Table 1. Statistics of fountain sequence for visibility V, fill rate F and depth error E. 

N[view] W[views] F[%] E[%] 
2 2 89.8728 0.294403 
3 2.85478 96.7405 0.208367 
5 4.23782 96.4774 0.121955 
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The visual reconstruction quality for the fountain is displayed in Fig. 8. Even 
fine details like the relief carved into the stones are preserved. The side and top 
views of the overall model show the accurate and detailed structure due to 
the wide triangulation angle over the sequence, and the textured close-up view 
reveals a highly realistic sensation. 

Fig. 8. Above: shaded and textured front view of model, Below: shaded top view and 
close-up of the textured model. 
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7 Conclusion 

In this contribution we developed a correspondence linking scheme that com- 
putes dense and accurate depth maps based on the sequence linking of pairwise 
estimated disparity maps. The correspondence linking is the basic tool which 
allows to perform a variety of different operations on the image data.  Depth 
and texture fusion, outlier detection and texture enhancement are some of the 
proposed applications. 

The algorithm is embedded in a surface reconstruction system that  allows for 
fully automat ic  generation of textured 3D surface models from image sequences, 
acquired with uncalibrated hand-held cameras. The performance analysis showed 
that  very dense depth maps with fill rates of over 90% and a relative depth error 
of 0.1% can be measured with off-the-shelf cameras even in unrestricted outdoor 
environments such as an archaeological site. 
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