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Abstract  

We present a new function that operates on Fundamental matrices across a se- 
quence of views. The operation, we call "threading", connects two consecutive 
Fundamental matrices using the Trilinear tensor as the connecting thread. The 
threading operation guarantees that consecutive camera matrices are consistent 
with a unique 3D model, without ever recovering a 3D model. Applications in- 
clude recovery of camera ego-motion from a sequence of views, image stabilization 
(plane stabilization) across a sequence, and multi-view image-based rendering. 

1 I n t r o d u c t i o n  

Consider the problem of recovering the (uncalibrated) camera trajectory from 
an extended sequence of images. Since the introduction of multi-linear forms 
across three or more views (see Appendix) there have been several at tempts 
to put together a coherent algebraic framework that would produce a sequence 
of camera matrices that  are consistent with the same 3D (projective) world 
[25,4,23]. The consistency requirement arises from the simple fact that  from 
an algebraic standpoint a camera trajectory must be concatenated from pairs or 
triplet of images. Therefore, a sequence of independently computed Fundamental 
matrices or Trilinear tensors, maybe optimally consistent with the image data, 
but not necessarily consistent with a unique camera trajectory (see Figure 1). 
There are two basic approaches to the problem: 

1. Recover (incrementally or batch-wise) the most (statistically) optimal 3D 
structure from the image measurements across the extended sequence. Then, 
given the 3D and 2D correspondences recover the corresponding camera 
matrix. 

2. Recover a sequence of camera matrices whose homography matrices all cor- 
respond to the same reference plane. 

The first approach is intuitive and fairly amenable to recursive estimation. Exam- 
ple of recent implementations of this approach for uncalibrated camera include 
the incremental method of [4] who recover Fundamental  matrices or Trilinear 
tensors to ensure the quality of matching points, and then estimate the camera 
matrices from the 3D structure which is built-up incrementally. Likewise, [23] 
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Example in 4 Images 

Fig. 1. One can compute two tensors T123, T234 from the four images of the 3D scene. 
However, each tensor can give rise to a different reconstruction of the 3D structure 
due to noise or errors in measurments, and therefor the camera trajectory between 
images 2 and 3, as captured by the fundamental matrix F2a, is inconsistent between 
the two tensors. The "threading" operator described in the text guarantees a consistent 
recovery of the camera trajectory. 

recovers independently the Fundamental matrices of every consecutive pair of 
images, and relies on a 3D-structure to put them all in a single measurement 
matrix that is used to recover the camera parameters. 

The second approach is more challenging since it requires a deeper investiga- 
tion into the connections between camera matrices. If a simple connection exists 
then there is the advantage of avoiding 3D structure, as an intermediate variable 
in the process. The only at tempt we know of is of [25] who seeks a sequence of 
camera matrices in which the homography matrices all correspond to the plane 
at infinity. However, the method resorts to a large non-linear optimization prob- 
lem, where one alternatively recovers 3D structure from motion and motion from 
structure (thus not avoiding the 3D structure as an intermediate variable). 

In this paper we introduce a new result on the connection between Funda- 
mental matrices and Trilinear tensors. As a byproduct, this result provide a prin- 
cipaled method for concatenating camera matrices along an extended sequence 
without resorting to 3D structure. The connection is based on a representation 
of the tensor as a function of the elements of two consecutive Fundamental ma- 
trices and a homography matrix of some arbitrary reference plane (Eqn. 1). An 
interesting byproduct of this representation is that  we are guaranteed to recover 
(linearly) two consistent camera matrices. By repeated application of the basic 
result, we call a threading operation, on a sliding window of triplets of views, we 
obtain a consistent sequence of camera matrices (and the Fundamental matrix 
and Trilinear tensors as well). The immediate byproducts (applications) of the 
threading operation include: 
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- E g o - M o t i o n  
The algorithm recovers a consistent camera trajectory along the image se- 
quence without recovering 3D structure. 

- I m a g e  s t a b i l i z a t i o n  
The algorithm recovers a sequence of camera matrices that  are due to the 
same plane. By selecting a reference plane in the first pair of images, we 
ensure that  the same plane is stabilized throughout the sequence. 

- M u l t i - v i e w  I m a g e - B a s e d  R e n d e r i n g  

The algorithm puts all the images in a single projective coordinate framework 
and therefor all the images can contribute to the synthesis of a novel image, 
using a technique such as [3]. 

The paper is organized as follows. Section 2 provides the general notations 
and conventions used in the paper. The main results are stated and proven in 
Section 3. The outline of the algorithm is given in Section 4 and results are shown 
in Section 5. The Appendix contains a brief overview of the necessary elements 
assumed including the Fundamental  matr ix,  Plane + Paral lax representation, 
the Trilinear tensor, and the tensorial form of the Fundamental  matr ix.  

2 N o t a t i o n s  

A point x in the 3D projective space p3  is projected onto the point p in the 2D 
projective space p2 by a 3 • 4 camera projection matr ix  A = [A, v/] that  satisfies 
p ~- A x ,  where ~ represents equality up to scale. The left 3 • 3 minor of A, 
denoted by A, stands for a 2D projective t ransformation of some arbi t rary plane 
(the reference plane) and the fourth column of A, denoted by v/, stands for the 
epipole (the projection of the center of camera 1 on the image plane of camera 
2). In a calibrated setting the 2D projective t ransformation is the rotational 
component  of camera motion (the reference plane is at infinity) and the epipole 
is the translational component  of camera motion. Since only relative camera 
positioning can be recovered from image measurements,  the camera mat r ix  of 
the first camera position in a sequence of positions can be represented by [I; 0]. 

We will occasionally use tensorial notations as described next. We use the 
covariant-contravariant summat ion  convention: a point is an object whose co- 
ordinates are specified with superscripts, i.e., pi = (pl,p~, ...). These are called 
contravariant vectors. An element in the dual space (representing hyper-planes 
- -  lines in 7)2), is called a covariant vector and is represented by subscripts, 
i.e., sj = (sl ,  s2, ....). Indices repeated in covariant and contravariant forms are 
summed over, i.e., pisi = pls  1 +p~s2 + ... +p~s~. This is known as a contraction. 
An outer-product of two l-valence tensors (vectors), aiM, is a 2-valence tensor 
(matrix)  ~ whose i , j  entries are aib j - -  note that  in mat r ix  form C = ba T. 
Further details on the necessary background can be found in the Appendix. 
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Fig. 2. The threading step is plugged into the trilinearities to obtain the threading 
equation. 

3 Threading Fundamental Matrices Using Trilinear 
Wensors 

Given an extended sequence of images we wish to recover a unique camera tra- 
jectory which is the most  consistent with the image measurements.  We wish to 
do so in a principaled manner,  i.e., see first what can be done at the algebraic 
level. On that  level, a necessary condition for t rajectory consistency is that  the 
recovered camera matrices M1 refer to the same common reference plane (which 
could be virtual), see Appendix. The two theorems below are the essence of this 
paper  and include: 

- Providing an equation for representing the Trilinear tensor as a function 
of the Fundamental  matr ix  (represented in its trivalent tensorial form), the 
reference plane homography between views 1 and 2, and the camera motion 
between images 2 and 3. 

- Given the equation discussed above, the Fundamental  ma t r ix  between views 
1 and 2, and at least 6 matching points across images 1,2,3, one can linearly 
recover the camera motion between views 2 and 3. 

- The recovered camera motion between views 2 and 3, is guaranteed to be 
consistent (i.e., the corresponding homography mat r ix  is associated with the 
same reference plane). 

By repeatedly applying these results on a sliding window of triplets of views 
we obtain a camera trajectory which is consistent with a single 3D reconstruction 
of the world - -  because all the homography matrices correspond to a single 
reference plane (see Figure 2). 
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T h e o r e m  1. The following equation holds: 

~ j k  = e ~ 7 [ -  v ' ' ' kd  (1) 

where Ti jk is the tensor of  views 1,2,3, the matrix  A,  whose elements are a j ,  is 

a homography from image 1 to 2 via some arbitrary plane 7r, ~ j t  is the 2-view 
tensor of  views 1,2, and C = [C; v m] is the camera motion from image 2 to 3 
where c k is a homography matrix  from image 2 to 3 via the (same) plane re. 

Proof :  We know that 

Ti jk vlJb k v~k J = -- a i 

where the parameters [A, v'] = [a~, v'J] and [B, v"] = [b/k, v ''k] are the camera 
matrices from 3D to views 2,3 respectively: 

)~p' = Ap  + pv' 

p" ~- Bp  + pv" 

where p, if, p" are the matching points in views 1,2,3 respectively, and A, B are 
homography matrices due to the same (arbitrary) reference plane rr (uniqueness 
issue discussed in [14]). Clearly, 

P,  ,, B A - l v ' )  p"  _~ B A - l p  ' + "-s - 

Therefore, the camera motion from view 2 to 3 is represented by, 

[C; v'"] = [BA-1;  v" - B A - l v  '] 

and, 
b~ k l : c l a i 

v ' 'k = c~v"  + v ' ' 'k.  (2)  

By substituting the expressions above instead of b k and v ''k in T j  k, we obtain: 

_ m k ~ _ j  Ti jk = v'J(cka~) -- (ckv A + v )u i 
= c l [ (v ,Ja~__, l_ j ' ,_  .,,,k_J v - l j  ~ ~'i (3)  

= e Zi' - v ' " k d ,  

where ~cjl is the trivalent tensor form of the Fundamental matrix, i.e., ~ j t  = 
esjlFsi where F~i is the Fundamental matrix and e l j k  is the cross-product tensor 
(see Appendix). Finally, because of the group property of projective transforma- 
tions, since A, B are transformations due to some plane rr, then so is C = B A  -1.  

0 
T h e o r e m  2. Given the Fundamental  matrix  of  views 1,2 and the tensor Ti jk, 
then the Fundamental  matrix  between views 2,3 can be recovered linearly from 6 
matching points across the three views. 
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Proof :  The basic tensorial contraction, a trilinearity, is 

pi sjrk ~i jk -~- O, 

where s and r are lines coincident with p~ and p ' ,  respectively (see Appendix). 
Thus, the tensor and two views uniquely determine the third view (the repro- 
jection equation) as follows: 

pisjT~iJk ~ p.k, 

where the choice of the line s is immaterial as long as it is coincident with p/. 
By substitution we obtain, 

p % j ( e ~ 7 [  .,,,k~5~ ~ p,,k - u ~iJ : (4) 

which provides two linear equations for the unknowns c k and v'". We next show 
that different choices of the line s do not produce new (linearly independent) 
equations, and thus 6 matching points are required for a linear system for the 
unknowns. 

Just as the Trilinear tensor T/jk satisfies the reprojection equation, so does 
the 2-view tensor 9cJl: 

pi sj~Fjl ,~ pa, 

where the choice of the orientation of the line sj is immaterial (see Appendix). 
Thus, Eqn. 4 reduces to (in matrix form): 

p" ~- Cp' + p(s)v'", 

where p(s) is a scalar (depends also on s) that  determines the ratio between p" 
and Cp' and v", thus is unique (invariant to the choice of s). [~ 

It is worthwhile to note that the homography matrix A that  appears in 
Eqn. 3 can be generated using the following two observations. First, the space of 
all homography matrices between two fixed views lives in a 4-dimensional space 
[17], thus we can span A from 4 primitive homography matrices. Second, three 
of the primitive homography matrices can be generated from the "homography 
contraction" property of the tensors (see Appendix), i.e., 6k.TJi k is a homography 
matrix indexed by 6k, thus by setting 6k to be (1,0, 0), (0, 1, 0) and (0, 0, 1) we 
obtain three primitive homography matrices, the fourth homography matrix is 
composed of the elements of the epipole. In matrix form we have: [000] [o0!] 

00 1 F 0 F ; F | v ~ 0  (5) 
0 1 0  10 0 kv~O 

where F is the Fundamental matrix and v ~ is the epipole statisfying I P T v  ! = 

0. The left three homography matrices correspond to planes coincident with 
the center of projection of the second camera (thus are rank 2 matrices). The 
fourth primitive homography corresponds to a plane coincident with the center 
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of projection of the first camera (thus is rank 1), therefore is not linearly spanned 
by the three homography contractions of the 2-view tensor. Taken together, any 
linear combination (that includes the fourth primitive homography matrix) of 
the above four matrices will provide an admissible homography matr ix  A that 
can be used in Eqn. 3. 

4 T h e  O n l i n e  a l g o r i t h m  

The online algorithm threads together the Fundamental matrices of consecutive 
images, by applying the threading operation on a sliding window of triplets of 
images. The algorithm starts with computing the Fundamental  matr ix  of the 
first pair of images and recovering an initial homography matrix. The initial 
homography matr ix can be recovered either from the primitive homography ma- 
trices constructed from the Fundamental matrix, or by using any method for 
the recovery of a homography matr ix by plane stabilization [1 1]. The rest of the 
images are added one by one by applying the threading operation on a sliding 
window of triplets of images. Figure 3 gives a block diagram of the proposed 
algorithm. 

Fig. 3. The algorithm starts with recovering the Fundamental matrix F1 of the first 
pair of images in the sequence. The Fundamental matrix is then used to construct 
the initial homography matrix A1. For image n + 2, the current Fundamental matrix 
F~ and homography An are used to recover the camera parameters of the new image 

- [C, vm], using the threading operation. This parameters are then used to construct 
F,~+I = [v'"]xC and A~+I = C. 

In detail, the algorithm is as follows: 

1. Recover the Fundamental matrix/71 of the first pair of images in the se- 
quence. 
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2. Recover the epipole v I from the null-space of F1 T. 
3. Construct the initial homography A1 as a linear combination of the four 

homography matrices in Eqn. 5. For the sake of numerical stabili ty we wish 
to find a linear combination that  will approximate  the form of a rotat ion 
matr ix.  In particular we use the method described in [13] which is suitable 
for small-angle rotations. 

For image n + 2: 

1. Apply the threading operation for recovering the camera mat r ix  C = [C, v 'q .  
The input to the operation is 6 point matches across three images, the Fun- 
damental  matr ix  F,~ and homography matr ix  A,~, using Equation 4. 

2. The new Fundamental  matr ix  F .+ I  = [v"]xC and homography A~+I = C 
are the parameters  for the recovery of the camera mat r ix  of the next image. 

5 E x p e r i m e n t s  

Experiments were conducted on synthetic data  and several different real im- 
ages with different cameras and different motion parameters .  No information 
about  camera internal parameters  or motion is known or used. The point cor- 
respondence, for the real images, were extracted automatical ly  by our system. 
In a nutshell, the system computes a bi-directional optical flow and searches for 
points with high gradient that  have a matching optical flow in both direction. 
Typically we obtain around 200 matching points. 

5.1 Tes t  on  S y n t h e t i c  D a t a  

We measured the error of the threading operation along an image sequence. The 
3D world consisted of a set of 50 points that  were projected on a sequence of 
21 images, using randomly generated camera matrices. All image measurements  
were normalized to the range [0..1] and white noise (of up to 2 pixels in a 512 x 512 
pixels image) was added. We recovered the Fundamental  mat r ix  of the first pair 
of images, using the 8-point algorithm, and used the fourth homography matr ix  
in Equation 5 as the initial homography matrix.  The rest of the camera matrices 
were recovered according to the algorithm described in Section 4 and we denote 
the recovered epipoles by eT. For comparison, we computed the Fundamental  
mat r ix  from every consecutive pair of images and recovered the epipole from it 
and denote it by eF. Figure 4 shows the ratio d ~--(Y-r2 where d(.) measures the d(~F)' 
distance, in parameter  space, between the recovered epipole and correct epipole. 
The test was repeated for 30 times and the median of the errors, for white noise 
of 2 pixels, is shown. As can be seen, the error rate of the threading operation 
is almost identical to that  achieved by the Fundamental  matr ix,  and does not 
degrade with the number of images. 
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Fig.4.  The quality of the recovered camera matrices on a sequence of 21 synthetic 
images of size 512 x 512 with added white noise of 2 pixels. The graph shows the 
ratio between the error of the threading operation and the error of the Fundamental 
matrix of every consecutive pair of images. The error term is defined as the distance, in 
parameter space, between the recovered epipole and the ground truth epipole. A value 
smaller than 1 means the threading operation performed better than the Fundamental 
matrix. Note that the threading operation does not accumulate errors and remains 
close to the error rate obtained when using the Fundamental matrix. 

5 . 2  R e a l  D a t a  

Tests on two real sequences were conducted. The first test presents a possible use 
of our method for the purpose of multi-camera image-based rendering mechanism 
and the second test demonstrates the ability to stabilize a plane. 

Tes t  1 A sequence of 28 images of size 320 • 240 pixels was used with the camera 
moving in a semi-circle motion forward and to the right. The initial homography 
matrix was recovered with the method described in [13,2]. The camera matrices 
of images 2 through 28 were recovered with the threading operation and used to 
construct two tensors - < 1, 2, 28 >, < 26, 27, 28 >. Since the threading operation 
prodcues the camera matrix of image n + 2 in the coordinate system of image 
n + 1 we had to concatenate the camera matrices to bring them all into the a 
single coordinate system. The image pairs (1, 2) and (26, 27), together with their 
respective tensors, were used to reproject image 28. The results are shown in 
Figure 5. 

Tes t  2 A sequence of 7 images of size 384 x 288 pixels was used, with the camera 
moving mainly to the left. The images contain a collection of toy animals placed 
on a table covered with a picture of a fruit salad. We manually selected the 
plane of the table as our initial homography matrix and applied the threading 
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Fig .  5. Accumulating the camera matrices along a sequence of 28 images to construct 
the tensors < 1, 2, 28 >, < 26, 27, 28 >. The two tensors are then used to reproject 
image 28. (a),(b) show images 1 and 2, respectively and (d),(e) show images 26 and 27, 
respectively. (c),(f) show how image 28 was reprojected from the two pairs, respectively, 
using the reconstructed tensors. (g) is the original image 28, shown here for comparison. 
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operation to recover the camera matrices. From Theorem 1, the homography 
mat r ix  between images 6 and 7 should be due to the same plane defined in 
images 1 and 2. To verify this, we marked the plane in image 6 by comparing the 
optical flow between images 6 and 7 with the recovered homography matrix.  All 
the pixels with optical flow not equal to the homography mat r ix  are considered 
as coming from outside the reference plane and are marked with black. Note that  
the threading operation does not need the plane to be present in the sequence 
and that  the plane is used here only for the purpose of verifying the consistency 
of the recovered camera matrices. Figure 6 shows the results of this test. 

Fig. 6. Stabilizing the plane in the first image over a sequence of 7 images. (a),(c) are 
images 1 and 6 in the sequence. (b), (d) are the same images with the pixels outside 
the plane marked with black pixels. 

6 C o n c l u s i o n  

We have presented a new result on the connection between Fundamental  matrices 
and Trilinear tensors. This result is used to thread Fundamental  matrices of 
consecutive images into a consistent camera trajectory. The  threading operation 
is applied on a sliding window of triplets of images to construct a consistent 
camera trajectory along an extended sequence of (unealibrated) images, without 
recovering 3D structure. Immedia te  application of the threading operation are: 
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- E g o - M o t i o n  

The  a l g o r i t h m  recovers a consis tent  c a m e r a  t r a j e c t o r y  a long the  image  se- 
quence wi thou t  recovering 3D s t ruc ture .  

- I m a g e  s t a b i l i z a t i o n  

The  a l g o r i t h m  recovers a sequence of c a m e r a  ma t r i ce s  t h a t  are due to  the  
same  plane.  By select ing a reference p lane  in the  first pa i r  of  images ,  we 
ensure t h a t  the  same  p lane  is s tab i l ized  t h r o u g h o u t  the  sequence.  

- M u l t i - v i e w  I m a g e - B a s e d  R e n d e r i n g  

The  a l g o r i t h m  pu t s  all  the  images  in a single p ro jec t ive  coord ina t e  f r amework  
and  therefor  all the  images  can con t r ibu te  to the  synthes is  of  a novel image ,  
using a technique such as [3]. 
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A Background 

The background material  of this paper  includes (i) the Fundamental  matrix,  (ii) the 
"plane + parallax" representation, (iii) the Trilinear tensor and its contraction prop- 
erties, and (iv) the reduction of the Trilinear tensor into the 2-view tensor whose 
components include the elements of the Fundamental  matrix. 

A . 1  T h e  F u n d a m e n t a l  M a t r i x  o f  T w o  V i e w s  

Two views p = [I; 0]x and pt __ A x  are known to produce a bilinear matching constraint 
whose coefficients are arranged in a 3 • 3 matrix F known as the "Essential matrix" of 
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[12] described originally in an Euclidean setting, or the "Fundamenta l  mat r ix"  of [5] 
described in the set t ing of Project ive  Geometry  (uncal ibrated cameras):  

F = [v ' ] •  (6) 

where A = [A; v'] (a~ are the elements of A - the left 3 x 3 minor  of A,  and v'  is the 
four th  column, the epipole, of A) .  [v ~] x denotes the skew-symmetr ic  mat r ix  of v p. i.e., 
the  product  with some vector u, [v~]• produces the cross product  be tween v ~ and 
u, v ~ x u. The  minor  A is a 2D project ive t ransformat ion  f rom the first view onto the 
second via some arbitrary plane. In an affine set t ing the plane is at infinity, and in an 
Eucl idean set t ing it is the rota t ional  component  of camera  motion.  The  epipole v ~ is 
the project ion of the camera  center  of the first camera  onto the second view, and in an 
Eucl idean set t ing it is the translat ional  component  of camera  motion.  

The  Fundamenta l  mat r ix  satisfies the constraint  p~XFp = 0 for all pairs of matching 
points p, p' in views 1 and 2, respectively. This  bilinear form in image coordinates  arises 
from the fact tha t  the points v', Ap and p' are collinear, thus p'r(v '  X Ap) = 0. The  
mat r ix  F can be recovered linearly from 8 matching  points, and F r v  ~ = O. 

A.2 P l a n e  -t- Para l lax  R e p r e s e n t a t i o n  

The  claim tha t  recovering a consistent camera  t ra jec tory  is equivalent to recovering 
camera  matr ices  that  are all due to the same reference plane relies on the Relative 
A ffine Structure representation.  

The  collinearity of v ~, Ap and p', where A is the homography  mat r ix  due to some 
reference plane 7r, can be used to describe p~ as follows: 

p' ~ dp + p~' (7) 

The coefficient p depends on the point p and the posit ion of the plane 7r, is invariant 
to the choice of the second camera  posit ion (see Figure 7). Thus,  by fixing the same 
plane along an image sequence we obtain the same relative affine s t ructure  - p for all 
the images. This  is analogous to recovering the same 3D st ructure  from all the images. 
Fur ther  details can be found in [18]. 

A . 3  T h e  T r i l i n e a r  T e n s o r  o f  T h r e e  V i e w s  

Matching image points across three views will be denoted by p, pP, p ' ;  the homogeneous 
coordinates will be referred to as p i  plj, pllk, or al ternat ively as non-homogeneous image 
coordinates (x ,y) ,  (x' ,  y ') ,  (x",  y")  - -  hence, p'  = (x, y, 1), etc. 

Three  views, p = [/; 0]~e,p ~ ~ A x  andp" -~ B~e, are known to produce four tril inear 
forms whose coefficients are arranged in a tensor representing a bil inear funct ion of the 
camera  matr ices  A ,  B: 

~,k = v'~b~ - v"k4 (s) 

where A = [a~, v 'j] (a j is the 3 x 3 left minor and v '  is the four th  column of A)  and 
B = [b), v'k]. The  tensor  acts on a triplet of matching  points  in the following way: 

i ~rp,-i-:jk p s i  k,~ = 0  (9) 

t t p where sj are any two lines (s} and s 2)~ intersecting at p~, and r k are any two lines 
intersecting p ' .  Since the free indices are p, p each in the range 1,2, we have 4 tri l inear 
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Fig .  7. The Relative Affine Structure p (the bold line) measures how much does the 
point  p deviates from the plane 7r. p is invariant  to the posit ion of the second cam- 
era. Stabilizing the s a m e  plane along a sequence of images is therefore analogous to 
recovering the s a m e  3D structure from all the images. 

equations (unique up to linear combinations).  If we choose the s t a n d a r d  form where s ~' 
(and r p) represent vertical and  horizontal scan lines, i.e., 

s j  = - -1  y '  

then the four tril inear forms, referred to as t r i l inear i t ies[14] ,  have the following explicit 
form: 

x H T 1 3 p  i --  x " x " ~ i 3 3 p  i 2v x ' T 3 1 p  i --  ~ i l l p  i : 0, 

y, ,T13p,  _ ,,x,<3~p~ + x , < ~ p ,  _ < l : p ,  = o, 

x " < ~ p  ' - x"~'<33p ' + y '<3Ip'  - < ~ p '  = o, 

y"T~:3p  ~ - y " y ' T i 3 3 p  i + y 'T ,32p ~ - Ti22p i = O. 

These constraints  were first derived in [14]; the tensorial derivation leading to Eqns. 8 
and  9 was first derived in [16]. The Trilinear tensor has been well known in disguise in 
the context of Euclidean line correspondences and was not  identified at the t ime as a 
tensor bu t  as a collection of three matrices (a part icular  contract ion of the tensor known 
as correlation contractions) [20, 21, 26]. The link between the two and  the generalization 
to projective space was identified later in [7, 9]. Addit ional  work in this area can be 
found in [19, 6, 24, 10, 17, 1, 3, 22]. 
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Image 1 

Image 3 

! i 
!P 

J 

/ %  

Fig .  8. Each of the four trilinear equations describes a matching between a point p in 
passing through the matching point p~ in the second view the first view, some line sj 

and some line r~ passing through the matching point p" in the third view. In space, 
this constraint is a meeting between a ray and two planes. 

A . 4  C o n t r a c t i o n  P r o p e r t i e s  o f  t h e  T e n s o r  

~' coincident with p~ and the lines r~ The lines sj P coincident with p" for a basis for all 
lines coincident with p '  and p ' ,  thus we readily have the "point+line+line" property: 

pisjrk~i 3k ----- 0 (10) 

where s i is some line through p~ and rk is some line through p". Similarly, since sjrkT/3~ 
is a line (coincident with p), then a triplet of matching lines provides two constraints: 

sjrk ~i 3k -~ qi (11) 

for all lines q, s, r coincident with the points p,p ' ,p"  (in particular,  matching lines). 
The third point-line property is the "reprojeetion" constraint: 

pisj~i~k ~_ p,,k (12) 

which provides a direct means for "transfer" of image measurements from views 1,2 
onto view 3 (prediction of p" from views 1,2). 

The tensor has certain contraction properties and can be sliced in three princi- 
pled ways into matrices with distinct geometric properties divided into two families: 
Homography Contractions and Correlation Contractions. We will briefly introduce the 
Homography contractions described originally in [19] - -  further details on that  and on 
Correlation contractions can be found in [15]. 

Consider the matr ix arising from the contraction, 

5kT ~k (13) 

which is a 3 • 3 matrix, we denote by E, obtained by the linear combination E = 
51T~ j l  +(f2Ti 32 +(fsT~ 33 (which is what is meant by a contraction), and 5k is an arbitrary 
covariant vector. The matrix E has a general meaning introduced in [19]: 
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P r o p o s i t i o n  1 ( H o m o g r a p h y  C o n t r a c t i o n s ) .  The contraction (~k Ti ;k for some ar- 
bitrary 5k is a homography matrix from image one onto image two determined by the 
plane containing the third camera center C" and the line (fk in the third image plane. 
Generally, the rank of E is 3. Likewise, the contraction ~jTi ~k is a homography matrix 
from image one onto image three. 

For proof see [19]. Clearly, since (f is spanned by three vectors, we can generate up to at 
most three distinct homography matrices by contractions of the tensor. We define the 
Standard Homography Slicing as the homography contractions associated by selecting 

be (1, 0, 0) or (0, 1, 0) or (0, 0, 1), thus the three s tandard homography slices between 
image one and two are T/jl, T/~2 and T/~3, and we denote them by El ,  E2, E3 respec- 
tively, and likewise the three s tandard homography slices between image one and three 
are T/tk, 7~/k and T/3k, and we denote them by W1, W2, l/Va respectively. 

A . 5  T h e  2 - v i e w  T e n s o r  

We return to Equation 8 and consider the case where the third image coincide with the 
second. The camera matrices for both images are A = [A; v'] and this special tensor 
can be writ ten as: 

f~k = v"a~ _v,k a~ (14) 
which is composed of the elements of the Fundamental  matrix, as the following lemma 
shows. 

L e m m a  1. The two-view-tensor F[ k is composed of the elements of the Fundamental 
matrix: 

. ~ k  : s  i 

where Eli is the Fundamental matrix and e ~jk is the cross-product tensor. 

Proof: We consider Equation 8 with 3v[ k = elJkFu to derive the following equalities: 

p i s j r k . ~  k : 
p i s j r k ( s  f l i  ) -~ 

Pi (sjrke ) Fu = 0 

pit 

[l 
The two-view-tensor is an admissible tensor that  embodies the Fundamental  matrix 

in a three-image-framework. Algorithm that  works with the Trilinear tensor of three 
views can work with this tensor as well. In particular, the point-line contractions and 
the Homography contractions hold, for example: 

i j~y~k ,.~ Jk p s  = p  

which takes p and a line s coincident with p '  and produces p' .  The contraction (fk.T:~ k is 
a homography contraction, i.e., produces a homography matr ix from view 1 onto view 
2 given by the plane coincident with the center of projection of camera 2 and the line 
in view 2. Similarly to the 3-view tensor, the Standard Homography Slices correspond 
to setting (f to (1, 0, 0) or (0, 1, 0) or (0, O, 1). Further details can be found in [2]. 


