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Abs t r ac t .  In this paper we present an integrated approach that solves 
the structure and motion problem for aj~ine cameras. Given images of 
corresponding points, lines and conics in any number of views, a recon- 
struction of the scene structure and the camera motion is calculated, up 
to an aj~ine transformation. Starting with three views, two novel concepts 
are introduced. The first one is a quasi-tensor consisting of 20 compo- 
nents and the second one is another quasi-tensor consisting of 12 compo- 
nents. These tensors describe the viewing geometry for three views taken 
by an affine camera. It is shown how correspondences of points, lines and 
conics can be used to constrain the tensor components. A set of affine 
camera matrices compatible with the quasi-tensors can easily be calcu- 
fated from the tensor components. The resulting camera matrices serve 
as an initial guess in a factorisation method, using points, lines and co- 
nies concurrently, generalizing the well-known factorisation method by 
Tomasi-Kanadc. Finally, examples are given that illustrate the developed 
methods on both simulated and real data. 

1 I n t r o d u c t i o n  

One of the main problems in computer  vision is to recover the scene structure 
and the camera motion from a set of images. In the last few years there has been 
an intense research on this subject, especially concentrated on point features. 
Recently, at tention has also turned to the use of other features such as lines, 
conics, general curves or even silhouettes of surfaces, see [11, 10, 1, 7]. 

For points, the viewing geometry can be estimated linearly in two, three and 
four images, see [2, 5, 19]. For more images, a major  breakthrough was made in 
[17] where a factorisation method was developed in the case of an orthographic 
camera.  This has later been generalized to the projective camera,  cf. [16, 15, 6]. 

The next natural  step is to use line correspondences. Linear algorithms exist 
for the case of three images obtained by a projective camera,  see [20, 4]. In the 
lat ter  algorithm, it is possible to combine points and lines in order to est imate 
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the viewing geometry. With the projective camera at least 13 line correspon- 
dences are needed to estimate the trifocal tensor linearly. However, with the 
affine camera it is possible to recover the viewing geometry from a minimum of 
seven line correspondences in three views, cf. [12]. 

In the case of conics, the situation is more complicated. In [11] a conic in 
space was reconstructed from two views with known epipolar geometry. A further 
step was taken in [8], where conic correspondences in two images were used to 
est imate the epipolar geometry, but  the methods rely on non-linear algorithms 
tha t  require initialisations. 

In this paper  we present an integrated approach for s tructure and motion 
from corresponding points, lines and conics. From any number  of views with any 
number  of image features, we show how to recover the scene structure and the 
camera  motion with an affine camera. First, we derive and analyse two diffe- 
rent parametr isat ions describing the viewing geometry for three cameras. The 
components of these parametrisat ions are combinations of different tensors and 
therefore called quasi-tensors. Specializing the projective trifocal tensor directly 
to the affine case leads to a larger number of parameters ,  cf. [18]. The correspon- 
ding image features impose constraints on the coefficients of the quasi-tensor, 
making it possible to estimate it when a sufficient number  of correspondences 
is available. When a quasi-tensor is known the camera matrices for these three 
views are easily determined up to an unknown affine transformation.  Then, a 
factorisation algorithm is presented that  uses all points, lines and conics in all 
images concurrently to est imate structure and motion. The reconstruction can 
optionally be refined with bundle adjustment.  

The motivation for using affine cameras instead of projective ones is many- 
fold. Firstly, in most practical applications, the affine camera model is a good 
approximation to the projective one. In addition, an affine reconstruction of 
the scene is obtained, whilst in the projective case only projective structure is 
recovered. Secondly, algorithms using the full projective model are inherently 
unstable in situations where the depth of the scene is small compared to the 
viewing distance. In such situations, it is even advisable to use the affine model to 
get more robust  results. Thirdly, there is a lack of satisfactory algorithms for non- 
point features for projective cameras. Another advantage is tha t  the minimum 
number  of corresponding image features required is substantially smaller. 

2 T h e  A f f i n e  C a m e r a  

In this section we give a brief review of the affine camera model and describe how 
points and lines are projected onto the image. For a more thorough t reatment ,  
see [14] for points and [12] for lines. Then, we analyse how quadrics in the scene 
are projected to conics in the image. 

The project ive/perspect ive camera is modeled by 
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where P denotes the s tandard 3 • 4 camera matr ix  and ), a scale factor. Here 
X = [ X  Y Z] T and x = [xy]  T denote point coordinates in the 3D scene and in 
the image respectively. 

The affine camera model, first introduced by Mundy and Zisserman in [9], 
has the same form as in (1), but  the camera matr ix  is restricted to 

[Pll P12 P13 P141 
P = [/)21 P22 P23 P24[ (2) 

i v  0 0 P34J 

and the homogeneous scale factors )~ are the same for all points. I t  is an approx- 
imation of the projective camera and it generalizes the orthographic,  the weak 
perspective and the para-perspective camera models. The affine camera has eight 
degrees of freedom, since (2) is only defined up to a scalar factor, and it can be 
seen as a projective camera with its optical center on the plane at infinity. 

Rewriting (1) with the afflne camera matr ix  (2) results in 

x = AX + b , (3) 

where 
n z 1_~ [Pll P12 P131 and b =  l-L- [P141 

P34 [P21 P22 P23J P34 [P24J 

By using relative coordinates with respect to some reference point Xo in the 
object and to the point Xo = AXo + b in the image, (3) simplifies to 

A x  = A A X  , (4) 

where A x  = x - xo and A X  = X - Xo. Normally, the reference point is chosen 
as the centroid of the set of points. This is possible since the centroid of the 3D 
points projects onto the centroid of the image points. 

A line in the scene through a point X with direction D can be writ ten 

L = X + # D ,  #E]~. 

With the affine camera,  this line is projected to the image line 1 according to 

I = A L + b - - A ( X + t t D ) + b = A X + # A D + b = x + t t A D  , (5) 

where x = AX + b. From (5), it follows that  the direction d of the image line is 
obtained as 

) , d = A D ,  A e ] ~  . (6) 

In [12], it was noted that  this equation is nothing but a projective t ransformation 
from p2 to p1 if the directions are regarded as points in 172 and p1, respectively. 
Notice tha t  the only difference between the projection of points in (4) and the 
projection of directions of lines in (6) is the scale factor A present in (6), but  
not in (4). Thus, with known scale factor A, a direction can be t reated as an 
ordinary point. This fact will be used later on in the factorisation algorithm. 
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A general conic curve in the plane can be represented by its dual form, the 
conic envelope, 

uTlu = 0 , ( 7 )  

where 1 denotes a 3 • 3 symmetric matrix and u = [uv 1] T denotes extended 
dual coordinates in the image plane. In the same way, a general quadric surface 
in the scene can be represented by its dual form, the quadric envelope, 

UTLU = 0 , (8) 

where L denotes a 4•  symmetric matrix and U = [ U V W 1 ]T denotes extended 
dual coordinates in the 3D space. For more details, see [13]. 

The image, under a perspective projection, of a quadrie L is a conic l. This 
relation is expressed by 

Al = PLP T , (9) 

where P is the camera matrix and A a scale factor. Introducing 

[1112141 [L1L2L4 L7 1 
Lu L3 L5 Ls (10) 

1 = 12 13 15 and L = L4 L5 L6 L9 
14 15 l~ LT Ls L9 Llo 

and specializing (9) to an affine camera matrix gives 

illl2141 [ Abl] IL1L2L4 L7]  [ 01] A 121315 = L2L3L5 Ls A T L4 L5 L6 L9 b T (11) 
14 15 16 L7 Ls L9 Llo 

These equations can be divided into two sets of equations. The first set is 

[ ll 12] A L 2 L3 A T L9] T bT-~ - -~-bLlo bT : + A [L7 L8 b[L7 L8 Lg] 
A Ll2 13j L4 L5 L6 

containing three nonlinear equations in A and b. The second set is 

/~ 15 = L9 ' 

16 L10 

containing three linear equations in A and b. 

(12) 

(13) 
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Normalising 1 such that  16 -- 1 and L such tha t  Llo = 1, the linear equations 
in (13) can be writ ten 

tl El 14 = A  La + b  . (14) 
Is L9 

Observe tha t  this equation is of the same form as (3), which implies that  conics 
can be t reated in the same way as points, when the nonlinear equations in 
(12) are omitted. The geometrical interpretation of (14) is that  the center of 
the quadric projects onto the center of the conic in the image, since indeed 
[14/1615/16 ]T corresponds to the center of the conic. 

3 T h r e e  v i e w s  

In the projective case, the trifocal tensor plays a fundamental  role in reconstruc- 
tion from three views. In this section, we derive the analogous tensor for the 
affine camera. Furthermore,  we show how this tensor can be linearly est imated 
from points, lines and conics. 

3.1 T h e  aff ine q u a s i - t e n s o r  

We star t  by looking at points. Assume that  relative coordinates are used and 
denote the three camera matrices by A, B and C. A point X is projected onto 
the three views as 

x = A X ,  x ~ = B x  and x ' = C X  , 

or equivalently 

X II 

Prom the above equation, it follows tha t  rank M _< 3 since the nullspace of M is 
non-empty and, in turn, this implies that  all 4 x 4 minors of M vanish. There are 
in total  (46) = 15 such minors and they are linear expressions in the coordinates 
of x, x ~ and x ' .  By using Laplace expansions, see I3], on these minors it can 
be seen tha t  they are built up by sums of terms tha t  are products  of an image 
coordinate and a 3 x 3 minor formed by three rows from the camera matrices A, 
B and C. Let 

T = (16) 

The minors from (16) are the Grassraan coordinates of the subspace of R ~ span- 
ned by the columns of T. We will use a slightly different terminology and nota- 
tion, according to the following definition. 
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D e f i n i t i o n  1. The minors built up by the rows i, j and k from T in (16) will 
be called the aff ine q u a s i - t e n s o r  and its (6) = 20 components will be denoted 
by tijk. �9 

Observe that  tijk is not a tensor, since the components t ransform differently 
depending on which rows tha t  are selected from T. The components arising 
from the selection of one row from each of A, B and C can be reordered to 
constitute a tri-valent tensor that  is contravariant in all indices, whereas the 
components arising from two rows from A and one row from C can be reordered 
into a two-valent tensor that  is covariant in one index and contravariant  in the 
other. 

Given the image coordinates in all three images the minors obtained from M 
in (15) give linear constraints on the 20 components of the affine quasi-tensor. 
As an example, the minor obtained by picking the first, second, third and fifth 
row from M can be written 

t123x ~ -- t125x ~ -F t135Y - t235x = 0 . 

There are in total  15 such linear constraints on the components of the ai:fine 
quasi- tensor. These can be written 

Rt = 0 ,  (17) 

where R is a 15 x 20 matr ix  containing relative image coordinates of the image 
point and t is a vector containing the 20 components of the affine quasi-tensor. 
From (17), it follows that  the overall scale of the tensor components can not be 
determined. This means that  if tijk constitute the components of an affine quasi- 
tensor, then Atijk, where 0 r )~ C I~, also constitute components of an affine 
quasi-tensor corresponding to the same viewing geometry. This undetermined 
scale factor corresponds to the possibility to rescale both the reconstruction and 
the camera matrices, keeping (4) valid. Observe that  since relative coordinates 
are used, one point alone gives no constraints on the tensor, because its relative 
coordinates are all zero. The number of linearly independent constraints for 
different number  of point correspondences are given in the following proposition. 

P r o p o s i t i o n  1. Two corresponding points in 3 images give 10 linearly inde- 
pendent constraints on the components of the affine quasi-tensor. Three points 
give 16 constraints and four or more points give 19 constraints. Thus the compo- 
nents of the affine quasi-tensor can be linearly recovered from at least four point 
correspondences in 3 images. 

Proof. Use MAPLE or some other symbolic system to compute the rank of the 
matrices obtained by stacking a different number of R:s as in (17) above each 
other. 

The next question is how to calculate the camera matrices A, B and C from 
the 20 components of the affine quasi-tensor. Observe first that  the camera matri-  
ces can never be recovered uniquely from the quasi-tensor, since a multiplication 
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by an arbitrary non-singular 3 x 3 matrix to the right of T in (16) only changes 
the common scale of the tensor components. Thus, a natural representation for 
the three camera matrices is to set 

A =  [ 1 0 0]  B =  [0 1 01 and C =  [0 0 11 (18) 
al as a3 ' bl b2 b3 cl c2 c3 

Using this parametrisation of the three camera matrices, the unknown parame- 
ters ai, bj and ck can easily be calculated according to the following proposition. 

P r o p o s i t i o n  2. Given an ajfine quasi-tensor normalised such that t135 = 1, the 
camera matrices in the form of (18) can be calculated as 

A =  [ 1 0 0 ] B =  [ 0 1 0 I and C =  [ 0 0 1 ] 
t235 t125 -t123 ' -t345 t145 t134 t356 -t156 t136 

Notice that only 9 of the 20 components of the affine quasi-tensor have been 
used to calculate the camera matrices. This indicates that the 20 components 
(defined up to a common scale factor) obey 10 polynomial constraints in order 
to form the components of the affine quasi-tensor. In fact, we have the following 
theorem. 

T h e o r e m  1. The 20 numbers tijk, normalised such that t135 = 1 constitute the 
components of an afflne quasi-tensor if and only if 

t146 =t136t145 + t134t156, t236 = t136t235 + t123t356, t245 = t145t235 + t345t125, 

t124 :t125t134 ~- t123t145, t126 : t125t136 -- t123t156, t234 : t235t134 -- t345t123, 

t346 ~---t345t136 +t356t134, t256 ~---t235t156-Ft356t125, t456 ---~ t356t145 -- t345t156, 

t~46 =t345(t136t125 -- t123t156) + t134(t235t156 + t356t125)+ 

t145(t136t235 + t123t356). 

Proof. The theorem follows immediately by calculating suitable minors from 
(16), using the camera matrices in Proposition 2. 

We now turn to the use of line correspondences to constrain the components 
of the affine quasi-tensor. Consider (6) for three different images of a line with 
direction D in 3D space, i.e. 

)~d = AD, .~'d I = B D  and )~"d" = CD . (19) 

Since these equations are linear in the scalar factors and in D, they can be 
written 

N _~, = 0 d' 
_.~, 0 0 'i 

= o .  (2o)  
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Thus the nullspace of N is non-empty, hence det N = 0. Developing this deter- 
minant ,  we see tha t  it is a trilinear expression in d, d ~ and d"  with coefficients 
tha t  are suitable minors of T in (16). The coefficients appearing here is a subset 
of the components of the affine quasi-tensor. The subset consists of the minors 
formed by picking one row from each of A,  B and C, i.e. tijk, where i �9 {1,2}, 
j �9 {3, 4} and k �9 {5, 6}. This subset constitutes a tensor and it is the one used 
in [12]. Finally, we conclude that  the direction of each line gives one constraint 
on the viewing geometry and that  both points and lines can be used to constrain 
the components of the affine quasi-tensor. 

It  is evident from (13) that  conics can be used in the same way as points, 
when the nonlinear equations for conics are omitted. In this way each conic 
correspondence acts as a point correspondence and gives the same number of 
constraints on the viewing geometry. 

3.2 T h e  r e d u c e d  aff ine q u a s i - t e n s o r  

I t  may seem superfluous to use 20 numbers to describe the viewing geometry of 
three affine cameras, since specializing the trifocal tensor (which has 27 compo- 
nents) for the projective camera, to the affine case, the number  of components 
reduces to only 16, cf. [18]. However, this comparison is not fair, because our 20 
number  describes all trilinear functions between three affine views and should 
be compared to the 3 • 16 = 48 and 3 • 27 = 81 components of all trilinear 
tensors between three affine views and three projective views, respectively. Ho- 
wever, it is possible to use a tensor with only 12 components to describe the 
viewing geometry in our case. 

In order to obtain a smaller number of parameters,  s tart  again from (15) and 
rank M _< 3. This t ime we will only consider the 4 x 4 minors of M that  contain 
both rows one and two, one of rows three and four, and one of rows five and six. 
There are in total  4 such minors and they are linear in the coordinates of x, x r 
and x ' .  Again, these linear expressions have coefficients that  are 3 x 3 minors of 
T in (16), but this t ime the only minors occurring are the ones containing both 
rows from A and one from B and one from C. 

D e f i n i t i o n  2. The minors  built up by the rows i, j and k, where either i C 
{1,2}, j e {3,4}, k �9 {5,6} or i = 1, j = 2, k �9 {3,4,5,6},  f rom T in (16) 
will be called the r e d u c e d  a t f ine  q u a s i - t e n s o r  and its 12 components  will be 
denoted by t i jk .  �9 

Observe once more that  tijk is not a real tensor since different components 
t ransform differently. 

Given the image coordinates in all three images, the minors of the chosen rows 
obtained from M give linear constraints on the 12 components of the reduced 
a n n e  quasi-tensor. There are in total  4 such linear constraints on the components 
of the affine quasi-tensor. These can be writ ten 

R r t  r -- 0 , (21) 
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where R r is a 4 x 12 matr ix  containing relative image coordinates of the image 
point and t r is a vector containing the 12 components of the reduced affine quasi- 
tensor. Observe again that  the overall scale of the tensor components can not 
be determined. In the same manner  as in the previous section, we can prove the 
following. 

P r o p o s i t i o n  3. Two corresponding points in 3 images give 4 linearly indepen- 
dent constraints on the components of the reduced aJ~fine quasi-tensor. Three 
points give 8 constraints and four or more points give 11 constraints. Thus the 
components of the affine quasi-tensor can be linearly recovered from at least four 
point correspondences in 3 images. 

Again the camera matrices can be calculated from the 12 components of the 
reduced afilne quasi-tensor. The parametr isat ion in (18) will be used again. 

P r o p o s i t i o n  4. Given a reduced affine quasi-tensor normalised such that t135 = 
1, the camera matrices in the form of (18) can be calculated as 

A = [ 1  0 0 ] B = [  0 1 0 ] 
t235 t125 --t123 ' (t145t235 --t245)/t125 t145 (t136--t123t145)/t125 

[ o o lj  
and C = (t236 - t136t235)/t123 (t126 - t125t136)/t123 t136 

T h e o r e m  2. The 12 numbers tijk, normalised such that t135 : 1 constitute the 
components of a reduced affine quasi-tensor if and only if 

(t146 -- t136t145)t123t125 ---- (t124 -- t123t145)(t126 -- t125t136), 

t246t125t123 = (t123t245t126 + t125t124t236 -- t235t124t126) �9 

Proof. Follows immediately by calculating suitable minors from (16), using the 
camera matrices in Proposition 4. 

Corresponding lines and conics can be used in the same way as before to constrain 
the components of the reduced quasi-tensor. 

Using these tensors, a number of minimal cases appear  for recovering the 
viewing geometry. In order to solve these minimal cases one has to take also the 
nonlinear properties, given in Theorem 1 and Theorem 2, of the tensor compo- 
nents into account. However, in the present work, we concentrate on developing 
a method to use points, lines and conics in a unified manner,  when there is a 
sufficient number of corresponding features available to avoid the minimal cases. 

4 Many views 

In the landmark paper  [17] a factorisation method was presented for the ortho- 
graphic camera using point features. In this section we generalize this algorithm 
for the affine camera using not only points, but lines and conics as well. The 
algorithm takes any number of points, lines and conics in any number  of images 
as input and the result is a reconstruction of the scene structure as well as the 
camera motion. 
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4.1 T h e  f a e t o r i s a t i o n  a l g o r i t h m  

In Section 2 we derived how points, lines and conics project onto the image. Now 
consider m points or conics, and n lines in p images. From equations (4) and 
(6) we see tha t  this can be writ ten as one single matr ix  equation (with relative 
coordinates), 

I [i 1] S = " " ' - = [Xl ... X,~ D1 ... D~] (22) 

Lxpl Xpm Apldpl Ap,~ pn p 

The right-hand side of (22) is the product  of a 2p • 3 matr ix  and a 3 • (m + n) 
matr ix,  which gives the following theorem. 

T h e o r e m  3. The matrix S in (22) must obey 

r a n k s  < 3 . 

Observe that  the matr ix  S contains entries obtained from measurements  in the 
images, as well as the unknown scalar factors Aij, which have to be estimated. 
Assuming that  these are known, the camera matrices, the 3D points and the 
3D directions can be obtained by factorising S. This can be done from the 
singular value decomposition of S, S = U E V  T, where U and V are orthogonal 
matrices and Z is a diagonal matr ix  containing the singular values, ai, of S. Let 

= diag(al ,  a2, a 3 , 0 , . . .  , 0) and let U and V denote the first three columns of 
U and V, respectively. Then 

f f a  1 

/ ~ l /  ---- UV/-~ and IX1 ... Xm D1 ... D n ] : V / - ' ~ V  T (23) 

[ A J p  

fulfil (22). Observe that  the whole singular value decomposition of S is not 
needed. I t  is sufficient to calculate the three largest eigenvalues and the corre- 
sponding eigenvectors of S S  T. 

4.2 T h e  in i t ia l i sa t ion  

We now turn to the initialisation of the scalar factors, where the previously de- 
fined tensors will be useful. Assume that  the (reduced) affine quasi-tensors have 
been calculated. Then the camera  matrices can be calculated from Proposit ion 2 
or Proposit ion 4. It  follows from (20) that  once the camera matrices for three 
images are known, the scalar factors for each direction can be calculated up to 
an unknown scalar factor. It  remains to estimate the scalar factors for all images 
with a consistent scale. We have chosen the following method.  Consider the first 
three views with camera matrices A1, A2 and A3. Rewriting (20) as 

M = A2 A2d2| = 0 , (24) 
A3 A3d3J 
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shows tha t  M in (24) has rank less than 4 which implies tha t  all 4 • 4 minors 
are equal to zero. These minors give linear constraints on the scale factors. 
However, only 3 of them are independent. So we get a system with the following 
appearance,  

* ),2 = 0 , (25) 

* )`3 

where �9 indicates a matr ix  entry tha t  can be calculated from Ai and di. It  is 
evident from (25) that  the scalar factors Ai only can be calculated up to an 
unknown common scale factor. By considering another triplet, with two images 
in common with the first triple, say the last two, we can obtain consistent scale 
factors for both  triplets by solving a system with the following appearance,  

:**o ~ 
* *  )'2 = 0  . 
* * )`3 
* * )`4 

This procedure is easy to systematize such that  all scale factors from the direction 
of one line can be computed as the nullspace of a single matrix.  The drawback 
is of course tha t  we first need to compute all camera matrices of the sequence. 

4.3 S u m m a r y  

In summary,  the following algorithm is proposed. 

1. Calculate the scalar factors )`ij using an affine quasi-tensor. 
2. Calculate S in (22) from )`ij and the image measurements.  
3. Calculate the singular value decomposition of S. 
4. Es t imate  the camera matrices and the reconstruction of points and line direc- 

tions according to (23). 
5. Reconstruct  3D lines and 3D quadrics. 

The last step needs a further comment.  From the factorisation the 3D direc- 
tions of the lines and the centers of the quadrics are obtained. The remaining 
unknowns can be recovered linearly from (5) and (12). 

If further accuracy is required, the reconstruction can be refined with bundle 
adjustment  techniques. 

5 E x p e r i m e n t s  

In this section we present some experimental  results on the developed theory. 
The experiments have been performed on both synthetic and real data. 
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5.1 S i m u l a t e d  D a t a  

The synthetic data was produced in the following. First, points and line segments 
were randomly distributed within a sphere. Then, views corresponding to camera 
positions on the sphere were randomly chosen and the features were projected 
to these views. In each view, the coordinate system was chosen so that  the 
data lies within the range [-1,  1] to improve numerical conditioning. In order to 
test the stability of the proposed methods, different levels of noise were added 
to the data. Points were perturbed with uniform, independent Gaussian noise. 
In order to incorporate the higher accuracy of the line segments, a number of 
evenly sampled points on the line segment were perturbed with independent 
Gaussian noise in the normal direction of the line. Then, the line parameters 
were estimated with least-squares. The residual error for points was chosen as 
the distance between the true point position and the reprojected reconstructed 
3D point. For lines, the residual errors were chosen as the smallest distances 
between the endpoints of the true line segment and the reprojected 3D line. 
These settings are close to real life situations (up to scale). A noise level of 0.005 
corresponds approximately to a perturbation of 1 pixel for a 512 • 512 image. 

STD of noise 0 0.005 0.01 0.02 

Red. quasi-tensor 
RMS of points 0.0 0.015 0.030 0.068 
RMS of lines 0.0 0.012 0.026 0.057 

Quasi-tensor 
RMS of points 0.0 0.0045 0.0086 0.017 
RMS of lines 0.0 0.0031 0.0060 0.013 

Factorisation 
RMS of points 0.0 0.0043 0.0088 0.017 
RMS of lines 0.0 0.0029 0.0060 0.012 

Table 1. Result of simulations of 10 points and 10 lines in 3 images for different levels of 
noise using the affine quasi-tensor, the reduced affine quasi-tensor and the factorisation 
approach. The root mean square (RMS) errors are shown for the different approaches. 

In Table 1 it can be seen that  the 20-parameter formulation of the three 
views is consistently superior to the 12-parameter formulation. For three views, 
nothing is gained by applying the factorisation method. All three methods handle 
moderate noise perturbations well. In Table 2 the number of points and lines are 
varied. The more points and lines used the better results as expected. Finally, 
in Table 3 the number of views is varied. In spite of the rather high noise level, 
the factorisation method manages to keep the residuals low. 

5.2 R e a l  D a t a  

The presented methods have been tested on real data as well. In this section 
an experiment is presented that  was performed on an outdoor statue, which is 
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#points, #lines 

Red. quasi-tensor 
RMS of points 
RMS of lines 

Quasi-tensor 
RMS of points 
RMS of lines 

Factorisation 

3,3 10 ,10  20,20 30,30 

0.0094 0.030 0.024 0.021 
0.024 0.026 0.018 0.015 

0.0094 0.0086 0.0082 0.0080 
0.021 0.0060 0.0055 0.0053 

RMS of points 0.0091 0.0088 0.0081 0.0079 
RMS of lines 0.028 0.0060 0.0054 0.0054 

Table 2. Results of simulation of 3 views with a different number of points and lines 
and with a standard deviation of noise equal to 0.05. The table shows the resulting 
error (RMS) after using the differnt approaches. 

I #views II 3 15 I10 120 I 
I Fact~176 II I I I ] 
RMS of points 0.017 0.019[0.01910.026 [ 
RMS of lines 0.013 0.015 0.016 0.022 

Table 3. Table showing simulated results for 10 points and 10 lines in a different 
number of views, with an added error of standard deviation 0.02 . 

in fact built up by conics and lines. More precisely, the statue consists of two 
ellipses lying on two different planes in space and the two ellipses are connected 
by straight lines, almost like a hyperboloid, see Figure l(a). 

In the experiment, 5 different images (768 x 575) of the statue were taken. 
In these images, the two ellipses, 17 lines and 17 points were picked out by hand 
and for the ellipses and lines, least-squares were used to compute the appropriate 
representations. The residual errors are shown in Table 4 in pixels with the same 
definitions of residual errors (between measured and reprojected quantities) as 
in the previous experiments. The results are clearly plausible, see Figure l(b). 

Factorisation Points Lines Conics(center) l 
RMS pixels 4.3 0.56 6.6 1 

Table 4. Table showing the result of statue experiment with five real images. 

6 C o n c l u s i o n s  

In this paper a novel scheme that can handle any number of corresponding 
points, lines and conics in any number of images, taken by attlne cameras has 
been presented. Two novel concepts have been introduced; the affine quasi-tensor 
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Fig. 1. (a) Image of a statue. (b) Reconstructed 3D model 

and the reduced affine quasi-tensor. Using these concepts, the camera matrices in 
a triplet of affine views can be estimated linearly from corresponding points, lines 
and conics. First, the tensor components (20 or 12) are estimated from image 
data  and then the camera matrices are obtained from the tensor components. 
A slight generalization of this procedure gives also the scale factors for all line 
directions, needed to initialise the factorisation method. Furthermore, it has been 
shown that  this approach works well on both simulated and real data. 
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