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Abs t rac t .  We use colour mixture models for real-time colour-based ob- 
ject localisation, tracking and segmentation in dynamic scenes. Within 
such a framework, we address the issues of model order selection, mod- 
elling scene background and model adaptation in time. Experimental re- 
sults are given to demonstrate our approach in different scMe and lighting 
conditions. 

1 I n t r o d u c t i o n  

Colour has been used in machine vision for tasks such as segmentation [1, 2], 
tracking [3] and recognition [4, 5]. Colour offers many  advantages over geometric 
information in dynamic vision such as robustness under partial  occlusion, rota- 
tion in depth, scale changes and resolution changes. Furthermore,  using colour 
enables real-time performance on modest  hardware platforms [1]. 

Swain and Ballard [5] described a scheme which used histograms for mod- 
elling the eolours of an object. The eolour space was quantised through the 
his togram's  structure which comprised a number of "bins". An algorithm known 
as "histogram intersection" was used for matching image histograms with model 
histograms. Although colour histograms can be used to estimate densities in 
eolour space, the level of quantisation imposed on the colour space influences 
the resulting density. If the number of bins n is too high, the est imated density 
will be "noisy" and many bins will be empty. If n is too low, density structure 
is smoothed away. Histograms are effective only when n can be kept relatively 
low and where sufficient da ta  are available. A potentially more effective semi- 
parametr ic  [6] approach for colour density estimation is to use Gaussian mixture 
models. With this approach, a number of Gaussian functions are taken as an ap- 
proximation to a multi-modal distribution in eolour space and conditional prob- 
abilities are then computed for eolour pixels [1, 3]. Gaussian mixture models can 
also be viewed as a form of generalised radial basis function network in which 
each Gaussian component  is a basis function or 'hidden'  unit. The component  
priors can be viewed as weights in an output  layer. Finite mixture models have 
also been discussed at length elsewhere [6-12] although most of this work has 
concentrated on the general studies of the properties of mixture models rather  
than  developing vision models for use with real data  from dynamic scenes. 
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However, the use of colour mixture models in dynamic scenes is not without 
its difficulties. A common problem associated with density-based modelling of 
statistical data  involves the selection of the number of parameters for a model, 
known as the model order selection problem [6]. With colour mixture models, 
this involves the selection of the number of Gaussian components. The goal 
is to generate a model that  provides accurate predictions for new data. Too 
few parameters can lead to a poor model which over-generalises the data (high 
bias), while too many parameters can result in an overfit of the model to the 
training data  (high variance) [13]. In either case, the underlying distribution 
responsible for the training data is not reflected accurately and performance 
on new data will be poor. Existing methods for model selection are usually 
rather ad hoc. An exception is the recursive algorithm of Priebe and Marchette 
[10]. It was extended to model non-stationary data series through the use of 
temporal  windowing. Their algorithm adds new components dynamically when 
the mixture model fails to account well for a new data point. The approach in 
this paper is different in that  an iterative algorithm is used to determine model 
order based on a fixed data set. The mixture model is then adapted on-line 
by updating components'  parameters while keeping the number of components 
fixed. The assumption made here is that  the number of components needed to 
accurately model an object 's colour does not alter significantly with changing 
viewing conditions. 

Methods have been proposed for colour-based detection and tracking of skin- 
coloured objects (e.g. [1, 14 17]). In particular, a system constructed by Wren et 
al. [18] enabled tracking of entire people in controlled environments with static 
cameras. Each pixel in an image had an associated feature vector comprising 
spatial and colour components. These feature vectors were clustered, which led 
to a collection of "blobs" defined by spatial and spectral similarity. A collection 
of blobs constituted a representation of a person. This limited tracking to people 
with homogeneously coloured regions with an unchanging background. 

Most colour cameras provide an RGB (red, green, blue) signal. In order to 
model objects'  colour distributions, the RGB signal is first transformed to make 
the intensity or brightness explicit so that  it can be discarded in order to obtain 
a high level of invariance to the intensity of ambient illumination. Here the HSV 
(hue, saturation, value) representation was used and colour distributions were 
modelled in the 2D hue-saturation space. Hue corresponds to our intuitive notion 
of 'colour' whilst saturation corresponds to our idea of 'vividness' or 'purity'  
of colour. At low saturation, measurements of hue become unreliable and are 
discarded. Likewise, pixels with very high intensity are discarded. It should be 
noted that  the HSV system does not relate well to human vision. In particular, 
the usual definition of intensity as rnax(R+G+B) is at odds with our perception 
of intensity. However, this is not important for the tracking application described 
here. If in other applications it was deemed desirable to relate the colour models 
to human perception then perceptually-based systems like CIE L*u*v* and CIE 
L*a*b* should be used instead of HSV. 
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The main difficulty in modelling colour robustly is the colour constancy prob- 
lem which arises due to variation in colour values brought about by lighting 
changes. This problem is addressed here by employing colour adaptation. 

For the remaining sections of the paper, we first describe briefly in Section 2 
colour mixture models in HS-space for dynamic scene segmentation and object 
tracking. In Section 3, we describe a method for automatic model selection in 
multi-colour mixture models. Section 4 focuses on the issue of modelling object 
colour in the context of a given scene. We then introduce a mechanism for model 
adaptation over time and under changing lighting conditions in Section 6. We 
discuss some experimental results in Section 7 before drawing conclusions in 
Section 8. 

2 C o l o u r  M i x t u r e  M o d e l s  

Colour histograms [5] are a simple non-parametric method for modelling. How- 
ever, the use of histograms for estimating colour densities is only possible because 
n can be kept relatively small and because there are many data points (pixels) 
available. A more effective approach is to use Gaussian mixture models. Let tile 
conditional density for a pixel ( belonging to a multi-coloured object (9 be a 
mixture with M component densities: 

M 

p(~lO) = Ep(~Ij)P(j ) (1) 
j = l  

where a mixing parameter P(j) corresponds to the prior probability that  pixel 

was generated by component j and where ~ - - t  P(J)  = 1. Each mixture 
component is a Gaussian with mean/~ and eovariance matrix E,  i.e. in the case 
of a 2D colour space: 

1 T 3 1 __I exp_~(~_t~j) r.~ (~-/~j) (2) 
p(~lj)- 21rlEj]�89 

Expectation-Maximisation (EM) provides an effective maximum-likelihood 
algorithm for fitting such a mixture to a data set [6, 19]. Figure 1 shows an 
example of a Gaussian mixture model of a multi-coloured object in HS-spaee. 
Outlier points, which can be caused by image noise and specular highlights, 
have little influence upon the mixture model. Pixels with very low intensity 
were discarded because the observed hue and saturation became unstable for 
such pixels. Likewise, pixels with very high intensity were discarded. Once a 
model has been estimated it can be converted into a look-up table for efficient 
on-line indexing of colour probabilities. 

Given a colour mixture model of an object, the object can then be effectively 
located and tracked in the scene by computing a probability map for the pixels 
in the image within a search window. The size and position of the object are then 
estimated from the resulting distribution in the image plane. Although the HS- 
space representation permits a degree of robustness against limited brightness 
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Fig. 1. Left: a multi-eoloured object (a PEPSI  can). Centre: its colour histogram in HS- 
space. It can be noted that such a histogram representation is only viable when a large 
amount of data is available due to being non-parametric. Right: its Gaussian mixture 
model. The mixture components are shown as elliptical contours of equal probability. 

change, tracking is only reliable provided that  the lighting conditions are rela- 
tively stable. Object  position at frame t is taken to be the mean m t  = (rex, m y )  

and object size is est imated from the s tandard deviation r  (ax, ay). More 
precisely, for a given frame t, the object position m t  is est imated as an offset 
from the position m r - l :  

m t  = m r - 1  + }-~xP(~x)(X - m r - l )  

ExP(~x)  

where x ranges over all image coordinates in the region of interest and ~x is the 
colour point at image position x. To improve accuracy, probabilities P(~x) are 
thresholded. Values lower than the threshold are taken to be background and 
are consequently set to zero in order to nullify their influence on the estimation 
of m t  and a t .  

The size of the object is estimated by computing the s tandard deviation of 
the image probabili ty density: 

J E x P ( ~ x ) { ( x  - m r - l )  - m r }  2 

= V  xp Cx) 

3 M o d e l  O r d e r  S e l e c t i o n  

Model order selection is the problem of choosing the number of parameters  tha t  
facilitates the accurate modelling of an underlying distribution for a set of data. 
In this section, we describe a constructive method for automat ic  determination 
of the number  of components for a colour mixture model. 

A s tandard technique employed for model training, known as cross validation, 
a t tempts  to find the model order that  provides the best trade-off between bias 
and variance. A number of models of different order are trained by minimising an 
error function for a training set. These models are then evaluated by computing 
the error function for an independent validation set. The model with the lowest 
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error for the validation set is considered to exhibit the best generalisation and 
its order is taken to be optimal. 

This concept is applied to the generation of mixture models through an it- 
erative scheme of splitting components and monitoring generalisation ability. 
The available data  set is partitioned into disjoint training and validation sets. A 
mixture model is initialised with a small number of components, typically one. 
Model order is then adapted by iteratively applying EM and splitting compo- 
nents. The likelihood for the validation set is computed after every iteration, 
and it is assumed that  the optimal model order corresponds to the peak in this 
likelihood function over time. Here, the techniques for selecting and splitting 
components are outlined. 

3.1 S p l i t t i n g  C o m p o n e n t s  

For each component j, let us define a total responsibility rj as: 

P(~IJ)P(J) (3) 
rj = E p ( j l (  ) = E E i lp (5[ i )P ( i )  

Then the component k with the lowest total responsibility for the validation set 
is selected for splitting: 

k = arg m!n(rj)  
2 

Once the component k to be split has been selected, two new components 
with means tt,~ew 1 and ttncw2 , and covariance matrices Enr and 2~nr are 
computed by: 

Az 
tenet1 = tt k + -}-Ul 

A1 
~$new2 z ~t k - -  ~-Ul 

Z ~ n e w l  z . ~ n e w 2  "~- "-~k 

where A1 is the largest eigenvalue of the covariance matrix Gk and Uz is the 
corresponding eigenvector. 

The prior probabilities for the new components are assigned like so: 

7rk 
7rnewl  ~ ~ n e w 2  ~ - -~  

3.2 A C o n s t r u c t i v e  A l g o r i t h m  for  M o d e l  O r d e r  S e l e c t i o n  

Let i denote the iteration, Mi the number of components in a model at itera- 
tion i and s the likelihood of the validation set with respect to the model at 
iteration i. The initial number of components M0 may be set to a low number 
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(here M0 = 1). With a validation set generated for the generalisation test, a 
constructive algorithm for model order selection is as follows: 

i. Apply Expectation-Maximisation for model with Mi components. 
2. Compute ~i for validation set 

3. IF (s  < s  STOP. 
4. Save m o d e l  

5. Find component j with lowest total responsibility 
6. Split component j 
Y. Restart from step i with Mi+ 1 =M i+ 1 and i = i + I. 

The algorithm terminates when a peak is located in the likelihood measurements 
for the validation set. The application of this algorithm to a data  set for a multi- 
coloured object (the PEPSI  can as shown in Figure 1) is illustrated in Figure 2. 

4 Modelling Colour in Context: Foreground and 
Background Models 

Thresholding probabilities generated by a foreground model alone is often inef- 
fective due to severe overlap between background and foreground colour distri- 
butions. For dealing with multi-coloured objects in dynamic scenes, it is com- 
putationally desirable to model the colour distribution of the background scene 
in addition to the objects to be tracked. Given density estimates for both an 
object, (9, and the background scene, S, the probability that  a pixel, {, belongs 
to the object is given by the posterior probability P(OI{):  

P(Ol{) = p({lO)P(O) 
p({lO)P(O) + p({l$)P($) 

(4) 

The prior probability, P((9), is set to reflect the expected size of the object 
within the search area of the scene [P(S) = 1 - P(O)].  Pixels can be classified 
by assigning them to the class with the maximum posterior probability. This 
minimises the probability of misclassification error in a Bayesian sense. However, 
it is preferable to use the posterior probabilities directly in order to estimate 
the spatial extent of the object. Furthermore, the density estimates provide a 
measure of confidence. Pixels in areas of colour space where both foreground and 
background likelihoods are low are classified with low confidence. 

Modelling foreground and background separately has the practical advantage 
that  the object and scene data can be acquired independently. A single back- 
ground scene model can subsequently be used with many different objects. This 
is useful in a virtual studio application, for example, where it enables a single 
studio model to be subsequently used with many different people. 
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Fig. 2. Automatic model selection for the colours of a PEPSI  can. The top part illus- 
trates the splitting process, with each pair of images showing convergence followed by 
the splitting of a component. The bottom part shows the final seven component model 
and the resulting probability density function. Finally, a histogram of the training data 
is shown. 
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5 Mode l l ing  Colour in Time: Coping with  Change  

Colour appearance is often unstable due to changes in both background and 
foreground lighting. The colour constancy problem has been addressed mainly 
through the formulation of physics-based models (e.g.[20]). Colour appearance 
also varies over time due to changes in viewing geometry and changes in camera 
parameters (auto-iris adjustment). Under the assumption that  viewing condi- 
tions change gradually over time, statistical colour models can be adapted to 
reflect the changing eolour appearance of a tracked object (or the background 
scene against which it is tracked). The remainder of this section describes a 
method for adapting the Gaussian mixture colour models over time. 

5.1 Mode l  Adaptat ion Over Time 

At each frame, t, a new set of pixels, X (t), is sampled from the object and used 
to update the mixture model z. These new data sample a slowly varying non- 
stationary signal. Let r (t) denote the sum of the posterior probabilities of the 
data in frame t, r (t) = ~ c x ( t  ) P(JI~). The parameters are first estimated for 

each mixture component, j ,  using only the new data, X (t), from frame t: 

t~(t ) _ ~ - ~ . p ( J l S ) 5  ~( t )  = r(t) 
r(t)  , N ( t )  

E(t) = ~P(JI~)(5 - ] t t - 1 ) T ( ~  - -  JLtt--1) 
r (t) 

where N(t) denotes the number of pixels in the new data set and all sum- 
mations are over ( E X (t). The mixture model components then have their 
parameters updated using weighted sums of the previous recursive estimates, 
(]/'t--i, ~t-1,7Tt--1), estimates based on the new data, (tt(t), E(t) ,  ~(t)), and esti- 
mates based on the old data, (it(t-L-i)~(t--L-1)7i.(t--L--1)): 

~t = ]tt-1 + ~--tt) (~(t) -- ]tt-1) 
r( t-L-1) 

Dt 
_ _  ( i . t ( t - L - l )  _ ] ~ t t _ l )  

D t  
/ .( t-L-i) (Z( t -L-1)  __ E t -1 )  

Dt 

N(t)N(~) @(t) _ ~t-1) - EtT=t_ LN(t-L-1) fit  = 7"(t--1 -~- E $ = t - - L  N(r) (\if(t-L-I) _ 71_ t 1~7 

z Throughout this paper, superscript (t) denotes a quantity based only on data from 
frame t. Subscripts denote recursive estimates. 
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t 
where Dt = E z - = t - L  r(~)" The following approximations are used for efficiency: 

r(t_L_l) ~ Dr-1 
L + I  

Dt ~ (1 - 1/(L + 1))Dr-1 + r (t) 

The parameter  L controls the adaptivi ty of the model 2. 
During the processing of a sequence, new samples of da ta  for adapta t ion 

are gathered from a region of appropriate  aspect ratio centred on the est imated 
object centroid. It  is assumed tha t  these da ta  form a representative sample of 
the objects '  colours. This will hold for a large class of objects. 

5.2 Selective Adaptat ion 

An obvious problem with adapting a colour model over t ime is the lack of ground- 
truth.  Any colour-based tracker can lose the object it is tracking due, for exam- 
ple, to occlusion. If such errors go undetected the colour model will adapt  to 
image regions which do not correspond to the object. This is clearly undesirable. 
In order to help alleviate this problem, observed log-likelihood measurements  
were used to detect erroneous frames. Colour data  from these frames were not 
used to adapt  the object 's  colour model. In order to boot-s t rap  the tracker for 
object detection and re-initialisation after a tracking failure, a set of predeter- 
mined generic object colour models which perform reasonably in a wide range 
of illumination conditions are used. Once an object is being tracked, the model 
adapts  and improves tracking performance by becoming specific to the observed 
conditions. 

The adaptive mixture model seeks to maximise the log-likelihood of the 
colour da ta  over time. The normalised log-likelihood, E, of the data,  X (t), ob- 
served from the object at t ime t is given by: 

s  1 Z logp( lv) 
~CX(t) 

At each t ime frame, s is evaluated. If the tracker loses the object there is often a 
sudden, large drop in the value of s This provides a way to detect tracker failure. 
Adapta t ion is suspended when such an error is detected. The tracker is then re- 
boots t rapped  by increasing the search space to the maximum size. Adapta t ion 
is re-activated when the object is again tracked with sufficiently high likelihood. 

A temporal  median filter was used to compute a threshold, T. Adapta t ion 
was only performed when s > T. The median, p, and standard deviation, a,  of 
s were computed for the n most recent above-threshold frames, where n _~ L. 
The threshold was set to T = v - ka,  where k was a constant. 

2 Setting L = t and ignoring terms based on frame t - L - 1  gives a stochastic algorithm 
for estimating a Gaussian mixture for a stationary signal [6, 21]. 
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6 Experiments 

In the following we describe a set of experiments in which colour mixture models 
were applied to object segmentation and tracking in dynamic scenes. All the 
experiments ran in real-time (15-20Hz) on a standard 200MHz PC with a Matrox 
Meteor board. 

6.1 Exper iment  1: Colour-based Tracking 

Figure 3 shows samples from one continuous sequence where a skin colour mix- 
ture model was used on an active camera with pan, tilt and zoom capabilities 
for tracking a face with occlusion, lighting and scale changes. It is clear that  the 
model copes well with the changes in object appearance. Here the colour mixture 
model is relatively simple in the sense that the object of interest has almost a 
uniform colour. Therefore, the number of components can be easily determined. 

Fig. 3. A face is tracked against a cluttered background by an active camera which pans, 
tilts and zooms. 

6.2 E x p e r i m e n t  2: M o d e l l i n g  C o l o u r  in Context  

Model selection becomes more difficult with multi-coloured objects. Figure 4 
illustrates the multi-coloured object foreground and background models in HS 
colour space. These resulted from running the constructive algorithm with au- 
tomatic model selection. A context-dependent object model can be given by a 
combined posterior density (shown in the bot tom right) which defines decision 
boundaries between object foreground and scene background, even when signif- 
icant overlap exists between the object and the background. 

Figure 5 shows an application of the context-dependent object (person) 
model in segmentation and tracking. Pixels in the scene were classified as person 
or background using Equation (4) with the prior probabilities set to P ( $ )  = 
P((9) = 0.5. A multi-resolution approach was taken in which segmentation was 
performed in a coarse-to-fine manner. The segmented object was superimposed 
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Fig. 4. Colour mixture models of a multi-coloured object (person model) and the context 
(scene model). The first row shows the data used to build the foreground (person) and 
the background (laboratory) models. The second row illustrates the probability density 
estimated from mixture models for the object foreground and scene background. The 
rightmost image is the combined posterior density in the HS colour space. Here the 
"bright" regions represent foreground whilst the "dark" regions give the background. 
The "grey" areas are regions of uncertainty. 

onto another dynamic scene. Only pixels inside the search area of the tracker 
were classified. All pixels outside this area were rendered as background. The re- 
sults are surprisingly good for individual pixel classification alone, but imperfect, 
However, geometrical models such as PDMs may be integrated into the current 
setup to exploit the classification results and generate boundary estimates for a 
more accurate segmentation result. 

6.3 E x p e r i m e n t  3: C o p i n g  w i t h  C h a n g e  

Results shown in Figures 6 and 7 illustrate the advantage in using an adaptive 
model. In this sequence the illumination conditions coupled with the camera's 
auto-iris mechanism resulted in large changes in the apparent colour of the object 
of interest (the face of a person) as it approached the window. Towards the 
end of the sequence, the face became very dark, making hue and saturation 
measurements unreliable. In Figure 6, a non-adaptive model was estimated based 
on the first image of the sequence only and was used throughout.  It was unable 
to cope with the varying conditions and failure eventually occurred. In Figure 7, 
the model was allowed to adapt and successfully maintained lock on the face. 
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Fig. 5. Segmentation results. The top row outlines the tracked region for segmentation 
and the second row illustrates superimposition onto an alternative sequence. 

Fig. 6. Five frames from a sequence in which a face was tracked using a non-adaptive 
model. The apparent colour of the face changes due to (i) varying illumination and (ii) 
the camera's auto-iris mechanism which adjusts to the bright exterior light. 

The experiment shown in Figure 8 illustrates the advantage of selective adap- 
tation. The person moved through challenging tracking conditions, before ap- 
proaching the camera at close range (frames 50-60). Since the camera was placed 
in the doorway of another room with its own lighting conditions, the person's  
face underwent a large, sudden and temporary  change in apparent  colour. When 
adapta t ion was performed in every frame, this sudden change had a drastic effect 
on the model and ult imately led the tracker to fail when the person receded into 
the corridor. With selective adaptat ion,  these sudden changes were t reated as 
outliers and adaptat ion was suspended, permit t ing the tracker to recover. 

Fig. 7. The sequence depicted in Figure 6 tracked with an adaptive colour model. Here, 
the model adapts to cope with the change in apparent colour. 
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Fig. 8. At the top are frames 35, 35, 55, 65 and 75 from a sequence. There is strong 
directional and exterior illumination. The walls have a fleshy tone. At around frame 
55, the subject rapidly approaches the camera which is situated in a doorway, resulting 
in rapid changes in illumination, scale and auto-iris parameters. This can be seen in 
the 3D plot o] the hue-saturation distribution over time. In the top sequence, the model 
was allowed to adapt in every frame, resulting in failure at around frame 60. The 
lower sequence illustrates the use of selective adaptation. The right-hand plot shows the 
normalised log-likelihood measurements and the adaptation threshold . 

7 C o n c l u s i o n  

We have described how the colour distributions of multi-coloured objects can 
be modelled using mixtures of Gaussians. A constructive algorithm based on 
maximum-likelihood EM was presented for training a Gaussian mixture model. 
This algorithm selects an appropriate model order automatically. It avoids the 
need for initialisation of component means, a procedure which is usually per- 
formed using rather ad hoc methods. Cross-validation was used to perform early 
stopping during training. 

The colour mixture models were used to perform robust object detection and 
tracking in real-time using only modest hardware. The use of separate colour 
models for foreground objects and the background scene was described. Suc- 
cessfnl tracking was thus performed even when there was significant overlap 
between object and background colour distributions. Combined foreground and 
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background models were also used for segmentation to facilitate the virtual stu- 
dio application described. Segmentation quality is insufficient for broadcasting 
requirements with pixel-wise colour classification. However, it can be exploited 
to facilitate the application of geometrical models. 

The apparent  colour of an object varies over t ime due to changes in illumina- 
tion, viewing geometry and camera parameters.  Rather  than a t tempt  to model 
these changes directly, they were accommodated by allowing the colour models 
to adapt  over time. An algorithm for adapting colour mixture models on-line was 
presented including a mechanism for detecting tracking errors. This was shown 
to improve tracking performance under large changes in apparent  colour. 

We are currently investigating on-line adaptat ion of model order. This in- 
volves both splitting and merging of Gaussian components during tracking. Work 
is also being done to integrate motion and colour to enable real-time tracking 
of multiple targets for dynamic gesture recognition. The integration of shape 
and colour for robust contour tracking and accurate segmentation is also being 
pursued. This involves the application of Point Distribution Models to colour 
probabilities to recover good estimates of object boundaries. Colour edges are 
then used to refine boundary estimates and enable highly accurate segmentation 
for broadcasting requirements. 
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