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A b s t r a c t .  We propose a new feature distance which is derived from an optimal re- 

lational graph matching criterion. Instead of defining an arbitrary similarity measure 

for grouping, we will use the criterion of reducing instability in the relational graph to 
induce a similarity measure. This similarity measure not only improves the stability of 
the matching, but more importantly, also captures the relative importance of relational 

similarity in the feature space for the purpose of grouping. We will call this similarity 

measure the self-induced relational distance. We demonstrate the distance measure on 

a brightness-texture feature space and apply it to the segmentation of complex natural 
images. 

1 I n t r o d u c t i o n  

In any grouping algorithm, two crucial subproblems need to be addressed: (1) 
the similarity measure between the features, and (2) the grouping criterion and 
efficient algorithm to solve it. 

In our previous paper[20], we have addressed the latter problem with nor- 

malized cuts. In the normalized cut scheme, the grouping problem is transformed 
into a graph partitioning problem. The nodes in the graph are feature points, 
such as pixels, and the weight on each graph edge reflects the similarity between 
the two nodes connected by that edge. The grouping problem then becomes the 
problem of finding the best hierarchical sub-partition of the graph according to a 
global partitioning criterion called normalized cut. The normalized cut criterion 
favors sub-partitioning of a graph such that the total similarity among the sub- 
graphs is high and the total dissimilarity across the subgraphs is low. We have 
shown that  this graph partitioning problem can be solved efficiently using a gen- 
eralized eigenvalue system, and good results have been obtained on segmenting 
brightness and color images with a simple Euclidean distance in the HSV color 
space. 

In the case of brightness and color segmentation, such simple similarity mea- 
sures between the pixels are sufficient. Distance measures on combined texture 
and brightness-color space, however, are harder to define. Figure (1) illustrates 
some of the difficulties. The difficulties in scenes like those shown in figure (la) 
is that  although the cheetah has coherent texture, the tree branches in the back- 
ground are essentially random with each branch differing from the others. One 
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Fig. 1. Two complex textured scenes in natural world. What  is the right texture 
similarity measure? 

would like the texture similarity measure not to overly emphasize the difference 
in that  region. Defining a simple texture distance in figure ( lb)  could also be 
difficult because it is hard to judge whether the "stripe-ness" of the zebra skin 
is a more important  similarity measure than the orientation of the stripes. In 
principle, one can claim that any distance measure can and should be induced 
by modeling the distribution of all the objects in the world. We will illustrate in 
this paper, however, that  by analyzing relationships between the elements in a 
single scene, one can induce a very reasonable distance measure. 

We extend the definition of texture to include invariant relational structural 
properties of the image features, rather than only the first or second order local 
statistics of filter outputs. In particular, we will construct a relational graph 
on an image, and study the invariant relational substructure in the context of 
self-matching. 

A relational graph is a graph representation of image objects, their parts 
and the relationships among them. Typically, relational graph matching is used 
in the object recognition setting, where we would like to map the parts of an 
unknown object to those of a known object in a database, such that both the 
properties of the parts as well as the relationship among the parts are preserved. 
This requirement of preserving structural relationship is particularly useful when 
the parts themselves are not very descriptive. However, the ambiguities in the 
matching of the parts can not be completely removed by enforcing relational 
integrity. One could imagine cases where several parts share the same unary as 
well as binary relationships among them. One way of solving this problem is 
through a judicious selection of the parts and the relationship defined between 
them. In this paper, we will show that given any relational graph, the ambigu- 
ity in the graph matching is related to eigenvectors of its relational at tr ibute 
graph. These eigenvectors can in turn be used to define a similarity measure. By 
grouping nodes that  are similar with respect to this measure, one can detect the 
invariant substructure of the relational graph, as well as maximize the stability 
of graph matching process. 

In particular, for defining texture similarity in image segmentation, we will 
build a relational graph for the image by taking each pixel as a node where the 
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attr ibute values on the nodes are set to be the histograms of the image response 
to a filter bank on the pixels. We will then use the instability in matching this 
texture relational graph to itself to define a new texture similarity measure 
for grouping. We will call this new distance measure the self induced relational 
distance, for it pools not only local feature information, but also more global 
relationships among them. For image l(a),  one can see that  although the tree 
branches look different from one another, their relative differences to other image 
parts are similar. In image l(b),  the relationship measured using the "stripe- 
ness" factor are more stable and prominent in this image than those using the 
stripe orientation. As we will see in sections 3 and 4(figure 6 and 7), our proposed 
distance measure can indeed capture this intuition. 

This paper is organized as follows. In section 2, we will study the problem of 
relational graph matching, in particular the instability in the graph matching and 
how the sel/-induced relational distance can be used to reduce such instability. 
In sections 3 and 4, we will illustrate how such distance can be used in the case 
of texture segmentation. We conclude in section 5. 

2 R e l a t i o n a l  G r a p h  M a t c h i n g  

The use of relational graph matching in computer vision starts with the seminal 
work of Barrow and Popplestone[2], and is subsequently followed up by the 
works of [1, 8, 19, 17, 3, 6, 24, 9, 23]. For relational structural matching, an object 
is described by its attr ibute graph, and the mapping of the object parts can be 
performed by using relational graph matching. An attr ibute graph is a graph 
G = ( V , E ) ,  with attributes A attached to each of the nodes in V and edges in 
E. For example, figure (2) shows how an at tr ibute graph can be constructed for 
an object in figure (2a). 

b 
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Fig. 2. An at tr ibute graph representation(b) of the object on the left(a). The 
nodes in the graph are the landmark points. An attr ibute on each of the nodes 
could be the curvature at each point, and the at tr ibute on edge (i, j )  could the 
the distance between points i and j.  

To match two attr ibute graphs G = (VG,EG) ,  and H = (VH,EH) ,  we 
seek a mapping f : VG -~ VH of the vertices, such that if f ( vG)  = VH, and 
f ( u c )  = UH, for VG, uc  in G and VH, UH in H, then attributes of the nodes va, 
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uG should match those of nodes VH and UH, and the at tr ibutes on the graph 
edge (vc,  ua )  should match those on graph edge (VH, UH). 

Let us first consider a simpler case where graphs G and H are of the same 
size, and the at tr ibutes on the nodes and edges are real numbers. Given a graph 
G of size N,  define A c  to be the N x N at t r ibute  matrix,  where A a ( i , i )  is 
the a t t r ibute  on node i, and A c ( i , j )  is the at t r ibute of the graph edge ( i , j ) .  
Furthermore,  we will assume the at t r ibute graph G is undirected. Let P be the 
N x N permutat ion matr ix  with P ( i , j )  = 1 iff f ( v i )  = v j  for vi in G and vj  in 
H.  We can define the cost function of the relational graph matching to be the 
L2 norm of the total  error on each of the nodes and edges: 

N N 

E l ( P )  = Z ~ - ~ ( A c ( v i , v j )  - A H ( f ( v i ) ,  f(vj)))  2 
i=1 j = l  

= [ I P A c P  T - AHll 2 

A similar cost function can be also defined using an inner product  norm: 

N N 

E2(P) = ~ Z A c ( v i ,  vj)  • A ,  ( f (v , ) ,  f ( v j ) )  
i = 1  j = l  

N N 

= ZZPA P%,j) • 
i = l  j = l  

= t r ( p T A a P A H ) .  

In fact these two definitions of the error function are equivalent, since: 

I IPAGP T - AHII 2 = IIPAapT]I 2 + IIAHI] 2 -- 2 t r (pT  A a P A g )  

= IIAall 2 + ]IAHII 2 -- 2 t r ( p T A G P A H ) .  

But IIAGII 2 + I]AHI] 2 is a constant, thus minimizing E1 is same as maximizing 
E2. However, as we shall see later, some properties of relational graph matching 
can be seen more readily with one of the cost functions. 

The graph isomorphism problem, that  is finding the P that  minimizes E l ,  
is a difficult problem to solve exactly. In fact, it is one of the open problems 
which is not known to be NP-comple t e  or in P[14]. There have been various 
efforts to find a close approximate  solution using relaxation methods[16,8], as 
well as variants of such methods in probabilistic settings[6,24], or in energy 
minimization settings[9]. Also there are tree-search based methods such as[23]. 
In defining relational distance, Shapiro and Haralick[19] and Sanfelu and Fu[17] 
proposed a distance that  will accommodate  missing parts  in the graphs. Boyer 
and Kak[3] and Vosselman[23] used information-theoretic approaches to take into 
consideration the different likelihoods of mis-matches in different attr ibutes.  

In this paper, however, we will be mostly interested in the possible uncertain- 
ties in the matching arising from the structure of the relational graph. Instead 
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of looking at the discrete group of permutation matrices, we will study the 
continuous group of orthogonal matrices, of which the permutation matrix is a 
subgroup. As shown in the work of Brockett[4, 5] and Umeyama[21], in the space 
of orthogonal matrices, the convergence and stability properties of the matching 
problem are better  understood. 

2 .1  I n s t a b i l i t y  a n d  S e l f - i n d u c i n g  D i s t a n c e  

The following two theorems capture the key properties of the solutions of the 
minimization problem (1) over the space of orthogonal matrices. 

T h e o r e m  1 [Umeyama 1988, Brockett  1991][21,4] Let AG = VGZGV T ,  and 
A H  = VH~HVTH, be the singular value decomposition of AG and AH.  The ma- 
trix Q = V H D I I V  T minimizes E l ( Q )  = IIQAGQ T -  AHH 2 over all orthogonal 
matrices Q, where D = diag(dl ,d2, . . . ,dn)  with di = 4-1, and I I  is some per- 
mutation matrix. In the case where the eigenvalues in ZG and ZH are sorted, 
l I = I .  

T h e o r e m  2 [von Neumann 1937, Brockett 1991][22, 41 Let {A1 c,  A~, A G ..., n } and 
{A H, A H, ..., A H} be the sorted eigenvalues of AG and AH.  The eigenvalues of 
the Hessian of E2(Q) = t r ( Q T A G Q A H )  at the Q = V H D H V ~ ,  are n(n-1) /2  
products o f form rij = (A~ A G g H -- i )(A.(i)-A,(j))" In particular, they are all negative 

for jus t  one choice of 7r, which is when 7r(i) = i. 

Proofs of both theorem can be found in[4, 21], we shall only briefly 1 repeat 
the proof for Theorem 1. Suppose Q = V H D V  T ,  we have 

El(Q) = IIQAcQ T - AHH 2 

= [[VHDVTAGVcDV T - AHII ~ 

= HVHDVTVGEcvTv~DV T -- VH2~HVTH 2 

= [[VHDZGDV~I - -  V H ~ H V ~ I [ ]  2 

= [[D~UGD - Z'HI] 2 = llZG - ZHII 2 

But since for any orthogonal matrix Q, we also have I IQAaQ T - AHII 2 > 
IIZG -- ZHII 2, the above Q must also be the minimum of E l ( Q ) .  

Since the orthogonal matrix Q is an approximation of the permutat ion matr ix 
P,  ideally the entry in Q ( i , j )  should be large if node v~ in G is matched to vj 
in H. Simple inspection of the definition of Q in theorem 1 shows that  the entry 
in Q ( i , j )  is large if the i th row of VH matches with j t h  row of DVG. In another 
words, two nodes, where each node is represented by the corresponding row or 
column in AG and AH, are more likely to match each other if their projections 
onto the eigenvectors of the relational graphs are similar. The multiplication of 

1 Space limitations prevent us from developing the motivation and approach behind 
these results. We urge the reader to study the Umeyama and Brockett paper for a 
gentler introduction. 
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VG on the left by D is necessary because the eigenvectors of AG and AH can 
take on arbitrary positive or negative direction. The closest permutat ion P to 
the orthogonal matrix Q can be then found by maximizing 

E E P(i, j)Q(i, j) = tr(pTQ). 
i j 

However in general, D is unknown, we have to maximize tr(pTIVHIIV~I) in- 
stead. The problem of maximizing tr(pTQ) or tr(pTIVHIIVTI) is an instance 
of bipartite maximum weighted graph matching, with Q(i,j) being the weight 
of the bipartite graph edges. The bipartite graph matching can be solved effi- 
ciently using max-flow or the Hungarian method[7]. Alternatively, we can use 
the method of Scott and Longuet-Higgins[18] to produce a quick approximation. 

Fig. 3. Subplot (a) shows the spatial layout of the points in the graph G. The 
points are formed by overlapping two point sets sampled from Poisson distri- 
butions of different densities. The at tr ibute value on the graph edge (vi,vj), 
shown in subplot (b), is defined a s  c -d(i, j)/as, where d(i,j) is the spatial dis- 
tance between the two points, and as = 4.0 in this case. For purposes of visual 
illustration, we ordered the point set such that the points in the sparse set are 
numbered 1 to 50, and the points in the denser set are numbered 50 to 75. Note 
that  the similarity measures among the sparse point sets are considerably weaker 
than those of the denser set. The points in Graph H,  shown as circles in (c), are 
obtained by adding random Gaussian noise(a = 0.2) to the spatial location of 
points in graph G,  shown as stars. 

To see how such a method would work, we will look at an example shown in 
figure (3). The nodes in the graph (G) are constructed by overlaying two spatial 
point sets of different densities. The attribute relationship is a function of the 
spatial proximity of the nodes. 

To test the sensitivity of the graph matching, we will construct a graph H 
by adding random Gaussian noise to the spatial location of the points in G. 
The performance of this matching algorithm as we increase the noise level in the 
spatial location of the point set can be seen in figure (4). As shown in figure (4), 
the computed permutation matrix is quite sensitive to noise in this particular 
example. 
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Fig. 4. Subplot (a) shows the error cost E1 (P) as a function of the noise added to 
points in graph H.  Subplots (1) to (6) show the permutation matr ix computed 
with Gaussian noise of variance of 0, 0.1, 0.2, 0.4, 0.6, 1.0 added to the spatial 
location of points in G. Note that as the noise level increases, the ambiguity in 
the matching increases. However, most of the mismatches occur for the points 
within each of their own respective point sets. 

Upon closer inspection of the graph G, this problem should not be too sur- 
prising. The points in the dense cluster have very similar at tr ibute relationships 
to all other points around it, hence each point can be mapped to other points 
in the dense cluster without affecting the matching cost. The same statement 
can also be made about the sparse set of points in the background. Further- 
more, from this example, one notes that the uncertainties in matching occur in 
a structured way- the points in the sparse set are less likely to be mismatched 
with the points in the denser set. 

This degree of uncertainty can in fact be quantified more precisely by theorem 
(2), which says the instability of Q at its minimum will be high in the dimension 

G G H where the term rij : ()~j --"~i )(/~i --)~f) is small. The difference in the singular 
values, )~ / -  Aj, is also often called the gapi. 

One way to remove this instability is to use only the set of eigenvectors whose 
gaps are large. One could define Q* -- V~D*V~ T, where V~ and V~ are the first 
k columns of VH and VG such that for all j > k, gap~ and gap H are all less than 
some threshold, (~gap. However, Q* will no longer be an orthogonal matrix, for 
rows in VH and Vc are not independent of each other. To solve this problem, we 
would like to group together nodes whose corresponding rows in VH and Vc are 
similar. We can quantify this similarity by the inner product norm of the rows 
in V6 and VH: 

OG = V~V~ T. (1) 

By grouping nodes with this similarity measure, we can optimally remove the 
uncertainty in the matching of relational graphs. 

Note that  the similarity measure OG depends only on the relationship of the 
nodes in one graph. Given a graph matching criteria we can perform the grouping 
of the nodes independently. We will call this distance measure the sel/-induced 
relational distance. 

To test our concept of the sel]-induced relational distance, we shall return to 
the example in figure (3). Figure (5a) shows the value of gapi for the eigenvalues 
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of the at tr ibute graph Ac ,  normalized by the first eigenvalue. Note that  gapi 
becomes very small after the fourth eigenvector. We will define the self induced 
distance measure Oc by taking the first four eigenvectors of AG, shown in fig- 
ure (5b). As one can see from figure (5), the new distance measure OG favors 
condensing the dense point set in the middle into one node, and closely related 
points in the sparse set into small numbers of nodes. With this small set of nodes, 
the relational graph matching become more stable, though at the expense of a 
reduction of the matching resolution. 

Fig. 5. Subplot (a) shows gapi for the eigenvalues computed from the at tr ibute 
graph A c  in 3(b). Subplot (b) shows the self induced distance matr ix Or com- 
puted using the first four eigenvectors of AG. The self induced distances from a 
point in the dense set and three other points in the sparse set to all other points 
are shown in subplots (1) to (4) respectively. The brightness value indicates the 
similarity strength between the points. Note the new distance measure more 
strongly connects up the sparse points, without blurring the connections from 
the dense set to the sparse set. 

2.2 R e l a t i o n a l  G r a p h  on  M u l t i - v a l u e d  A t t r i b u t e s  

So far, we have focused on the case where the at tr ibute value on each graph edge 
is just a scalar. In general, however, we could have a vector of real numbers repre- 
senting the at tr ibute relationship between two nodes. Let [AG (vi, vj, 1), AG (vi, vj 
,2), ..., AG(vi, vj, L)] = AG(vi,vj) denote the vector at tr ibute relating node vi 
and vj. We can define a similar graph matching cost function with this new 
at tr ibute graph: 

N N L 

Ev = E E E Av(v~, vj, k) x Ay(.f(vi), f(vj), k) (2) 
i : l  j = l  k : l  

Although the problem of finding an approximate solution in the space of or- 
thogonal matrices is more complicated, for the purpose of inducing a relational 
similarity measure, we can define a simpler cost function E* which serves as an 
upper bound on Ev: 

N N L L 

: Z E ( E  vJ, 
i = l  j = l  k = l  k = l  

N N L 

> vj, k) • A . ( S ( v , ) ,  k)) = 
i = 1  j : l  k = l  

by Schwartz Inequality of (x, y) <_ Hx]IHyH. 
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For the case where graphs G and H are isomorphic, the max ima  of each 
cost function are the same, hence any orthogonal matr ix  that  maximizes E* 
also maximizes E~. In the general case, however, the orthogonal matr ix  that  
maximizes E* is only an optimistic approximation of the one that  maximizes 
E~. Even so, we found in practice, that  this approximation often does a good 
job. We shall show this in the case of texture segmentation, 

2.3 Summary  of  the self  induced relational distance 

Let us review the main thread of the argument in this section. Relational graph 
matching is studied in an algebraic setting, where finding the best match reduces 
to finding a permutat ion matr ix  that  optimally reorders the nodes of one graph 
to correspond to the other. For mathemat ical  convenience, the discrete search 
problem in the space of permutat ion matrices is t ransformed to a continuous 
problem by embedding it in the space of orthogonal matrices. Results derived 
by Umeyama[21] and Brockett[4, 5] reveal that  the optimal  matching orthogonal 
matr ix  and its instability is related to the eigenvectors(V) and eigenvalues()~) of 
the relational a t t r ibute  graphs. To ensure stability of the graph matching, graph 
nodes are clustered based on their projections in the space spanning the first few 
eigenvectors(V*) whose gaps  are large. We call the distance in this subspace the 
self induced distance: O = V * V  *T. 

To illustrate the usefulness of the se l f  induced  dis tance  measure ,  we will apply 
it to the problem of texture similarity measurement and segmentation by setting 
up a relational graph on the texture feature space. The nodes in the graph are the 
pixels in the image, and the at tr ibutes on each graph edge are the correlations 
between the local filter outputs.  We will show in the next two sections the detail 
of how such a relational graph can be set up, and how the self induced relational 
distance can be used to solve the segmentation problem. 

3 T e x t u r e  M e a s u r e m e n t s  

First we will describe the local texture descriptors. The texture measurements  
used in the paper  is based on the image response to a set of filter banks. As 
shown in the work of [12, 11, 13], the filter responses contain sufficient information 
for discriminating different texture patterns.  The set of filters that  we will use 
consists of even symmetric  elongated difference of Gauss ian(DOOG) filters as 
used in[12]. There are total  of 6 orientations repeated over 3 different scales. We 
will denote by F~,o,~ an elongated DOOG filter of orientation 0, scale a,  and 
elongation ratio c~. Furthermore,  to reduce any unwanted bias, all the filters are 
made zero mean and are normalized so that  the L1 norms equal 1. Let I~,,o,~ 
denote the filter responses: 

I~,o,,~ = I * F,,,6,,~ (3) 

For the remainder of the paper, we will fix the elongation factor (~ = 3, and 
drop the subscript a .  For convenience, we will t reat  the image I itself as the 
filter response to an impulse function, or I = I0,0,0. 
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Because the filter responses only characterize the intensity variation at a sin- 
gle point in the image, and in describing a texture pat tern  one would like to 
integrate information over a spatial local neighborhood; a histogram representa- 
tion of the filter responses has emerged as an at t ract ive alternative. Theoretical  
as well as practical benefits of using this histogram representation has been 
illustrated in the work of [10, 25, 15]. 

We will use a similar representation which is a soft histogram defined over 
the bins, ba,a r a i n  max -- (b~,~ ,..., b~, a ) of length K:  

H~ . . . .  (k) = ~ h~,,, (k), (4) 
jEN,(i)  

where 

1 fb(k+l)  e-(x$,~-=)l~ dx. (5) 

The at is related to the degree of uncertainty tolerated in the filter response, 
and s denotes the spatial radius of the neighborhood centered at i. This defini- 
tion of the histogram softens the effect of binning and the uncertainties in the 
measurement.  Since we also don' t  know a priori the size of the neighborhood in 
which texture pat tern  exists, we will compute this soft histogram over several 
different neighborhood sizes. Note also that  the L1 norm of H~,~,s = IN~(i)l the 
number  of nodes in that  neighborhood. 

4 Relat ional  Br ightness -Texture  Dis tance  

Given a brightness-texture image, an at t r ibuted relational graph can be con- 
structed by taking each pixel as a node, and defining a set of a t t r ibutes  on each 
graph edge connecting two nodes based on the correlation between their local 
soft histograms. Although we can take the inner product of the histograms as 
their correlation, this definition has a bias since the L2 norm of the histograms, 
IIH~,~,~II, varies depending on the distributions in the histogram. To correct for 

1 

this bias, we let e,~,~ J , G~,~,s(k ) = H i I k ~  and define the at t r ibutes  on the graph 

edge (v i ,v j )  as: 

1 i T Gj  
Ae .... (i,j) = iN~illNsjlGe .... " e ..... (6) 

for each set of parameters  8, a, and s. 
As mentioned in section (2.2), for the purpose of computing the self induced 

relational distance, we can get an approximation with a scalar a t t r ibute  graph 
where the a t t r ibute  on graph edge (vi, vj) is 

* " ~-"~ A 2 ~i .~I /2  A b,J)=~2__,  o .... ( , m  - (7) 
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Fig. 6. Comparison of different texture distance on a texture image shown in 
(a). The ith row shows the texture similarity between pixel / (s tar )  labelled in 
(a) to all other pixels in the image according to (1) X ~ difference on the local 
histogram with neighborhood size of 3 x 3 pixels (column 1), (2) X 2 difference 
with neighborhood size of 11 • l l (co lumn 2), (3) L ~ norm in filter responses 
computed with neighborhood size of 5 • 5 (column 3), and (4) self induced 
distance(column 4). Note that  picking the right neighborhood size could be a 
hard problem with X 2 distance- with too small neighborhood size connections 
in the texture image are sparse and weak, with too large a neighborhood size 
object boundaries are blurred. Similarly L ~ could cause over-fragmentation in 
areas such as the tree branches. With the self-induced texture distance, relational 
coherence in texture feature space is enhanced, without sacrificing the sharpness 
of the texture boundaries. 
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Given this relational graph, we can compute the self induced relational dis- 
tance as described in section 2.1. Experimental tests on brightness-texture im- 
ages such as the one illustrated in figure (la) are shown in figure(6). The self 
induced relational distance clearly depends on the number of eigenvectors of 
the at tr ibute graph taken in equation (2). In all of our experiments, we set the 
threshold of the minimum gap value to be 5gap = 8 • 10 -4 • A1, where ~1 is 
the largest eigenvalue of AG. This threshold of 6g~p determines the number of 
eigenvectors to be used. Figure (7) shows the effect of using different numbers 
of eigenvectors in computing the self induced relational distance for the scene 
shown in figure (Ta). 

Fig. 7. Row i shows the effect of using different number of eigenvectors in com- 
puting the self induced relational distance O(i, j) between pixel i labelled in (a) 
and all other pixels j in the image. Each of the columns correspond to distances 
computed with 2,3,4,6,9,12 eigenvectors from left to right, respectively. With our 
setting of 5gap, the first 9 eigenvectors will be used in computing the self induced 
relational distance. 

4.1 N o r m a l i z e d  C u t s  

Using the newly defined texture similarity measure, we can produce a segmen- 
tation of a scene using the normalized cut algorithm [20]. In the normalized 
cuts scheme, the image segmentation problem is reduced to a hierarchical graph 
partitioning problem. In this case, the nodes in the graph are the pixels in the 
image, and the weights on graph edge connecting two nodes are the self induced 
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relational similarity measures. We then seek a sub-partitioning of the graph, 
such that  the similarities within subgraphs are high and similarities between the 
subgroups are low. 

Let G = (V, E) be a weighted graph, with adjacency graph weight matrix 
W.  W (u ,  v) is the weight on the graph edge connecting nodes u and v reflecting 
the similarity between the two nodes. We can break G into two disjoint sets, 
A, B, At3B = V,  A N B  = 0, by simply removing edges connecting the two parts. 
Following our previous work[20], we will use the normalized cut as a measure of 
dissimilarity between the two groups: 

cut(A, B) cut(A, B) 
Ncut(A, B) -- asso(A, V) + asso(B, V)' (8) 

where cut(A,B) = ~uEA,vEB W(u,v) is the connection between A and B, 
asso(A, V) = ~ueA,tEv w(u,t) is the total connection from nodes in A to all 
nodes in the graph, and asso(B, V) is similarly defined. Let W be the graph 
weight matrix, and D be the diagonal matrix with D(i,i) = ~-]jW(i,j). In 
[20], we showed that  minimizing Ncut can be reduced to minimizing a Rayleigh 
quotient: 

rain. Ncut = rainy yT(D -- W)y  yTDy , (9) 

with the condition yi E {1 , -b}  and yTD1 = 0. By relaxing y to take on 
real values, we can minimize equation (9) with its constraint by solving for 
the generalized eigenvector corresponding to second smallest eigenvalue of the 
system, 

(D - W)y  = ADy. (10) 

The vector y can be thought of an indicator vector for the partition. Further- 
more, the subsequent eigenvectors are the real valued solutions that  form the 
optimal sub-partitions. From those vectors a discrete partit ion can be obtained 
as shown in [20]. 

4.2 O v e r a l l  P r o c e d u r e  a n d  T e x t u r e  S e g m e n t a t i o n  R e s u l t  

In summary our texture segmentation algorithm can be described as: 
1. Compute filter outputs I~,~ from an input image I ,  
2. Construct soft histogram at each pixel i, H~,~,8, over a neighborhood of 

radius s = [1, 3, 5, 9, 15, 26] pixels, 
3. Set up attributes Ae,~,8 and A* from H~ ..... 

4. Compute the distance measure O = IU~4U~TI, where A* -- UAZAU T, U~ = 
UA(:, 1 : k) such that V(j > k) gapj < 5gap, 

5. Produce image segmentation using normalized cut algorithm[20]. 
The segmentation result using normalized cuts on the self induced relational 

texture distance are shown in figures (8) and (9). Unlike our previous work, 
the spatial proximity factor is not used in the segmentation algorithm, hence 
we obtain somewhat less spatially coherent groups. This is done on purpose to 



541 

emphasize the texture similarity in our new relational distance measure. Adding 
spatial  proximity factor in our framework is very easy. Note also our segmen- 
tat ion procedure produces a hierarchical partit ioning of the scene, some of the 
under-segmented regions can be sub-divided into smaller parts.  

Fig. 8. Segmentation results on the image in (a) with the newly defined relational 
distance. The relational graph is built by taking pixels from every 5th row and 
column as graph nodes. These are also the nodes used in normalized cuts. The 
full image size is 220 • 350. Note both the cheetah in (2) and the random tree 
branches in (5) come out as single coherent groups. The tree trunks in (3) and 
(6) are in two different groups because of the difference in intensity value. 

5 Conclusion 

In this paper,  we have shown how a self induced feature distance can be derived 
by analyzing its relational graph. In particular, the process of finding a stable 
matching of the relational graph produces as a by-product  a distance measure 
which captures the relative importance of the feature relationships. By applying 
it to the problem of image segmentation in the brightness-texture feature space, 
very good results are obtained on difficult images of natural  scenes. 
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