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A b s t r a c t .  The foreground group in a scene may be 'discovered' and 
computed as a factorized approximation to the pairwise affinity of the 
elements in the scene. A pointwise approximation of the pairwise affinity 
information may in fact be interpreted as a 'saliency' index, and the 
foreground of the scene may be obtained by thresholding it. An algorithm 
called 'affinity factorization' is thus obtained which may be used for 
grouping. 
The affinity factorization algorithm is demonstrated on displays com- 
posed of points, of lines and of brightness values. Its relationship to the 
Shi-Malik normalized cuts algorithms is explored both analytically and 
experimentally. The affinity factorization algorithm is shown to be com- 
putationally efficient (O(n) floating-point operations for a scene com- 
posed of n elements) and to perform well on displays where the back- 
ground is unstructured. Generalizations to solve more complex problems 
are also discussed. 

1 I n t r o d u c t i o n  

Fig. 1 shows a distribution of points in the plane. Taken one by one the points are 
identical to each other. However, it is quite apparent that  their mutual positions 
in the plane contain some 'global' information. While it is somewhat unclear 
how to define this global information, it is natural to consider a local property: 
the 'pairwise similarity' of these points: two points that  are close by are 'similar' 
and two points that  are far apart are 'different'. 

This is a common situation in vision: we extract tokens from an image using 
some early visual process, and the notion of 'closeness' between pairs of tokens 
is natural and well defined. The tokens may be anything: from pixels to points, 
to edgels, to textured patches. While it is unclear how to extract, and even how 
to define, the global high-level properties of the scene, it is easy and natural to 
define the pairwise affinity of any two tokens. This idea comes to us from the 
work by Shi and Malik on grouping using normalized-cuts (see [8] and references 
therein). In this paper we explore a weaker approach than that of Shi and Malik: 
rather than formulating a grouping problem explicitly, we notice that  a useful 
global property of the scene, the foreground set, may be both 'discovered' and 
estimated starting from the notion of pairwise closeness, or pairwise affinity, of 
individual elements. We develop a simple algorithm which factorizes the matrix 
of pairwise element affinities, and compare it with the algorithm of Shi and 
Malik. 
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2 T h e  a f f i n i t y  f u n c t i o n  

Given two elements ( i , j )  in the scene S, let's suppose that  it is possible to 
assign a number Ai,j that  tells us how 'similar' the two objects are. When the 
two objects are very similar then Ai,j has a high value and when they are not 
similar at all then Ai,j ~ O. We will suppose that  this affinity function has the 
following properties: 

Vi, j C S : Ai,j E [0, 1], Ai,i = 1, Ai,j = Aj,i 

The first and second properties impose a normalization on A. The third property 
is a symmetry requirement. 

~176 $ 

Fig. 1. A set of points on the plane 

As an example, two points in Fig. 1 are 'similar' if they are close-by. One 
could define Ai,j as: 

Ai,j = e - d 2 ( i ' j )  (1) 

d2(i , j )  - Ilxi - xjll 2 

where do is a reference distance below which two points are thought to be similar 
and beyond which two points are thought to be dissimilar, and xi is the vector of 
coordinates of point i. There is nothing magical about this particular definition 
of affinity: depending on the situation another definition may be more natural  
and appropriate. Affinity functions for line segments and other objects will be 
discussed later. 

3 O ( n )  a p p r o x i m a t i o n  o f  t h e  a f f i n i t y  m a t r i x  

Notice that  if the scene contains N objects we need (N - 1)N/2 = O ( N  2) 
numbers in order to describe its affinity properties. If the image is composed of 
tens of thousands of objects (points, lines, pixels), as it is the case in vision, this 
means hundreds of millions of numbers. It makes sense to wonder whether we 
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could describe some fundamental aspects of the scene in a cheaper way: rather 
than by a function Aij of object pairs (i, j ) ,  by a poifitwise function Pi of objects 
i taken one by one. This way the complexity of our description will drop to O(N)  
(bits, as it will turn out). 

We propose, as a possible approach, to approximate A by products of p's: 
A i j  = PiPj. We are trading off some accuracy in representing A with a great 
improvement in storage costs. What  is the best p that  we could use? This depends 
on our definition of approximation error. We will start by using the L 2 n o r m  in 
order to define a distance between two matrices: 

N 

p = argmin ~ (Ai,j -[~i~j) 2 (2) 
p 

i , j - - 1  

the L 2 norm is not necessary (see the discussion section at the end). 
Notice that  we are approximating A with the rank-one matr ix ppT. The best 

solution to this problem (in the sense that  it minimizes the Frobenius, or L 2, 
norm of the approximation error) is well known: 

Proposition 1 The best order-one L 2 approximation of a matr ix A is the first 
singular vector of the matrix A multiplied by the square root of the corresponding 
singular value. Calling (U, S, V) the singular value decomposition of A, and U i 

2 = Si,i the singular values of A we have: the columns of U and ai 

p = o - l U  1 (3) 

Proof:  See [6]. 
Notice that  A = A T and therefore U = V. Also: since A = A T p is also equal 

to the eigenvector vl of A with largest eigenvalue )~i: p = ~11/2Vl. 
Let's take a look at Fig. 2 where the function p that  we obtain for the 

example of Fig. 1 is shown. We may notice that  p takes values between 0 and 1, 
and that  for some indices i the value o fp  is exactly equal to 0. In Fig. 2(right) the 
function p is shown together with the position of the points. We may notice that  
the points for which p is different from zero are in the same region of the picture, 
with higher values of p for points in the middle of that  region. For reasons that  
will become apparent later let's call 'foreground' that  region, and 'background' 
the rest of the points. 

How well does ppT approximate A? One may take a look at the error in 
approximation of the entries of A (Fig. 3, left group, right matrix), however, this 
does not give much insight. If we permute the entries of A using the permutat ion 
of indices that  sorts the values of p in ascending order (see Fig. 3, right group), 
then the picture becomes clearer. Notice that  the approximation is poor when 
both i and j belong to the background group, while it is better  for both the 
foreground group and the mixed terms Ai,j with i belonging to the foreground 
and j belonging to the background. 

Let's summarize our observations so far: 

1. The function p takes values between 0 and 1. 
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F ig .  2. (left)The approximant p for the distribution of points shown in Fig. 1. The 
affinity function defined in Eq. 1. The reference distance do is shown in the display on 
the right. (Right) Pictorial representation of p: a dot indicates each point 's position; 
the radius of the circle around each dot is proportional to the magnitude of the corre- 
sponding value of p. Points for which p = 0 do not have a visible surrounding circle. 
The reference distance do is shown in the lower right corner. 

Fig.  3. (Left group of 3) The approximation of the affinity matrix obtained using p. 
Brighter pixels indicate values that are larger. (Left) The affinity matrix. (Center) 
The approximation of A provided by p * pT. (Right) The difference between the two 
matrices. In the right group of three the same matrices are shown - the indices were 
permuted so that  the vector p is sorted in ascending order. 
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2. For some i's Pi is exactly equal to zero. 
3. The points for which p > 0 tend to cluster in one 'foreground' group. 
4. The approximation of A appears to be good when at least one of the points 

involved belongs to the foreground. It is bad otherwise. 

We may conclude with the key observation of this paper: 
By calculating the pointwise approximation Pi of the pairwise affinity Aij of the 
elements in the scene we have discovered a new global property: the parti t ion of 
a scene into two groups, which we call 'foreground' and 'background'. We may 
see p as a 'saliency' function of the points. 

After discovering the concept of foreground group we may specify an algo- 
r i thm for calculating the foreground group. We call it the 'affinity factorization' 
algorithm: 

1. Form a matr ix Aij containing the pairwise affinity of each pair of elements 
in the scene. 

2. Call p the eigenvector of A that  is associated to its largest eigenvalue. 
3. Define the foreground F as the set of objects i whose corresponding Pi is not 

equal to zero (more practically, p > ~ > 0). 

4 A p p r o x i m a t i o n  p r o p e r t i e s  

Why does the first eigenvector of the affinity matrix A behave in the way we 
observed? We give here an explanation. 

L e m m a  1 Consider a symmetric nonnegative matrix B: Bi j  = B j i  > 0, Vi, j .  
Then the eigenvector v B of B that  is associated to its largest eigenvalue is 
nonnegative: v s > 0. 

Proof  It is well known that  the iteration v t+l = B v  t converges to v~ for almost 
all initial conditions v ~ Without loss of generality we initialize the computation 
with v ~ > 0. Since, by hyp., all entries of B are non-negative, then v I and 
therefore any v k is also non-negative. 

L e m m a  2 Consider a symmetric block-diagonal n x n matr ix  C, whose b diag- 
onal blocks Bi are nonnegative. Call ABi the eigenvalues of Bi and call v s~ the 
corresponding eigenvectors. Suppose that  all such eigenvalues are distinct. Call 
w B~ 's the n-vectors obtained by padding the v Bi's by zeros so that  the nonzero 
entries correspond to the position taken by Bi within A. 
Then the w B~'s are the eigenvectors of C and the )~B~ are the corresponding 
eigenvalues. 

Proof  By inspection. 

L e m m a  3 Consider C as above and call Vl its eigenvector associated to its largest 
eigenvalue. 
Then the entries of vl are zero corresponding to b - 1 of the blocks and are 
nonnegative corresponding to the remaining block. 
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Proof The largest eigenvalue of C is equal to the largest eigenvalue of one of the 
blocks Bi.  The corresponding eigenvector therefore is nonnegative corresponding 
to that  block and it zero elsewhere. 

Proposition 2 Consider an affinity matrix A constructed on a scene where the 
affinity between elements of distinct groups is exactly zero. Then the first eigen- 
vector of A is zero corresponding to elements in all groups minus one, and non- 
negative corresponding to elements of that  group. 

Proof A is symmetric and nonnegative. By permutation C' = p T A p  it may be 
transformed into a block-diagonal matrix with nonnegative blocks, each block 
corresponding to a group in the scene. Its largest eigenvector may be obtained 
from the largest eigenvector of C by using the same permutation P.  

Proposition 3 Consider the affinity matr ix A of a scene where the affinity between 
elements of distinct groups has size of order e. 
Then the elements of the first eigenvector of A are nonnegative for one group 
and are of order e for all other groups. 

Proof Call vi, Ai the eigenvectors and eigenvalues of A. Write A = A' + eN  
where N is a 'noise' matrix whose entries are distributed between zero and 1, 
and A' is block-diagonal. Write v = v' + (iv and )~ = A' + 5)~, where v t, ~' are 
the eigenvalues and eigenvectors of A'.  Then Avl  = )~1vl. Multiply on the left 
by vi, i > 1: v T A v l  = ~ l vTv l .  Expand A and Vl and simplify using A'V'l = )~'1v'1 
obtaining: 

v~Svl - )~1 - )~i vTi N v l  (4) 

i.e. the projection of the variation of vl due to the e-sized noise in the direction 
of vi is proportional to e. 

A comment stemming from the proof of proposition 3: when the magnitude 
of the 2nd eigenvalue of A approaches the magnitude of the first we expect 
the eigenvector corresponding to the largest eigenvalue to lose the at tractive 
property of having zero entries corresponding to the background items. 

5 Relationship with n o r m a l i z e d - c u t s  g r o u p i n g  

5.1 N o r m a l i z e d  cu t s  

Shi and Malik [8] have proposed to perform grouping using normalized cuts. 
They see the tokens that  one wishes to group as the nodes of a graph, whose 
arcs carry the affinity between pairs of nodes. The cost of a cut C(G1,G2)  of 
the graph into two subgraphs is defined as the sum of the affinities associated 
with the arcs that  are being cut. The affinity V(G1,  G) between a subset G1 of 
the graph and the rest of the graph G is the sum of all the arcs that  connect the 



661 

nodes in G1 to every other node. They propose to minimize the normalized cut 
cost N(G1,  G2): 

c(al,c )= Z v(ak,a)= A ,j 
iEG1 ,jEG2 iEGk ,jEG 

C(G1, as) C(G1, G2) 
N(G1,G2) = V(G1,G) + 'V(G:,G) ' G1,G: = argal,a2min N(G1,G2) 

Shi and Malik develop a heuristic for calculating efficiently an approximat ion 
of the optimal  partition. They solve the generalized eigenvector problem: (A - 
D)x = )~Dx, where A is the affinity matrix,  x is an unknown vector, and D is 
a diagonal matr ix  with Di,i = ~ j  Ai,j. The second-to-last eigenvector x turns 
out to be an indicator vector for the two se tsG1 a n d G 2 : i E G 1  z > xi >o~. 
Where ~ is a constant that  is determined by solving a related optimization. 
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Fig. 4. The Normalized-Cut algorithm on the dataset shown in Fig. 1. On the left 
the value of the indicator eigenvector is shown (see text). The plot to the right, analog 
to the one in Fig. (2), shows the corresponding grouping - triangles indicate positive 
values of the eigenvector, dots indicate negative values, the diameter of the circles 
surrounding each marker indicates the magnitude. 

5.2  F o r e g r o u n d  c u t  

Consider an asymmetr ic  variation of Shi and Malik's cost function. Define one 
of the two subsets of G to be a foreground F,  and its complement B = G "-. F 
to be the background, and minimize: 

N ( F )  - C(F,  B) 
C(F,F) (5) 

The problem may be solved along the lines of Shi and Malik. Define a vector x of 
zeros and ones, with the l ' s  being the foreground indices (xi = 1 -: :- i E F).  
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Define a vector 1 as a vector of ones. Call B the background, complement  of F:  
B = G \ F.  Then: 

N ( F )  = B i e F , j e B  Ai,j 
~ i e F , j e F  Ai , j  (6) 

_ x T A ( 1  -- x) x T A 1  
1 (7) 

x T  A x  x T  A x  

xT A1 
Note tha t  minimizing N ( F )  is equivalent to minimizing N ( F )  + 1 = ~-~A~" 

Now call (U, S, V) the SVD of A and notice that  U = V since A is symmetric.  
1 T Define z - S ~ U  x,  and rewrite the cost function as: 

T 1 Z S ~ u T 1  z T u  
N ( F )  + 1 - - - -  (8) 

ilzli 2 lizit 2 

with ui - S �89  Z U j , i  (9) 
J 

Remember  tha t  we are trying to find a minimum of N subject to the con- 
straint that  x is composed of zeros and ones. It  is not clear how to perform this 
optimization efficiently. We may proceed heuristically as in Shi and Malik by 
letting x take analog values, and imposing a constraint on its norm. The  easiest 
such constraint, here, is to impose that  Ilzll = IlxllA = 1. In this case we just  need 
to minimize the numerator  of our cost function. This is easily done by discovering 
the largest (in absolute value) entry of u, and picking z T = 4-[0, . . . ,  0, 1,0, . . . ,  0] 
with 1 in the corresponding position k. The sign of z has to be chosen so tha t  it is 

1 
opposite to the sign of the maximum entry of u. Now remember  tha t  x = S -  ~ U z  
- this means that  the minimizing x is the k-th column of U appropriate ly  scaled. 

As a result we derive the following 'foreground cut '  algorithm: 

1. Calculate the SVD of A: A = U S V .  
2. Calculate the vector u = S U 1 .  
3. Determine the index k of the maximum entry of u. 
4. Define the foreground vector x as the k-th column of U. 
5. Threshold x, the foreground F correspond to the non-zero entries of x. 

I t  turns out that  the largest entry of u is typically the first, since, as previously 
discussed, if A is block-diagonal, then the 1st singular vector will have non- 
negative entries (it is the first eigenvector), while the other eigenvectors tend to 
have zero-mean; moreover, the sums of the columns of U enter in u weighted 
by the singular values in S, which imposed an additional bias in favor of low- 
index entries. Therefore, apar t  for rare cases, the 'foreground cut '  algorithm gives 
identical results as the 'affinity factorization'  algorithm. 

6 L i n e  a f f i n i t y  

The fact tha t  line segments tend to group into longer line-like structures when 
they are roughly aligned in the image was noticed in the '30s by the Gestal t  
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psychologists. Computer vision researchers have worked on the problem at least 
since the early 80s [3], with methods reaching a considerable level of sophistica- 
tion by the end of the 80s [7, 5]. 

t] 

Fig. 5. Variables involved in the computation of the affinity of two edgels i and j. 

A reasonable form for the affinity of line segments (or edgels), suggested by 
the observations of the Gestalt psychologists and supported by psychophysical 
measurements of Sagi, Kovacs, Braun and collaborators [2, 4, 1], assumes that 
that two lines are 'similar' when they are close by, when they are aligned and, 
failing that, when they are co-circular, i.e. tangent to the same circle. A possible 
implementation of these intuitions is (see also Fig. 5): 

d 2- 2- -cos(2~i  )--cos(2a~ ) 1 . . . .  ( 2 ~ i - - 2 ~ i )  
Ai,j - e - ~ o -  1 - - c ~  - -  1 - - c ~  (10) 

where the first term in the exponential is a distance-related affinity, the second 
term penalizes the average deviation of the line segments from being collinear, 
and the third term penalizes the non-cocircularity of the two line segments. The 
scaling constants do, 0o,500 are somewhat arbitrary. Good values for do range 
between the spacing of the elements and five times that value. Good values for 00 
typically range from ~/2  to 7r/10, while 500 typically should be half to one-fourth 
as large as 00 (see the experiments). 

7 C o m p u t a t i o n a l  c o m p l e x i t y  

The affinity factorization algorithm may be implemented efficiently. The cost 
function of Eq. 2 may be minimized, rather than computing the SVD of the 
matrix A, by gradient descent pt+l = (1 - A)p t + N--~Ap, which for )~ = 1 is: 

p0 = 1, pt+l = l__~Ap (11)  
IIpfiP 

Typically 10-40 iterations of (11) achieve a stable result. If the computations 
are implemented using sparse matrices the total complexity is linked linearly 
to the number of neighbors of each element (this may be verified by inspecting 
(11)). Let N be the average number of neighbors of each element, and let E 
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be the number of elements in the set to be grouped, then the computational 
cost is C ~ <  100 • N • E floating point operations for the minimization. This 
cost has the same order as that  of the Shi-Malik algorithm with a multiplicative 
constant that  is roughly half as large. The computation of the matrix A may 
also be reduced to a linear cost by using quad-trees for referencing the data  
points (we have not implemented this). This appears to be faster than both 
Shashua and Ullman [7] and Parent and Zucker [5], although we have not yet 
implemented their algorithms and we were unable to find a precise assessment 
of computational complexity in their papers. 

8 E x p e r i m e n t s  

We explore some of the characteristics of the affinity factorization (or, equiva- 
lently the foreground cut) and the normalized cuts algorithms. In our experi- 
ments we have picked thresholds by hand - the problem of automatic threshold 
selection is discussed in [8]; in some experiments, where we thought tha t  this 
may be illuminating, we used multiple thresholds. Another issue that  we do not 
discuss here is the extraction of multiple groups from the image. This is also dis- 
cussed in [8]. Here we will restrict ourselves to showing the most salient group 
found by the affinity factorization algorithm, and the most salient cut found by 
the normalized cuts algorithm. 

The method we used for calculating p in the affinity factorization algorithm 
is specified in Eq. (11); the calculation of x in the normalized-cuts algorithm was 
performed using Matlab's SVD function. The constants used in the experiments 
are specified in the figures. 

8.1 Experiment 1: Point Clusters 

A first experiment is shown in Figures 1, 2, 3, 4. A second experiment using data 
from [8] is shown in Fig. 6. Both algorithms achieve good grouping. 

8.2 Experiment 2: Foreground-background 

A second experiment compares the algorithms on a foreground-background dis- 
play shown in Fig 7, left. See Figures 8, 9. The normalized cuts algorithm does 
not achieve grouping for any value of p, probably due to it's symmetric for- 
mulation, where both sets in which the scene is grouped are supposed to be 
'meaningful'. The affinity factorization algorithm does achieve grouping instead. 

8.3 Line grouping 

We used the aff• function reported in Sec. 6 to group lines in the line fig- 
ure shown in Fig 7, right. The affinity factorization algorithm achieves good 
grouping, while the normalized-cuts algorithm does not, probably due to the 
foreground-background problem mentioned above. 
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Fig.  8. The 'groupiness' vector p (left) and the groups (right) obtained for a foreground- 
background dot figure using the affinity factorization algorithm. The short bar at the 
bottom right indicates the length of the critical distance do. Capsized triangles indicate 
points for which p < 0.01; upright triangles indicate points for which p 6 (0.01, 0.1); 
open circles indicate dots for which p E (0.1, 0.5); closed circles axe associated to 
p > 0.1. Notice that the circles indicate the foreground group, with open circles at its 
periphery and 3 upright triangles at the extreme periphery. 
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Fig.  9. Performance of the normalized cuts algorithm on same data as in Fig. 8. The 
indicator eigenvector x of A is shown in the plot on the left. Unlike the vector p of 
the affinity factorization algorithm, x takes both positive and negative values. The 
grouping is shown on the right, with triangles indicating x < -0 .08 ,  open circles 
indicating x E (--0.08,0.1) and closed circles x > 0.1. The symbols are mixed and 
therefore no good groups emerge. 
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Fig.  10. Grouping performed by the affinity factorization algorithm.The thickest 
line segments correspond to p > 0.01, the medium-thick segments correspond to 
p E (0.0001, 0.01), while the thin segments correspond to p < 0.0001. The long line 
at the bot tom right indicates the critical distance do. The constants used in (10) were 
00 = 7r/8 and 600 = 7r/16. 
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Fig.  11. Grouping performed by normalized cut algorithm. The same affinity matrix 
as in (10) was used (i.e., same affinity function and same constants). The vector x only 
has one non-zero value (corresponding to the short bold line, roughly at the center of 
the display). 
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8.4 2D images 

We explored the behavior of the algorithms on the synthetic brightness images 
shown in Fig. 12. The images are identical apart  from the background (relatively 
noisy or 'unstructured'  in the right image). 

Fig. 12. Two brightness 'Mondrians' used in our experiments. The brightness values 
are uniformly distributed between 0 and 0.1 for the background of the left image and 
between 0 and 10 for the background of the right image. The rectangles are identical in 
the two images, with brightness uniformly distributed between 2 and 2.1 for the larger 
one and between 3 and 3.3 for the smaller one. The units of brightness are arbitrary. 
The images are shown with different colormaps. 

An exponential affinity function was used (i and j are pixel indices): 

- -  d 2 ( i , J )  _ _  ( I ( i ) - - l ( J ) )  2 

Aij = exp d] d,o (12) 

with I indicating brightness values and constant values do = 3 and dIo = 1. 
In Fig. 13 the results of the experiment are shown. Both algorithms work well 

on the first Mondrian (Fig. 13, first row), with the normalized cuts algorithm 
showing a more uniform value than the factorization algorithm (although, as 
shown in the middle column, the log of the first singular vector shows equivalently 
sharp boundaries). In the Mondrian with unstructured background (Fig. 13, 
second row) the normalized cuts algorithms groups a small cluster of pixels 
rather than one of the two large rectangles. 

9 D i s c u s s i o n  a n d  C o n c l u s i o n s  

We have shown that  concepts such as 'grouping' and 'foreground' may be ob- 
tained from an intuitive concept of 'pairwise similarity' or 'pairwise consistency' 
between elements of the scene. The derivation consists in choosing to approxi- 
mate the pairwise relationships between all elements with a pointwise property 
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Fig. 13. First eigenvector of the affinity matrix (left), log of the same (center) and 
normalized cuts (right). The first row shows the results on the first Mondrian, the 
second on the second. 

of each element. It turns out that  the pointwise property that  best approxi- 
mates pairwise simila:-ity may be interpreted as a 'saliency' measure, and one 
may obtain the foreground group in the scene by thresholding this saliency mea- 
sure. Propositions 2 and 3 give an explanation, based on the properties of the 
eigenvectors of (noisy) block-diagonal matrices, of why this is the case. 

Our derivation suggests an algorithm for grouping which we call 'affinity 
factorization algorithm'. We derive a second grouping algorithm which we call 
'foreground cuts' by modifying the 'normalized cuts' formulation of Shi and 
Malik [8], and we show that 'foreground cuts' and 'affinity factorization' are es- 
sentially the same algorithm, although they are derived from a different starting 
point. 

We compare affinity factorization and normalized cuts on a number of test 
sets of points and lines and brightness images. The experiments demonstrate 
the good grouping performance of affinity factorization even on data  sets where 
the background is unstructured, which the normalized cuts algorithm is not 
constructed to handle. Malik and collaborators approach this problem by defin- 
ing more sophisticated affinity measures, including texture and brightness his- 
tograms, for which the class of unstructured image patches is smaller (see their 
papers in the present proceedings and of ICCV 1998). 

The experiment on brightness Mondrians shows that  value of the saliency 
vector p of the affinity factorization algorithm drops near the boundaries of the 
foreground region (compare with the very desirable piecewise constant behavior 
of the normalized cuts vector). However, its logarithm shows sharp boundary 
discontinuities (it is natural to consider the log. since we are guaranteed that  p 
is non-negative). This suggests that  maybe the log of the largest eigenvector of 
the affinity matrix should be considered as the proper definition of the affinity 
function. 
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The implementat ion of the affinity factorization algorithm that  we propose 
is efficient, in tha t  it executes in O(n) operations, where n is the number  of 
elements in the display. 

Directions for further research and experimentat ion include: 

1. Generalization to the situation in which, rather  than  pairwise affinities be- 
tween elements, we have three-way or n-way relationships. In tha t  case we 
may star t  from the affinity tensor Aijk and approximate  it with PiPjPk. 

2. Generalization to the situation where the affinity is non-symmetr ic  (think of 
the line-elements forming a T junction). In tha t  case we may approximate  
A with Piqj and use both p and q to select the foreground set. 

3. Study other norms than L 2. The L 1 norm, for example, may be more ap- 
propriate.  Eq. (11) may be suitably modified for this purpose. 

4. Incorporate  ' top-down at tent ion '  by imposing that  the solution contains a 
certain subset of elements. This may be done by introducing a bias t e rm in 
Eq. (11). 
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