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Abstract. Image-sequence analysis for real-time applications requires 
high quality and highly efficient algorithms for tracking as there is no 
time to do the costly object recognition each time a new image is cap- 
tured. Tracking with projection histograms revealed amazing results com- 
pared with standard correlation methods. Trackers based on projection 
histograms performed 31% up to 211% better than the reference methods 
on a common test set. The new template-based method relying on projec- 
tion histograms (RPH) is described and compared with two commonly 
known template based methods namely the normalized cross-correlation 
(NCC) and displaced-frame-distance (DFD) methods. The input to the 
system consists of live or recorded video data where filterbased prepro- 
cessing can be applied before tracking in order to enhance features such 
as edges, textures etc. A region of interest (ROI) is taken as a template for 
tracking. In subsequent images tracking exploits a Kalman-filtered local 
search in order to renew correspondence between the object template and 
the new object location. Comparative tests were performed with real-live 
image-sequences taken in underground stations. Tracking with projec- 
tion histograms outperformed tracking by NCC and DFD on grey-level 
image-sequences as well as on edge-enhanced image-sequences. Even the 
worst chosen parameter set for tracking by the new RPH method re- 
sulted in better tracking as with the best ones for both NCC and DFD. 
keywords: template matching, 2D-tracking~ r e a l - t i m e  tracking 
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1 Tracking in Rea l t ime  

As computers get faster, more and more complex problems in image analysis 
become practically solvable. Yet image-sequence analysis, especially in real-time 
environments, often stride the frontieres of feasibility. Visual surveillance sys- 
tems are but one example of an emerging branch where hard time-constraints 
coupled with the desire for low-cost components still induce the need for so- 
phisticated image-processing methods. In the newly founded research project 
"Intelligent Platform Station ''1 static cameras placed at various locations on 
the underground platform produce video streams in which the detection and 
tracking of passengers represents an important task on the way to an automatic 
dispatch of the underground-trains. Information on the motion of passengers is 
to be gathered and analyzed for a detailed security check of the platform. Obvi- 
ously rea l - t ime analysis of the image sequence is necessary for the passengers 
safety. The subtask of passenger safety monitoring can be divided into the object 
localization and object tracking phases. The object tracking is responsible for 
producing reliable information on an object's movements in an image-sequence. 

Problems arise from the changes of the object's appeaxence during the moni- 
toring process, e.g. due to varying lighting conditions or movements of the object 
or of the camera itself. 

With the projection-histogram method as presented in this paper, tracking 
of ROIs in the 2D image plane can be performed even in the presence of highly 
textured and changing background. 

In the following section first the related research will be shortly described. 
The basic principles of 2D-template tracking are explained and semantically 
divided in a template matching phase and a tracking phase. Both are explained 
subsequently. The projection histogram templates are then explained in detail 
in an chapter of their own. Then the principles of the tracking mechanisms used 
for the comparative tests axe explained and two important quality measures 
are derived. After describing the test image sequences, the results axe given. It 
must be noted that for all of the tests that were performed, the same tracking 
methods were used and only the template-representation technique was changed. 
Anticipating just one result: The projection histograms performed in all test 
cases better than the reference methods. The computation time for two of the 
three tested projection histogram methods (differing in the number of histogram 
bins) were even superior to the reference methods. 

2 Related  Research 

Tracking of objects in the 2D image plane can be carried out in a variety of 
possible ways. Modelbased trackers exploit previously stored explicit knowledge 
about interesting objects. [1] demonstrates a simple head-tracker that relies on 
the elliptical shape of human heads. [7] uses a 3D-volumetric model of persons in 

1 funded by "Free State of Bavaria" 
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order to track people in an industrial environment. Finding appropriate model 
parameters and the right modelling description for the objects is a challenging 
task, which must be repeated for each new class of objects to track. 

The active contour approach utilizes physics in order to give model-shapes 
intrinsic properties such as stiffness or curviness [6]. An Image is then interpreted 
as a greylevel-landscape onto which the model-shapes are adapted by deforming 
them according to their model properties. A fast extension to "active contours" 
gives [3] with "active rays", where the active contours are replaced by rays of 
variable length radiating from the center of gravity of the object. The endpoints 
of the rays describe the contour of the object. Common to these energy-based 
methods is their neglect of object features inside the object. So occlusions of 
similar objects usually end up in merging both objects. 

The above mentioned methods more or less make use of prior object knowl- 
edge which might not always be available. Another category of tracking methods 
is solely based on 2D image-regions (templates) and can thus be used to track 
without any object specific knowledge. Among these, both the cross-correlation 
(e.g. NCC) and the frame-distance methods (e.g. DFD) are most commonly 
used. [5] gives a comprehensive overview of correlation and frame-distance meth- 
ods. It is pointed out that 2D-window tracking with small inter-frame displace- 
ments can be accomplished. Still tests revealed that the new tracking method 
based on projection histograms, which is described in the next section, can track 
templates significantly longer and with a higher accuracy according to the given 
quality measures. 

3 P r o b l e m s  a n d  P r i n c i p l e s  o f  T e m p l a t e  T r a c k i n g  

Template-based methods can be described according to the following common 
features (see also fig. 1): 

1. Initialization: 
The initial template region must be localized previously to tracking by an 
object-localization method and an internal template representation is com- 
puted depending on the chosen template-matching method. 

2. Tracking: 
(a) The template tracker searches in the next image for the best matching 

image-region, which defines the new position of the object. 
(b) The new object postion may be denoised by applying a smoothing filter, 

that takes the last measurements into account. 
(c) The last step of tracking may be the invocation of a motion-prediction 

method in order to predict the position of the object in the next image. 

Problems in 2D-tracking arise when the tracked object changes its appearance 
as a result of: 
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Fig. 1. Template-Tracking 

- scaling or rotation 
- a change of the object 's 3D posture which results in a deformed object ap- 

pearance in the 2D image-plane 
- a large shift of the object in the image 

Additional problems arise when lighting conditions or camera parameters 
change, such as lens-parameters or aperture. 

Tracking with "Projection Histograms" (RPH) aims at solving the problem 
of changing object location with small changes in object appearance. So RPHs 
are compared with the two reference methods (NCC and DFD), which aim at 
solving the same task. 

3.1 N o t a t i o n  

For an easier understanding of the following formal description a few definitions 
are given first: 

- B o u n d e d  s e t s  o f  n a t u r a l  n u m b e r s :  

Afj,k := { j , j+ l , . . . , j+k-  1} (1) 
(2) 

- Se t s  : 
�9 The cardinality of a set S is given as I S I- 
�9 2 s denotes the powerset of S 

- C a r t e s i a n  s e t  p r o d u c t :  Af j :-- ~ • . . .  • 

j times 
- An I m a g e  f or T e m p l a t e  t f : Afro • Afn ~ N'g, with m rows, n columns 

and g image values (grey values). 
- The size o f  t h e  t e m p l a t e  is given by its height h and its width w. 
- A r eg ion  o f  i n t e r e s t  7~h,w positioned at (u, v) G Afro • Afn of width w and 

height h has the domain Ts := Afu,h x Af.,w 
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3.2 T e m p l a t e  M a t c h i n g  b y  N C C  a n d  D F D  

While NCC represents a measure of similarity which measures correlation, the 
DFD is a measure of distance between an image f and a given template t of 
the size h and w. Both can be motivated by simple distance measures on image 
regions. 

The cross-correlation term CC can be deduced from the squared euclidean 
distance measure 5(2): 

V (~,y)c h,.(~,,v) 

Where (u, v) positions the ROI 7~h,w(U, v). 
Expanding this term leaves two squared summands and the negated doubled 

cross-correlation term: 

c c s , , ( u ,  v)  = I ( x ,  y ) t (=  - u, y - v)  (4) 

Since CC varies strongly with the image energy and the size of the template,  
it is normalized to: 

NCC},t (u, v) = CCf,~ (u, v) (5) 
, 2 , $ 2  

Geometrically NCC* can be interpreted as the cosine of the angle between 
the vectorized template and the current image region. Thus NCC* will be near 
1 for very similiar vectors and smaller otherwise. 
As we consider the template-matching in this article as a minimization problem 
on distance measures, NCC* is transformed into a distance measure NCC by 
YCCf,t(u, v) := 1 - YCC~,t(u , v). 

The second chosen reference method for measuring the distance between t 
and a given image-region located at (u, v) utilizes the simpler distance measure 
5(1), which is also known as city-block metric : 

~(1)(uf,t, ,v) = Z ] f ( x , y ) - t ( x  - u , y - v )  ] (6) 
(=,~)enh,,~(u,v) 

This can be computed very quickly on as one saves the computat ion t ime for the 
squares and squareroots. In order to provide some independence of the template- 
size, the ~(1) measure is normalized by the area h * w of the template. This gives 
DFD: 

DFDf , , (u ,v ) -  6~l'~(u'v) (7) 
h*w 

The next section explains the new template  matching technique based on 
projection histograms. 
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4 P r o j e c t i o n  2 D - H i s t o g r a m - M a t c h i n g  

Both, the N C C  and D F D  do not use any special coding or transformation for 
template representation. A given ROI of an image immediately represents its 
own template. The projective histograms ( P H )  are based on a special coding 
of the template before measuring the distance between a template and a given 
ROI. 

Computing the projective histogram of a ROI results in a vector containing 
all histograms of the columns and all histograms of the rows of the ROI. This 
vector is then used for matching either two given ROIs or a template with a 
ROI. 

In order to correctly specify the computation of the histogram a quant iza t ion-  
func t ion  z9 is needed which transforms the g image-values into b bins of the 
histogram: 

~ :  J~fg ) J~fb (8) 

Three different quantization functions were used for the tests: 

1. Number of bins is equal to the number of greylevels: ~9i(i) := i 
2. Number of bins is 8: ~gs(i) := i div 8 

0 ; i < 3 2  
3. Number of bins is 2 :02( i ) :=  1 ; i > 3 2  

4.1 Absolute Projection-Histograms 

In order to get the projection-histogram of a given image-region the re!ated 
histograms of all region columns and all region rows are computed. The combi- 
nation of those row- and column histograms gives the projection histogram for 
the given region. Thus the absolu te  p ro jec t ion-h i s togram transformation ~f  
applied to a region 7~ := 7~h,~(u,v)  of the image ] can be defined as: 

-~f,n : Afh+w -----} .hf b with -~f,7~(i) := (~f ,n ,o( i ) ,  ..., ~f,7~,b_l(i)) (9) 

and 

-~k(i) ; i < h  "row-histogram-entry" (10) 
-~f 'n'k(i)  := fl~(i -- h) ; i > h "column-histogram-entry" 

Each entry ~f ,n ,k  (i) gives the corresponding row- or column histogram entry 
which is defined by ~ for the rows and/3 for the columns. 

Finally the basic transformations to get row-histograms ~ : Afb ----, IN and 
column-histograms fl : Afb ) IN are specified: 

~ ( i )  := I {(=,y) e n I ~( f (= ,y) )  = k ^ =  = i } l  (11) 

~k(i) := I {(=,y) e n I O(/(=,y))  = k a y  = i}1 (12) 

Thus ~ ( i )  gives the number of pixels in row i whose pixel-values are mapped 
onto k by the quantization function 0. ilk(i) analogously counts the number of 
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entries in column i whose pixel-values are mapped onto k via the quantization 
function ~. 

So ~f ,n  can also be written as : 

~ f ,n  -- (~(0), ..., K(h - 1), fl(0), ..., ~(w - 1)) (13) 

4.2 R e l a t i ve  P r o j e c t i o n - H i s t o g r a m s  

For a more scale-invariant version of the projection histograms, the r e l a t ive  
p r o j e c t i o n - h i s t o g r a m  transformation �9 is given with ~ when exchanging all 
absolute ~ and fl with their relative correspondents a : Afb ~ [0, 1] and fl : 
Afb ~ [0, 1] respectively, a can thus be defined by dividing it by the length of 
a row. fl is divided by the length of a column: 

a := ~k(i) and j3 := -~k(i) (14) 
w h 

The rest of the paper considers exclusively relative projection-histograms 
(RPH) instead of the absolute projection-histograms (PH). 

In order to specify matching with (RPH) a distance measure is needed for 

optimizing on. This is given as a squared Euclidian measure ~f (2) (same as in the 
derivation for the NCC-Matching see formula 3). 

RPHf,~(u,v) := 1 w + h Z (15) 
icAfw+~ 

with ~f(2)(c, d) := ~ / ~ .  (cj - dj) 2 (16) 

and :Rf :--~h,w(u,  v) (17) 

and T~t := 7~h,~(0,0) (18) 

There are three important properties of RPHs worth noting: 

- The chosen number of bins of the histogram is crucial for the computation 
times and with a low number of bins a high data reduction is achieved. Thus 
Matchung can be done more efficiently. 

- The RPH-transformation is a oneway transformation only. There is no in- 
verse transformation for general RPHs. 

- The complexity of RPH-transformation is linear with the area of the ROI 
7~, since each pixel of 7~ must be looked at only once to set the right values 
for a and ft. 

Matching templates is but a first step towards tracking a template over a 
sequence of input images. The second step is the tracking method which is de- 
scribed in the following section. 
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5 T r a c k i n g  2 D - T e m p l a t e s  

Given an Image fi  at the time i and the position (ui, vi) of the template t in 
f~: Once the position (u0,v0) is known as the position of the template t in the 
image fi, the problem of tracking can be described as finding the correct position 
(Ui+l, vi+l) for this template in the image fi+l- Provided that  some knowledge 
on the maximal disparity between two successive template positions exists, it 
is reasonable to limit the template matching to a specified region of about this 
size. 

5.1 Loca l  Sea rch  for  t h e  Bes t  M a t c h  

The local search for the best template match in the next image is limited to a 
search region S := S~,,h, (u~+l, V~+x) of width ws and height h, which is centered 
on the expected position (U~+l, V~+l) of the template. Given a template match- 
ing strategy ~P, tracking with respect to ~P can be described as a minimization 
problem, where one minimizes the template distance over the search region S. 

Tracking a template can now be defined by a search function F that  gives 
the point (U~+l, V~+l) E S with the smallest distance between image-region and 
the template: 

Fl,t,~ " : 2~.~ x~f. ~ Afro x Afn (19) 

:= (=,y) (20) 

with k~l,t(x,y ) = min ~Pl,t(x,Y) (21) 
(=,~)Es 

and ~P E {NCC, DFD,  R P H }  (22) 

In cases where more than one (x, y) with the same minimal matching distance 
~P exist, such that  a unique minimum cannot be identified, a conflict resolution 
strategy is needed. In this work the conflict resolution was chosen to depend 
on the distance between the new point (Ui+l,Vi+l) and the expected position 
(u~+l,V~+l). One expects this distance to be small, so in the case of a conflict 
we choose (U~+l, Vi+l) not only to minimize ~P but also to minimize the distance 
to (u~+l, v~+ I). Other applications might need different heuristics to resolve this 
conflict. 

5.2 Est imat ion  of  the Template -Pos i t ion  

There are various possibilities to estimate the expected position of a template: 

- Use of the last position as the guess for the new position (u~+l,v~+l) := 
(ui, v~). This approach can be used when no motion model of the object is 
available. 

- Use of a modelling function ~r for the motion of a template (u~+l,V~+l) := 
~((uj,  vj) I J ~ i) (Note that  the first case can be represented with a function 

as well). 
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For the tracking tests performed in this paper  the first method as well as the 
first-order Newtonian motion-model ,  which could also be interpreted as a linear 
extrapolat ion method for the positions, was applied. 

But as the main focus of the research was at the difference between R P H ,  N C C  
and D F D  a more detailed discussion of motion-est imation is not the scope of 
this article. 

5 . 3  N o i s e - F i l t e r i n g  

In order to gain more independence of noise a Kalman-fi l tering system was ap- 
plied. In this article the fundamental  principles of linear Kalman-fi l ter ing for 
tracking are not explained, instead the reader is refered to s tudy [2] or [4]. 

The  first-order mot ion-model  which was used for the filtering and motion- 
prediction tests is described in Kalman-fi l ter  terms: 

si+l = Ais i  + ~ (23) 

oi = Cisi  + ~?i (24) 

with 

- M e a s u r e m e n t s  (Matched templa te  positions) o~ E Afro x A/n represents the 
sequence of observed templa te  position. ( 0000) 

- M e a s u r e m e n t - t r a n s f o r m a t i o n  Ci := 1 0 

- M e a s u r e m e n t - n o i s e  ~i and s y s t e m - n o i s e  ~i are considered zero-mean 
Gaussian white noise processes. 

- S y s t e m . . s t a t e s  si E (]It • lit) 2 (10  0) 
0 1  0A~ wi tha f ixed  - S y s t e m - t r a n s f o r m a t i o n  (motion-modell)  Ai := 0 0 1 

0 0  0 
A~ for equidistant oi. 

Usually one can use the Kalman-fi l ter  for both,  noise-reduction and the 
motion-prediction. 

The error covariance matr ices were determined empirically with the following 
two matrices proven best: 

- System error covariance mat r ix  was set to: 

0 2 0 0  
0 O1 
0 0 0  

- Measurement error covariance mat r ix  was set to: 

( 0:0)0 
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6 Q u a l i t y  M e a s u r e s  f o r  T r a c k i n g  

Good quality measures for tracking methods enable a quantitative comparison of 
approaches on a common test set. Thus the choice and definition of the quality 
measures is driven by two main requirements: 

- The tracked templates should be as close as possible to the real object- 
region in the current image. This requirement defines a local property of the 
tracker which is represented by a local measure of quality. This was chosen 
as a measure of overlap between the correct template-region and the tracked 
template-region. Thus the measure is called the local overlap A, for a given 
reference track #. 

- A tracking method should also track the template as long as possible over the 
image-sequence. This defines a global property of the tracker as the fulfill- 
ment of this requirement can only be measured when considering the whole 
track of a template. A natural choice for a quality-measure that implements 
this requirement is given by the t racking  length  O~, for a given reference 
track #. 

Both measures use template tracks, which are defined as mappings T : IN 
.~ X (J~fm X J~'m), with ~" a set of images f and T(i) := (f i ,  Ui, Vi) producing 
the position of the template (ui,vi)  in the image fi. For clarity reasons the 
function Tp : IN ~ Arm X Arm) gives only the position of the tracked template: 
Tp(i) := (Ui, Vi) ( T  denotes the set of all possible tracks ~- and Tm denotes the 
set of all manually labeled tracks). 

The quality-measures local overlap and t racking length  can now be spec- 
ified in terms of our tracking notation. For the following description /~ E T 
denotes a manually labeled reference track. 

6.1 Local Overlap 

The local overlap A~, measures the size of the region that belongs to both, 
the correct manually determined template-region positioned at #p(i) and the 
automatically tracked region which is positioned at Tp(i). Thus A~, : T x IN 
[0..1] is defined by: 

Au(rp, i) : =  I n ] 
I I 

(25) 

This measure gives a value near 1 when the two given regions show a high 
overlap. If the compared regions axe disjoint regions the local overlap measure 
is 0. 
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6.2 Tracking Leng th  

The t racking length  measure is defined by the number of steps for which 
the tracking method supplies a sufficiently good guess of the template position. 
Measuring the end of a track becomes the key-point for determining the tracking 
length. In this paper the end of a track was defined as tracking point when the 
local overlap is zero for the first time. Thus for a given manually labeled reference 
track # the tracking length O, : T ~ IN can be defined as: 

O,(r)  := ra in{ /e  H l A,(r,  1) = 0} (26) 

Both, the local overlap and the tracking length combined provide tracking 
method independent techniques for comparing different template trackers on a 
common test base. 

In the result section of this article each of the test runs is described with 2 
quality values. Those values are combinations of the basic measures A u and O~: 

1. Mean tracking lengths: O 
2. Mean local overlaps: 

The means local overlaps averages over all local overlap values for all the 
tracking steps smaller than the corresponding tracking length: 

-~ := ~-~,~:r., ~'~i<O,.(r,.) A~(T~', i) (27) 

~..er~ O,(r,)  
with % corresponding automatic track for test track # (28) 

6 . 3  C o m p u t a t i o n  T i m e s  

Another measure of quality for a given tracker is represented by the time which 
is consumed for each call to the tracking function. During the tests the exection 
time of the tracking function was an average of all performed tracking calls. The 
tracking time is measured in milliseconds and denoted as t. 

7 T e s t s  o n  R e a l - L i v e  V i d e o - S e q u e n c e s  

The comparison of the new tracking method based on projection histograms 
with the described standard methods of template matching was conducted on a 
video-sequence which was taken in an underground platform environment. The 
sequence consists of 1479 images in total which were taken at a frame-rate of 
around 18 frames per second. For the test a number of 30 different template 
tracks were manually labeled, all of them showing the motion-tracks of different 
persons heads (see fig. 2 for two example images): 

- Mean length: 178.5, median length: 179, min length: 33, max length: 419 
- Standard deviation of length: 102.64 
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Fig. 2. 2 templates and related images 

- Length of all manual ly segmented tracks: 5355 

The tracking methods  were tested by applying each method  to all of the 
manual ly labeled templa te  tracks in turn. Tracking the currently chosen track 
was s topped when the measured overlap quality became 0. The tracking test was 
then reinitialized with the templa te  of the next track and tracking s tar ted over. 

The following parameters  were used for the tests on the real video-sequences: 

- During the initialization of the tracker only the first manual ly  labeled tem- 
plate region of each t rack is used to set up the templa te  for tracking. Those 
initialization templates  varied in size from around 15 x 20 to up to 40 x 50 
pixel. 

- During the tracking phase the manual ly labeled positions of the t rack were 
used only for calculating the tracking-quali ty measures. 

- The search-region for the i teration of the templa te-matching was set to a 
rectangular  region of size 20 x 20. 

- The  methods were tested on the grey-level sequence as well as on an edge- 
enhanced image-sequence which was used by applying a 3 x 3 Sobel-filter. 

- The tests were carried out with both,  the simple i teration of the template-  
matching approach on the one hand and the Kalman-fi l tering methods for 
noise-reduction and motion-predict ion on the other hand. 

- There were three different quantizat ion functions # used for the tests with 
projection-histograms RPHs .  

The next section describes the results that  were found for these tests. 

8 R e s u l t s  

All the tests were performed on a SUN Ultra  SPARC 2 stat ion with two pro- 
cessors, each running at 200 MHz, still the function calls were not parallelized. 
The system had 256 MByte  of RAM available and was driven by solaris2.5. 
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8.1 Results on Sobel-Filtered Images 

The first test was run on the Sobel-filtered image sequence. All of the projection- 
based methods outperformed the standard template tracking methods in refer- 
ence to the quality measures overlaps A and tracking lengths ~ (see tab. 1). 
The following improvements of RPHs in contrast to the better reference method 
NCC can be observed: 

- In case when simple position estimates were used RPHs performed by at 
least 31% to up to 89% better than NCC. 

- When applying Kalman-filtering to the tracking methods, the RPHs even 
showed an improvement of 64 to 135% compared to NCC. 

In all cases the RPH based methods performed better from a quality based 
point of view. Even when considering the execution times as the basis for compar- 
ing the different methods, the RPH method based on a threshold quantization 
of the template performs each call to the tracking function about 3[ms] faster 
than the reference methods. 

Still for getting the best performance in tracking, about 20 more milliseconds 
must be spent for computing the NCC with ~s than for computing the NCC 
with ~2. Similiar results were achieved for the tests on the grey-level image- 
sequences. 

Simple Search Kalman NR Kalman Motion Execution Times 

Methods ~ A ~ A ~ A t [ms] 

RPH,~25s 49.8 0.65 50.7 0.651 51.3 0.65 144-158 
RPH,zgs 58 .7  0 .69  67 .7  0 .68  65 .8  0 .68  3 6 -  37 
RPH,#2 40.7 0.58 47.6 0.59 48.4 0.59 1 5 -  16 

NCC 31.1 0.56 I 28.8 0.56 I 28.8 0.56 19 - 20 
DFD 11.3 0.25 13.0 0.27 12.8 0.26 19-  20 

Table 1. Test results of tracking on Sobel filtered image sequences, with ~ the mean 
tracking lengths, A the mean overlaps and the mean execution times t 

8.2 Results on Grey-Level Images 

The same tests were run on the grey-level images with even better results as 
with the Sobel-filtered image-sequence: 

- RPHs again performed better than NCC and DFD by at least 69 to up to 
211% better when considering the tracking-lengths. 

- The execution times of the RPH based on a threshold quantization of the 
templates is faster than the NCC and DFD trackers by 1.5 to 3.4 [ms] for 
each call. 
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Fig.  3. Visualization of the Tracking Quality:The tracking lengths (Y-Axis) are plot- 
ted versus the overlaps (X-Axis). The left figure shows the results of the 
Sobel-filtered image-sequence. The results of the grey-level image-sequence 
are shown on the right. ( E] = R P H  with ~256, o = R P H  with tgs, A = R P H  
with ~2, x = N C C  and + = D F D )  

Simple Search Kalman NR Kalman Motion Execution Times 

Methods 

RPH,#256 49.3 
RPH,tg8 78.4 
RPH,t~2 54.0 

N C C  25.2 
D F D  28.6 

A ~ A ~ A t [ms] 

0.66 49.3 0.66 48.3 0.66 144- 151.4 
0.74 78.4 0.75 78.4 0.75 3 4 - 3 5  
063  54.o o.64 516  065  1 4 - 1 5  

0.53 125.2 0.55125.2 0.55 18-  19 
0.27 28.6 0.31 28.6 0.31 1 7 - 1 8  

Tab le  2. Test results of tracking on grey level image sequences, with E~ the mean 
tracking lengths, A the mean overlaps and the mean execution times t 

8 .3  D i f f e r e n t  T h r e s h o l d s  f o r  @~ 

Besides the quant iza t ion  funct ions z9256 and t%, the quant iza t ion  funct ion ~2 
wi th  a fixed threshold at 32 was chosen for the computa t ion  of  the R P H s .  This  
threshold  value was not chosen with regard  to  the test-sequences,  bu t  instead 
can be chosen f rom a wide range of  values as the figure 4 demons t ra tes .  The  
figure shows the  course of  the achieved t racking- lengths  on the test-sequences 
in re lat ion to the chosen threshold value for t92. It  can be observed tha t  for a 
wide ranges of  threshold values the t racking lengths are still be t t e r  t h a n  the  
cor responding  results for N C C  and D F D  Tracking.  For the  test-sequences of  
this paper  the ranges were found as: thresholds  with: 

- {30, ..., 250} for the Sobel-filtered image-sequences 

- {30, ..., 170} for the grey-level image-sequences 
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8.4 D i f f e r e n t  Q u a n t i z a t i o n s t e p s  for  ~q 

A similiar experiment was performed using different quantization steps q 6 
{2, 4, 8, 16, 32, 64, 128,256} for the quantization function @. It was observed that 
for aH possible quantization values the RPH tracker performed better than both, 
N C C  and D F D  on either test-sequences (see 4). Thus the choice of a special 
quantization values is not critically for the good performance of the tracker on 
these test sets. 
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Fig. 4. Tracking-lengths in relation to different threshold values for 92 (left) or dif- 
ferent quantization values for zgq (right) 
o results on grey-level sequence 
x results on Sobel-filtered sequence 

9 C o n c l u s i o n  

A new method for tracking two-dimensional image templates, based on projec- 
tion histograms of the template-region, was presented. A comparison with the 
same tracking technique based on two standard template matching methods was 
performed and evaluated with previously defined quality measures. Both quality 
measures in combination give a means for rating different tracking techniques 
on the basis of a common test set. 

Although the test-set included tracks of objects which changed their size over 
time, the method still does not incorporate a mechanism in order to account for 
significant changes in object size. Further work in this field of tracking objects 
with changing size has to be carried out in the future. 

A significant superiority of all tested p r o j e c t l o n - h i s t o g r a m  tracking meth- 
ods was demonstrated,  with improvements that  ranged from 31% up to 211% in 
comparison with the reference me thods .  

The computat ion time depends on the chosen quantization function for the 
template coding with the projection histogram method. In the case of thresh- 
olded R P H s  with a ~2 the tracking methods also is the fastest methods of all 



876 

tested techniques, with a computat ion t ime of 14.6 [ms] for one tracking step on 
a SPARC Ultra  2. 
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