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A b s t r a c t .  The recognition of human gestures and facial expressions in 
image sequences is an important and challenging problem that enables a 
host of human-computer interaction applications. This paper describes a 
framework for incremental recognition of human motion that extends the 
"CONDENSATION" algorithm proposed by Isard and Blake (ECCV'96). 
Human motions are modeled as temporal trajectories of some estimated 
parameters over time. The CONDENSATION algorithm uses random sam- 
pling techniques to incrementally match the trajectory models to the 
multi-variate input data. The recognition framework is demonstrated 
with two examples. The first example involves an augmented office white- 
board with which a user can make simple hand gestures to grab regions of 
the board, print them, save them, etc. The second example illustrates the 
recognition of human facial expressions using the estimated parameters 
of a learned model of mouth motion. 

1 Introduction 

Motion is int imately tied with our behavior; we move when we communica te  
through facial expressions and gestures. The  es t imat ion and explanat ion of this 
sort of  h u m a n  mot ion  is a challenging problem with diverse applications in 
human-compute r  interaction, medicine, robotics, animat ion,  video databases,  
and surveillance to name  a few. In this paper we focus on the problem of recog- 
nizing h u m a n  mot ion  using a probabilistic f ramework tha t  is based on r a n d o m  
sampling techniques. We represent h u m a n  mot ions  as temporal trajectories and 
we ma tch  these to est imated trajectories in an on-line fashion. This f ramework 
applies the CONDENSATION algor i thm [8, 9] in a novel way to recognize complex 
h u m a n  motions.  We illustrate the method  with examples of h u m a n  gestures and 
h u m a n  facial expressions. 

Our focus here will be on recognition of gestures given some es t imated rep- 
resentation of the h u m a n  motion.  For each pair of  frames in a video sequence we 
compute  a set of  parameters  tha t  describe the motion.  These might  be s imply 



910 

horizontal and vertical velocity or the parameters of a more sophisticated pa- 
rameterized model of optical flow [3]. Over time the estimated parameter vectors 
form temporal trajectories that  characterize the gesture or expression. Given a 
number of examples of a gesture we construct a model of the temporal trajectory 
that encodes the mean trajectory and the expected variance along the trajectory. 
This model may be a single trajectory (discretely sampled or continuous) or a 
collection of such trajectories. 

For a new image sequence, recognition is performed in an "on-line" fashion. 
As new parameter vectors are estimated, we incrementally match our trajectory 
models to the data. The input data is typically noisy and may deviate from the 
stored model in a variety of ways. When different subjects perform the same ac- 
tion, the recovered motion parameters will vary and the matching must account 
for this variability. Additionally, we do not know where activities begin or end 
so the algorithm must segment the input data automatically during recognition. 

We have a variety of gestures or expressions that we wish to recognize and at 
a given instant in time the interpretation of the input data may be ambiguous. 
To accommodate this fact, our probabilistic framework maintains multiple hy- 
potheses and automatically focuses more computational resources on the more 
likely hypotheses. 

Our approach applies the CONDENSATION algorithm to the problem of recog- 
nizing temporal trajectories. The CONDENSATION (CONDitional dENSity prop- 
agATiON) algorithm uses random sampling techniques to simply and elegantly 
search a multi-variate parameter space that is changing over time. The algo- 
r i thm was proposed by Isard and Blake [8] for tracking objects in clutter and 
has recently been extended [9] to simple gesture-recognition tasks. Here we ex- 
tend the method further to recognize more complex temporal activities. See also 
[11] for a related random sampling techinque used in dynamic probabilistic belief 
networks. 

We define a "state" to be a set of parameters that align a trajectory model 
with the input data. A state includes parameters that control local stretching, 
scaling, and translation of the model with respect to the data. We define the 
probability of a state in terms of how well it matches the data. Then a set of 
states and their probabilities defines a discretely sampled probability distribution 
over the match parameters. This distribution evolves over time as the input data 
changes. The CONDENSATION algorithm uses stochastic dynamics and random 
sampling techniques to "track" this distribution as it evolves. We refer to the 
recognition framework as CONDENSATION-based Trajectory Recognition (CTR). 

To illustrate the CTR framework we provide two examples. In the first we use 
gesture data gathered by a computer vision system that is observing an office 
whiteboard. We describe a vocabulary of gestures that a user can perform at 
the whiteboard to extend its functionality. The second example illustrates the 
recognition of facial motions from optical flow parameters. 

The following section reviews related work on the CONDENSATION algorithm, 
and gesture recognition. Section 3 presents the algorithm in detail. Sections 4 
and 5 present our two examples. 
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2 P r e v i o u s  W o r k  

The recognition of temporal trajectories has received extensive study in the con- 
texts of gesture, speech, and handwriting recognition. We do not at tempt an 
exhaustive review here but rather highlight the relationships between the pro- 
posed framework and the most relevant related approaches. The two most com- 
mon methods for recognizing temporal trajectories are Hidden Markov Models 
(tlMM's) [14] and Dynamic Time Warping (DTW) [16]. There have been many 
applications of these basic techniques to the problem of gesture recognition in 
computer vision (e.g. [6, 18, 20]). 

The proposed method can be seen as a generalization of HMM's in that it 
allows a discrete set of states with probabilistic transitions between states. With 
CTR, however, the recognition of the individual states involves the probabilis- 
tic matching of an entire temporal trajectory model that represents a portion 
of the gesture. In this way the CTR method uses the entire curve in a way 
similar to DTW but within a unified probabilistic framework. The temporal 
trajectories may be discrete or continuous and the method allows parameter- 
ized deformations of the trajectories (see also [21]). Computational resources are 
automatically applied to more fully explore the most probable matches. 

The "EigenCurve" representation [22] has been proposed as an alternative 
to HMM's and DTW. The approach matches an input trajectory to an basis- 
set representation of stored curves while allowing various global deformations. 
The CTR framework could be extended to represent temporal trajectories using 
this "eigen" basis representation. The advantages over [22] would include on-line 
recognition, automatic segmentation, and local curve deformations. 

The most significant advantage of the CTR approach is that it allows the 
formulation of recognition and motion tracking in the same probabilistic frame- 
work. Isard and Blake [8] initially developed the CONDENSATmN algorithm to 
deal with the difficult problem of tracking an object in a cluttered environment. 
In this case the algorithm is able to maintain a probability distribution over 
multiple tracking hypotheses which provides robustness while achieving near 
real-time performance. 

In [9] they also show how this tracking ability can be combined with simple 
dynamical models of gestures to simultaneously perform tracking and recog- 
nition. They define a "mixed-state" representation that adds a discrete model 
parameter to the definition of a state. This allows the tracker to use multiple mo- 
tion models corresponding to different gestures. The recognition in [9] is limited 
to fairly simple gestures (e.g. "scribbling" motion versus "smooth" motion). 

In this paper we focus only the recognition part of the problem and by incor- 
porating explicit, learned, temporal trajectories we extend the CONDENSATION 
method to more complex gestures. Our current research is focused on combin- 
ing tracking and recognition thus allowing the temporal models to constrain the 
tracking problem (cf. [23]). 
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Fig. 1. Our goal is to incrementally match M, multiple-parameter, trajectory models 
to input data. 

3 CONDENSATION Algorithm 

Our goal is to take a set of M model trajectories {m (~), # --= 1 , . . . ,  M} and match 
them against an N-dimensionM input trajectory, given by zt  = ( z t , : , . . . ,  Zt,N) 
at t ime t (see Figure 1). The models are taken to be discretely sampled curves 
(though they may be continuous as well) with a phase parameter  r G [0, Cmax] 
representing the current position in the model. The model values at position 

r are a vector of N values m(~) = ~mr (~) �9 �9 ' ,  ~(a)'"r where the stored discrete 
curve is linearly interpolated at phase r 

The parameters  we need to estimate to match a model to the data  are: 

#: an integer indicating the model type that  is being matched, 
r position (or phase) within the model that  aligns it with the da ta  at t ime t, 
~: an ampli tude parameter  used to scale the model vertically to match  the data, 

and 
p: a rate parameter  that  is used to scale the model in the t ime dimension. 

We define a state at t ime t to be a vector of parameters  st = (#, r ~, p). 
We would like the find the state st that  is most likely to have given rise to 

the observed data  Zt - (zt, z t - i , . . . ) .  Let Zt, i  = (zt , i ,  z0-:) , i ,  z( t-2) , i , . . . )  be the 
vector of observations for the i ~h coefficient over time. We define the likelihood 
of an observation zt given the state st as 

(i) 

where 
~-: c~rnO0 ~2 

l - -  ~ j = 0  ( Z ( t - J ) ,  i - -  ( r  
p ( z , , i l s , )  - e x p  - 1 )  

and where w is the size of a temporal  window backwards in t ime over which we 
want the curves to match.  The ~i are estimates of the standard deviation for 
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Fig.  2. We sample from the distribution over the states by constructing a cumula- 
tive probability distribution and sampling it uniformly. Choosing r from a uniform 
distribution over [0, 1] gives us a corresponding state. 

curve i. Also, o~m(r is s imply the value of the i th coefficient in the model /2  

interpolated at t ime r - pj and scaled by c~. 

Given a definition for p(zt]st) ,  we can construct  a discrete representat ion of  
the entire probabil i ty distr ibution over the possible states. Initially, we sample 
uniformly for the state parameters  

e 

1 - [o, 1] r - , where y E 

p e [Pmin, Pm x]- 

Note tha t  the prediction for the initial phase r is biased towards small values. We 
then compute  the probabil i ty of  the state p(zt Ist). We can do this for S samples 

where we take S on the order of 1000. This gives us a set {s~ n ) ,n  = 1 , . . . , S }  of 
samples. We normalize these probabilities so tha t  they sum to one, producing 

weights zr~ ~) 

= (2) 
E~=lp(ztls~ i)) 

The  CONDENSATION algor i thm [8, 9] uses this informat ion (the sample states 
and their weights) to predict the entire probabi l i ty  distr ibution at the next t ime 
instant.  Unlike t radi t ional  tracking methods  (e.g. Ka lman  filtering) this approach 
can deal well with ambiguous da ta  since multiple matches  are propagated  in 
time. The  a lgor i thm has three stages (selection, prediction, updat ing) .  Below we 
outline how to construct  a new probabil i ty distr ibution with S samples at t ime 
t given the the distr ibution at t ime t - 1. 

1. S e l e c t i o n :  First we choose a state f rom t ime t -  1 according to the probability 
distribution at t ime t - 1. T h a t  is, we use the current probabi l i ty  dis tr ibut ion 
over states to choose likely states to predict into the future.  
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This is done by constructing a cumulative probability distribution using the 

~'~_) as illustrated in Figure 2. Let the cumulative probabilities be 

C~0_) 1 = 0 

Cln_) 1 : et-l(n-1) _~_ 71.~n_)1. 

We sample this distribution by uniformly choosing a value, r, between zero and 

one. We then find the smallest cl~_ ) such that e~_ ) > r. The state sl~ ) is then 
selected for propagation to the next time instant. 

With this sampling method, states that are most probable will be selected 
with the highest frequency; this has been called the "survival of the fittest" 
algorithm [11]. To avoid getting trapped in local maxima and to deal with sudden 
changes in the input data, we randomly choose some fraction of the states to be 
replaced by random initial guesses (initialized as described above). We typically 
take these random guesses to be 5 - 10% of the samples. 

2. P r e d i c t i o n :  Given a state sl~ ) we predict the parameters of the new state 

s~ n) at t ime t to be 

t t t =  # t - i  

Ct = r + p~-i  + N ( ~ , )  

~t = ~t-1 + X ( r  
pt = p~-i  + H(~p )  

where H 0 is a normal distribution and the c% represent uncertainty in the 
prediction. Note that prediction can be viewed as sampling from the probability 

distribution p(s~)ls~_) ) [9]. For the time being, the model type # does not change 
over time; we will extend the method below to allow transition probabilities to 
take # to a new state. 

During prediction, if Ct > Cmax then that model has been completed and 
the state is initialized as described above. For the other parameters, we draw 
samples from A/" until the predicted value of the parameter is within its allowed 
range. 

It is interesting to note that the c~, are used as a tool for locally searching 
the parameter space. They can be thought of as "diffusion" parameters that 
blur the probability distribution as it is predicted in time. They provide a way 
of performing a local search about a state. They also allow local deformations 
of the trajectories within the moving window of size w. 

3. U p d a t i n g :  Given a new state we evaluate the probability, p(zt[s~n)), that 
it generated the data at time t using Equation (1). If the likelihood is zero (or 
below a threshold) then we return to Step 2 for a new prediction. We repeat this 

for a fixed number of tries. If no prediction from s~_ ) has sufficient probability 
then we generate a random initial sample. 
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After S new states have been generated, we compute the normalized weights, 
7r~ '~), using Equation (2) and repeat the process for the next time instant. 

Note that the CONDENSATION algorithm is a probabilistic hybrid of depth- 
first and breadth-first search. When no good match to the input data is found, 
the method resorts to uniform sampling (breadth-first). When the probability 
mass is centered around a set of parameters, more resources will automatically 
be spent to explore the neighborhood around these parameters (depth-first). 
Also, note that a "simulated annealing" method could be used in the search to 
start with high values of c~i in Equation (1) and lower them over time. 

3 . 1  F i n i t e  S t a t e  E x t e n s i o n  

We have also extended the method to allow compound models that are very like 
Hidden Markov Models in which each state in the HMM is one of our trajectory 
models (see also [9]). Let 34 = {Pl, /*2, . . . , /*i} be a "parent state" which consists 
of a set of model types/*i along with transition probabilities P(/*t 13d,/*t-l, r  
between states. In the prediction step above,/*t is chosen by sampling from the 
transition probabilities. When initializing a new random state, we first chose 
the parent type A/l from a uniform distribution. The initial model type Pl is 
defined by the parent. The remaining parameters are chosen as described above. 
Currently transition probabilities are set by hand; learning these probabilities is 
a topic of current research. 

4 G e s t u r e  M o d e l s  

To test the CONDENSATION-based trajectory recognition algorithm we consider 
the problem of recognizing a set of gestures in the context of an augmented 
whiteboard. A number of authors have looked at problem of scanning white- 
boards at high resolution using mosaicing [19] and interacting with the board 
by making hand-drawn marks [17]. Here we look at the problem of recognizing 
dynamic gestures. Isard and Blake [9] used the CONDENSATION algorithm to rec- 
ognize simple drawing gestures. Our extension to temporal trajectories allows 
more complex gestures to be recognized. 

In our scenario, when the user wants to perform a command, they pick up a 
gesture "phicon" (or physical icon) [10] that has a distinctive color that makes 
it easy to locate and track. The motion of the phicon is tracked using a color 
histogram tracker [7] in real time. Tracking is performed at roughly 30Hz. Since 
the tracking rate varies slightly, we resample the phicon locations at fixed time 
instants using linear interpolation. The horizontal and vertical velocity of the 
phicon is used for gesture recognition. 

We define the following set of simple gestures which are useful for such a 
purpose (see Figure 3): 

- S ta r t :  The start gesture tells the system to "pay attention" and start rec- 
ognizing gestures. This gesture is simply a waving motion similar to what a 
person might do to get a human's attention. 
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Fig. 3. Gestures. 

Clear 

Quit 

- C u t  R e g i o n :  The cut gesture is used to indicate a region of the whiteboard 
to be scanned (possibly at higher resolution). This gesture consists of three 
primitive gestures with pauses in between of arbi trary duration. We refer to 
the complete cut gesture as a "parent" gesture that  is made up of trajectory 
models. 

�9 C u t - O n :  The gesture begins with an upside-down "check mark."  The 
end of this cut-on gesture marks the upper left corner of the scanning 
region. 

�9 C u t :  The user then moves the phicon in a relatively straight line to the 
lower right corner of the region. 

�9 Cut -Of f :  To end the gesture and cut the image region the user makes a 
right-side-up "check mark" .  

- P r i n t :  To send a cut region to the printer, the user makes a gesture like the 
letter "P". 

- Save:  To save the region to a file, the user makes a gesture like the letter 
"S". 

- Clear :  A sharp diagonal motion "clears" the current stored whiteboard re- 
gion. One can think of a cut region as being "stored" in the phicon. The 
gesture can be thought of as "throwing" the cut region away. 

- Qui t :  The user makes a mark  like an "X" when they wish to stop the gesture 
recognition function. 

- S t a t i o n a r y :  In addition to the gesture models we also represent when the 
phicon is stationary. 

To construct models for the gestures, each gesture was performed approxi- 
mately half a dozen times and the trajectories were saved. For a given gesture 
the training trajectories were manually aligned and the mean trajectories were 
computed. A standard deviation from the mean trajectory was also computed 
for each curve. The trajectory models for each gesture are shown in Figure 4. 
The initial alignment of the curves could be performed using DTW. In addition 
to computing just the mean curve, we could compute "EigenCurves" as in [22]. 

In our experiments we take #m~x = 9 (there are nine primitive models), 
am~x = 1.3, Q{min = 0 .7  ( w e  allow a 30% scaling), Pmax = 1.3, Pmin ---- 0.7 (a 30% 
temporal  scaling). The standard deviations, o'i, for the model trajectories were 



917 

Vel~hy 
2.sa 

ooo " ~  
\ / 

\, / 
-2.~0 " \ /  

Cut-On 
vel~Jt 

4.50, 

4 .oa  
30.00 Tin~ 

Stop 

V~)~ 
170 

wight 
2~ 

O00 

:i 

1o+oo n~ 3 so 

Cut 

: V o.oo- 

! :  

25+00 15~ 4+~ 

Cut-Off 
v+toc~t 

It.O0 i 

oco  

o.oo ~.. -3.oo O0 e+oo " Tim+ 

Clear 

W ~ i t l  ,*+co 

30.00 asme 

S a v e  

ye l~ i t  
450 % 

Start 
VeloCity 

3.50 ~ ~  

0.00 

-3.~o ~~','+ 
oo 30.00 Tiara 

Print 

Fig.  4. Gesture Models. Temporal trajectories of horizontal (solid) and vertical (bro- 
ken) velocity. 

Fig. 5. Example of a "Cut" gesture. The user makes a gesture with the phicon. The 
image on the right is the region that is cut out of the larger image. 

taken to be 1.0. Finally, the diffusion parameters were taken to be crp = 0.01 
ar = 0.05 a s  = 0.01, and the temporM window was w = 10. 

Figure 5 illustrates the performance of  a "cut" gesture. We use a bright 
red block as our gesture phieon. The black dots in the figure represent tracked 
locations of  the phieon. The image on the right is the region that is cut out by 
our algorithm. 

Figure 6a shows the horizontal and vertical velocities of  the phicon as a 
function of  time. This is our input data to which we will incrementally match 
all our gesture models.  

The estimated value of the horizontal and vertical velocity is taken to be 

ut = ~ - ~ ( ~ ) ~ m ( ~ ) ~  " t  ~ . . . .  r / 
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Fig. 6. "Cut" gesture. (a), Input horizontal and vertical velocity; (b), Estimated hor- 
izontal and vertical velocity; (c), Probability of each model type; (d), Probability of 
each parent gesture type; (e), Probability that the current state is a model completion 
event; (]), Probability that the current state is the completion of a parent. 

where am(r ~) is the estimated velocity for sample state s} '~). This represents the 
fit of the models to the data and is shown in Figure 6b. 

Figure 6 c shows the probability of each individual model as a function of time. 
Similarly Figure 6d shows the probability for the composite, parent, gestures. 
The probability of a particular model, #, is taken to be the sum of the normalized 
probabilities ~r~ ~) for which # E s~ ~). 

Figures 6e and fshow the probability that the trajectory models or parent 
gestures have completed respectively. This probability is given by 

s { 7r}n ) if# C s} n) and r + 1 > Cmax 
P(#*) = E 0 otherwise 

n=l 

where a sample is considered completed if the estimated phase parameter, r is 
within one time instant of the maximum phase for that model/parent. The fig- 
ures show clear spikes when the individual trajectory models ("Cut On", "Cut," 
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Fig. 7. Multiple-gesture experiment, top: Input horizontal and vertical velocity; bottom: 
Probability of each parent gesture type. The frame number at which the recognized 
gesture completes is given. 

and "Cut Off") end. Similarly there is a spike when the parent cut gesture ends. 
l fp (#*)  > 0.1 we consider # to be recognized. 

To actually cut the region (Figure 5) from the original image we must  carry 
along with each state the t ime at which each trajectory model ended. This 
information is used at the end of the gesture to determine where the stat ionary 
mark  points are located. The enclosed region of pixels is then extracted. 

4.1 Multiple Gesture Experiment 

We consider one more experiment that  involves a series of gestures 

Cut - Save - Clear - Cut - Print - Clear. 

The input curves represent 850 samples of the horizontal an vertical velocities of 
the phicon (Figure 7 top). In this sequence, in addition to the actual gestures, 
the user moves the phicon between the gestures. 

There are nine possible model types and six possible gestures. The input 
data  at every frame is matched against these models and the da ta  must  be 
explained by some model. The normalized probabilities in Figure 7 (bot tom) 
show that  some of the non-gesture motions receive high normalized probabilities 
as we would expect. But using the probabili ty for those gestures that  actually are 
completed (p(#*) > 0.1) we successfully recognize the completion of the gestures 
as shown along the bo t tom of Figure 7. 
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Fig. 8. Top: Example frames from the 600 image training set. Bottom: Basis flows for 
non-rigid mouth motion. 

5 Facial Expressions 

Parameterized models of optical flow provide a concise description of the image 
motion within a region in terms of a small number of parameters  [2]. The evo- 
lution of these parameters  over t ime can be used for motion-based recognition 
of facial expressions [3]. While here we consider optical flow, other authors have 
explored related approaches using deformable contours [1,5, 12, 13, 15]. 

The horizontal and vertical image motion u (x ; a )  = (u(z, y) ,v(x,y))  at a 
point x = (z, y) is represented as a linear combination of orthogonal basis flow 
fields, Mi 

u ( x ; a )  = ~-2aiMi(x) 
i = 1  

(3) 

where a = (al ,  a2,. �9 ak) T are the coefficients of the model to be estimated. 
Consider the example mouth  images in Figure 8. To represent non-rigid mo- 

tion of mouths we learn a parameterized model from example flow fields using 
principal component analysis (see [4]). Such a learned flow basis set is shown 
in Figure 8 for a training set that  contained a variety of speech, a single smile, 
and four utterances of a test word. Since the image motion of the mouth  is 
highly constrained, the optical flow structure can be modeled by a small num- 
ber of principal component flow fields; in this case a seven parameter  model is 
sufficient to account for 90% of the variance in the training data. 

To recover the parameters  we formulate an objective function to be mini- 
mized, namely 

E(a )  = ~ p ( I (x  + u(x;  a), t + 1) - I (x ,  t), or), 
x E R  

(4) 

where p is a robust error function, R is a set of pixels in an image region, and 
I ( x , t )  is the image brightness at pixel x and t ime t. The motion coefficients 
are est imated between:~frames using a standard regression-based optical flow 
algorithm [4]. 

The learned model is used to estimate the motion in a 150-image test sequence 
in which the subject smiles and speaks a word that  occured in the training set. 
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Fig. 9. Mouth motion experiment. Top: Recovered coefficients for the entire sequence. 
Below: Selected images and the corresponding estimated flow field are shown. Numbers 
under the images and flow fields correspond to frame numbers on the graphs. 

A sample of the images from the sequence are shown in Fig. 9. Below each image 
is the estimated flow using the learned 7-parameter model. 

The flow coefficients for the training sequence were computed and used to 
generate the trajectory models. The utterances of the test word were manually 
aligned and averaged to produce the trajectory models in Figure 10. Similarly, 
the single training smile was used to construct a compound model of a smile 
that is composed of primitive "onset," "apex," and "ending" models (cf. [3]). 
The apex is modeled as zero motion (all parameters zero) and may be of a 
prespecified or arbitrary duration. Given the small training set, we manually set 
c~ to 20.0. 

Figure 11 shows the results of the CTR algorithm applied to the test data. 
Figure 11 (top) shows the probability of each of the trajectory models (Con- 
stant (apex), Smile-Start (onset), Smile-Stop (ending), and Utterance) over the 
sequence. Figure 11 (middle) shows the probability of the composite parent mod- 
els (Smile and Utterance). Finally Figure 11 (bottom) shows the estimated prob- 
ability that each parent model has completed. The completion of the smile ex- 
pression and the utterance are readily detected though the ending of the smile 
is located less precisely. As in the previous section a probability of greater than 
0.1 is a reliable indicator of the end of an expression. 

This simple, preliminary, experiment illustrates how the CTR algorithm can 
be used for on-line expression recognition with multi-variate opticM flow data. 
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Fig. 10. Mouth expression models. 

Our current research is exploring recognition with a richer set of facial expres- 
sions and speech acts. In particular, we are defining a vision-based user interface 
that uses mouth motions to control various computer screen functions. 

6 D i s c u s s i o n  a n d  C o n c l u s i o n s  

We have described an on-line, probabilistic, framework for matching temporal  
trajectories using the CONDENSATION algorithm. The framework extends pre- 
vious work on CONDENSATION tracking to the problem of recognizing gestures 
based on stored temporal models. We have demonstrated how such a method 
can be used to recognize simple gestures and facial motions. In particular, we 
developed an augmented whiteboard application that allows users to interact 
with a whiteboard "scanner." 

Note that in previous work [8,9], the CONDENSATION algorithm has been 
used to track objects with learned spatial and temporal dynamics. In this paper 
the tracking, or motion estimation, problem was solved separately and the CON- 
DENSATION algorithm was used only to perform recognition given the temporal 
trajectories. In future research we will explore the integration of the motion esti- 
mation and recognition problems by using the probability distribution over states 
to help constrain the estimation problem. Note that  for optical flow estimation 
this may prove more difficult than for the tracking applications in [9]. 

In the experiments presented here we took S = 1000 samples and the result- 
ing experiments run significantly slower than real time. Blake and Isard have 
demonstrated real-time versions of a similar algorithm which suggests that  our 
method might be suitable for real-time recognition (with appropriate optimiza- 
tions). In particular, real-time performance is achieved when only 100 samples 
are used. The number of samples required for a particular problem is dependent 
on the number of models. We achieve real-time performance with the mouth 
example using only 100 samples with no reduction in accuracy. The gesture ex- 
ample, on the other hand, has a richer model-base and, hence, requires more 
samples. 

In our current work, segmented and aligned training data was provided and 
transition probabilities between events in the parent models were set by hand. 
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Fig. 11. Mouth expression recognition results. 

While the method has very few parameters, it would be worth exploring how 
the techniques used for training HMM's might be used to generate the models 
automatically. Additionally, the size of the temporal window w might be learned 
from the training data. 

In this paper we have explored the application of the CTR framework to the 
recognition of human motion (gestures and facial motions). The system could 
also be used to recognize other sorts of gestures as well as speech and on-line 
handwriting. In summary, random sampling techniques provide an interesting 
new framework for the automatic analysis of human motion. 
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phicon tracking and Gudrun Socher for discussions about whiteboards and ges- 
ture interfaces. 

References 

1. A. Baumberg and D. Hogg. Learning flexible models from image sequences. ECCV- 
94, pp. 299-308, Stockholm, 1994. 



924 

2. M. J. Black and P. Anandan. The robust estimation of multiple motions: Para- 
metric and piecewise-smooth flow fields. CVIU, 63(1):75-104, Jan. 1996. 

3. M. J. Black and Y. Yacoob. Recognizing facial expressions in image sequences 
using local parameterized models of image motion. IJCV, 25(1):23-48, 1997. 

4. M. J. Black, Y. Yacoob, A. D. Jepson, and D. J. Fleet. Learning parameterized 
models of image motion. CVPR-97, pp. 561-567, Puerto Rico, June 1997. 

5. A. Blake, M. Isard, and D. Reynard. Learning to track the visual motions of 
contours. Artificial Intelligence, 78:101-134, 1995. 

6. C. Bregler. Learning and recognizing human dynamics in video sequences. CVPR- 
97, pp. 568-574, Puerto Rico, June 1997. 

7. J. L. Crowley and F. Berard, Multi-Modal Tracking of Faces for Video Communi- 
cations, CVPR'97, pp. 640-645, Puerto Rico, June 1997. 

8. M. Isard and A. Blake. Contour tracking by sotchastic propagation of conditional 
density. ECCV-96, pp. 343-356, Cambridge, UK, 1996. 

9. M. Isard and A. Blake. A mixed-state Condensation tracker with automatic model- 
switching. ICCV'98, pp. 107-112, Mumbai, India, Jan. 1998. 

10. H. Ishii and B. Ullmer. Tangible bits: Towards seamless interfaces between people, 
bits and atoms. Proc. of CHI'97, 1997. 

11. K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algorithms for 
dynamic probabilistic networks. Proc. of the Eleventh Conf. on Uncertainty in AI, 
Montreal, 1995. 

12. R. Kaucic, B. Dalton, and A. Blake. Real-time lip tracking for audio-visual speech 
recognition applications. ECCV-96, pp. 376-387, Cambridge, UK, 1996. 

13. A. Lanitis, C. J. Taylor, T. F. Cootes, and T. Ahmed. Automatic interpretation 
of human faces and hand gestures using flexible models. Int. Conf. on Automatic 
Face and Gesture Recognition, pp. 98-103, Zurich, 1995. 

14. L. R. Rabiner. A tutorial on Hidden Markov Models and selected apphcations in 
speech recognition. Readings in Speech Recognition, 1989. 

15. D. Reynard, A. Wildenberg, A. Blake, and J. Marchant. Learning dynamics of 
complex motion from image sequences. ECCV-96, pp. 357-368, Cambridge, UK, 
1996. 

16. D. Sankoff and Eds. J. B. Kruskal. Time warps, string edits, and macromolecules: 
The theory and practice of sequence compression. Addison-Wesley Pub., Reading, 
Mass., 1983. 

17. Q. Stafford-Fraser. Brightboard: A video-augmented environment. Proc. of 
CHI'96, 1996. 

18. T. Starner and A. Pentland. Visual recognition of American Sign Language using 
Hidden Markov Models. Int. Conf. on Automatic Face and Gesture Recognition, 
pp. 189-194, Zurich, 1995. 

19. R. Szeliski. Image mosaicing for tele-reality applications. Second 1EEE Workshop 
on Applications of Computer Vision, pp. 44-53, Sarasota, Florida, 1994. 

20. A. D. Wilson, A. F. Bobick, and J. Cassell. TemporM classification of natural  
gesture and application to video coding. CVPR-97, pp. 948-954, Puerto Rico, 
June 1997. 

21. A. D. Wilson and A. F. Bobick. Recognition and interpretation of parametric 
gesture. ICCV-98, pp. 329-336, Mumbai, India, Jan. 1998. 

22. Y. Yacoob and M. J. Black. Parameterized modeling and recognition of activities. 
ICCV'98, pp. 120-127, Mumbai, India, Jan. 1998. 

23. Y. Yacoob and L. Davis. Parameterized modeling and recognition of activities. 
ICCV'98, pp. 446-453, Mumbai, India, Jan. 1998. 


