
A Simplified Approach to
Threshold and Proactive RSA

Tal Rabin

IBM T.J. Watson Research Center
PO Box 704

Yorktown Heights, New York 10598
talrQwatson, ibm. r

Abs t r ac t . We present a solution to both the robust threshold RSA
and proactive RSA problems. Our solutions are conceptually simple, and
allow for an easy design of the system. The signing key, in our solution,
is shared at all ~imes in additive form, which allows for simple signing
and for a particularly efficient and straightforward refreshing process
for proactivization. The key size is (up to a very small constant) the
size of the RSA modulus, and the protocol runs in constant time, even
when faults occur, unlike previous protocols where either the size of the
key has a linear blow-up (at best) in the number of players or the run
time of the protocol is linear in the number of faults. The protocol is
optimal in its resilience as it can tolerate a minority of faulty players.
Furthermore, unlike previous solutions, the existence and availability of
the key throughout the lifetime of the system, is guaranteed without
probability of error.
These results are derived from a new general technique for transforming
distributed computations for which there is a known n-out-n solution
into threshold and robust computations.

K e y w o r d s . RSA, threshold signatures, proactive signatures, threshold and proac-
tive RSA

1 I n t r o d u c t i o n

In the distr ibuted computat ion model there are problems for which the simplest
solution is achieved by requiring tha t all players part icipate in the computat ion.
Yet, clearly this requirement mandates to give up other very desirable properties,
such as enabling a threshold of players to carry out the computat ion, and to
withstand faulty behavior of players. The question which arises is are these things
contradictory or whether we can utilize the simple protocol but still preserve
the properties of threshold and robustness. In this paper we present a general
paradigm for t ransforming an all player protocol into a threshold and robust

90

protocol, while maintaining the original simplicity of the protocol. We will apply
this paradigm to the specific problem of threshold and proactive RSA.

The issue of maintaining secret signing keys in a distributed fashion for long
periods of time, while enabling uninterrupted signing capabilities is addressed
by threshold signatures and proactive security.

Threshold signature schemes allow a group of players to "hold" the key and
enable them, as a group, to produce signatures. We shall refer to such a scheme
as a (t, n)-threshold s{gnature scheme if there are n players and given a message
m, any subset of players of size at least t -{- 1 can generate the signature on m .

The scheme is t-secure if no subset of at most t players can compute a signature
on a message not previously signed. A player will be considered corrupted if he
does not follow his intended protocol. The scheme is t-robust if it can correctly
compute signatures even in the presence of up to t corrupted players. The basic
assumption for threshold schemes is that there are at most t faults during the
lifetime of the system.

Proact{ve s{gnature schemes use threshold signature schemes as the basis but
drastically reduce the assumption concerning failures. The lifetime of the system
is split into time periods, and in each such time period it is assumed that no
more than t players will be corrupted. We shall say that a scheme is t-proactive
if it is secure and robust even in the presence of up to t corrupted players in
every time period, where the set of corrupted players can change arbitrarily from
one time period to the next. The main idea would be to preserve the value of
the key but to change its representation from one period to another, so that the
representations are independent. Thus, an attacker wishing to compromise the
system will need to corrupt t -{- 1 players in a short period of time.

Threshold signatures are part of a general approach known as threshold
cryptography which was introduced in the works of Desmedt [Des87], Boyd
[Boy89], Croft and Harris [CH89] and Desmedt and Frankel [DF89] 1. Secure ro-
bust threshold schemes for discrete log based systems have been given: E1-Gamal
[CMI93,Har94] and DSS [GJKR96a]. Yet, solutions for RSA seemed more elu-
sive; the need to protect the secrecy of the factors of the composite N, among
other things, disabled the direct adaptation of the techniques used in the discrete
log cases to RSA. In two independent works [Boy89,Fra89] gave a first simple
and elegant solution for distributed RSA, which was to maintain the signing key
d (the RSA exponent) in additive form, among n players P1, ..., P,~. Player
would hold a value d~, where d -" dl § § d~. This allows for a straight forward
signing scheme, as m d - rn dl -.... rn d~. Thus, each player P~ gives the value m d"

which is called the partial signature, and all the partial signatures are combined
to form the complete signature on m. The major drawback of the n-out-n ad-
ditive solution is that it does not provide for threshold (and hence robustness);
if each one of these shares is held by a different player, and one of the players
crashes we have lost the secret key. Desmedt and Frankel [DFgl] initiated the
study of threshold-RSA and gave a heuristic solution to the problem, which was
followed by provably secure threshold schemes [FD92,DDFY94]. These schemes

1 For a '94 survey we refer to [Des94].

91

provided a step forward, however, in order to overcome the problems generated
by the structure of the RSA key, very cumbersome mathematical structures were
introduced. Two results followed, which used these same structures, but added
robustness [FGY96,GJKR96b].

Proactive signatures are part of a general approach known as proactive se-
curity which was introduced in the works of Ostrovsky and Yung [OY91] and
Canetti and Herzberg [CH94] 2. The notion of proactive signatures and a frame-
work for discrete log based proactive signatures was given in [HJJ+97], in partic-
ular incorporating the threshold DSS [GJKR96a] into this framework achieves
a proactive DSS. The first solution for proactive RSA was given by Jakobsson
et al. [JJKY95], but this solution was exponential in the size of the threshold.
Frankel et al. [FGMY97a] used a probabilistic construction to enable a non-
exponential solution. While being quite efficient for small instances this solution
does not seem to scale gracefully. Furthermore, their solution did not have opti-
mal resilience, i.e. it could not tolerate the maximal possible number of corrupted
players. In a recent paper by Frankel et al. [FGMY97b] the first realistic and
general solution to proactive RSA was given. By introducing new techniques
they modified and proved the protocol of [DFgl], and further extended it to
solve the problem of proactiveness 3.

Utilizing our new paradigm we present a solution to both the robust threshold
RSA and proactive RSA problems. The main advantage of our solutions, over
previous ones, is that they are conceptually simple, and allow for an easy design
of the system. We return to the construction of sharing the key at all ~imes in
additive form, which allows for simple signing and for a particularly efficient
and straightforward refreshing process for proactivization. The key size is (up
to a very small constant) the size of the RSA modulus, and the protocol runs
in constant time, even when faults occur, unlike previous protocols where either
the size of the key has a linear blow-up (at best) in the number of players or the
run time of the protocol is linear in the number of faults. The protocol is optimal
in its resilience as it can tolerate a minority of faulty players. Furthermore, the
existence and availability of the key throughout the lifetime of the system, is
guaranteed without probability of error.

2 O v e r v i e w

Achieving Thresho ld . 4 As stated the key will be shared using an n-out-n
additive sharing, this results in each player holding an additive share d~ of the
key. The threshold will be achieved through the notion of share back-up. That is,
the share d~ will be further shared using a t-out-n secret sharing scheme. Thus, if

2 For a survey we refer to [CGHN97].
s Some related results appear in [DJ97].
4 We assume a trusted dealer in our constructions but this can be substituted using

the results of [BF97] for generating an RSA key in a distributed manner. Thus, the
following description of our protocol starts after the key has been distributed to the
players.

92

at some point a player crashes, we will be able to retrieve that player's additive
share by activating the back-up using the reconstruction process. We shall show
later ways to avoid the exposure of the additive share. The threshold property
of our scheme will be inherited from the threshold property of the secret sharing
scheme. To achieve robustness the simple threshold secret sharing scheme can
be substituted by a verifiable secret sharing scheme (VSS), which can tolerate
t malicious faults. Thus, we achieved our goal of maintaining the sharing in
additive form while providing threshold.

P r o a c t l v e Ref resh ing of Shares. The above additive scheme also lends itself
nicely to proactivization, which requires to maintain the same key value yet
to change its representation. A new set of additive shares d~l ew, ..., ~e~ will
be generated by having each additive share d~ sub divided into d~,i, ..., d~,~ and
recombining these values into new additive shares by summing ~,ew = ~-~=i d#,~.

We have that ~-~=i d~ = z-~i=ix"'~ ~.. e,,~ = d, i.e. a new representation of d. Measures
need to be taken to ensure that this resharing has been executed properly, this
will be done via a comparison of publicly known values.

Share Back=up Refreshing. We will say that the share back-up of a player is
valid if the value represented by the VSS is the share held by the player. Clearly,
this is a requirement without which the whole idea of back-up will not work.
The initial dealer is trusted, hence we assume that the back-up is valid. But
now that each player has a new additive share, the share back-up needs to be
refreshed as well, as it is no longer a valid back-up of the new share. This is
achieved by having each player share his new share using a VSS protocol. The
verification that the share back-up is valid is carried out through a comparison
of values. The most important point to note is that all verifications performed in
this process are computed on publicly known information and without any zero-
knowledge proofs for possession of discrete log which characterize the solution
of [FGMY97b]. Discarding the zero-knowledge proofs from the proactivization
process is not only an issue of efficiency in computation/communication, but
allows for a simpler design.

Achieving Robustness. The decision on when to activate the back-up is more
complex. It can be activated in cases where crashes occur, because then we
know which share to reconstruct. But in the case where players are acting in a
malicious manner, we first have to determine who they are before reconstructing
their share from the back-up. This will be done by employ!ng the robustness
techniques which enable to verify that a partial signature was generated correctly
[FGY96,GJKR96b].

Avoiding Share Exposure. It should be noted that the exposure of a player's
share when he fails does not compromise the security of the system because as
long as not all shares are exposed the secrecy of the key is maintained. And as
it is an assumption of the model in threshold cryptography that at no time are
all the servers crashed or compromised, the security is maintained. Yet, if it is
undesirable in some applications (parallel signing) or situations (a simple crash)
to expose a player's share then this can be avoided through the following.

93

The back-up of n value will not be a single VSS but rather the value itself
will be split into n parts, one assigned to each player, each such part will be
further shared using VSS ~. When a player does not provide the needed partial
signature then each part will be privately reconstructed to the player assigned
to it. Parts assigned to faulty players will be reconstructed publicly. Thus, the
original share of the player will not be exposed. If at a later time the player
recovers from the crash, then his share can be privately reconstructed to him,
and he would be required to refresh the back-up (even though it is valid), and
then he can resume proper operation.

A further extension would also enable the parallel signatures.
P r ac t i c a l Efficiency. In the signature generation, when no faults occur, each
player needs to compute a single exponentiation using a small key which is about
2 times the length of the RSA modulus. It can be optimized to eliminate the zero-
knowledge proofs by checking whether the generated signature is valid. When
faults occur there is the need to first check which players are faulty and then
to recover the additive share of these players from the back-up. The recovery
operation is an execution of a VSS Reconstruction Phase, which is an efficient
protocol. Both the signature generation and the proactivization protocols are
constant round protocols, even when faults occur. The proactivization process
does not require zero-knowledge proofs in any case.
Gen e ra l P a r a d i g m The above described solution is in fact a general paradigm
for transforming distributed n-out-n computations into threshold and robust
computations. Given a distributed n-out-n computation where each player holds
inputs which are need for the computation, these inputs need to be shared using
a VSS scheme for back-up.
The computation is carried out using all n players, but in the event that one (or
up to t) of the players fails to cooperate, or is faulty, then his information can be
reconstructed from the "back-up" copy and incorporated into the computation.
Thus, the simplicity of the n-out-n protocol can be maintained while adding the
properties of threshold and robustness.

3 M o d e l

The following description is taken in part from [HJJ+97].
C o m m u n i c a t i o n Mode l . We assume that our computation model is composed
of a set of n players "[P1,..., P,~ who can be modeled by polynomial-time ran-
domized Turing machines. They are connected by a complete network of private
(i.e. untappable) point-to-point channels. In addition, the players have access to
a dedicated broadcast channel; by dedicated we mean that if player P~ broad-
casts a message, it will be recognized by the other players as coming from P~.
These assumptions (privacy of the communication channels and dedication of
the broadcast channel) allow us to focus on a high-level description of the proto-
cols. However, it is worth noting that these abstractions can be substituted with

s For related techniques see [GHY87]

94

standard cryptographic techniques for privacy, commitment and authentication.
Yet, in the proactive case, under these substitutions care needs to be given to
refreshing the communication keys.

Time. Time is divided into time periods which are determined by the com-
mon global clock. Each time period consists of a short refresh period, during
which the players engage in an interactive refreshing protocol. After the refresh,
there is a signature generation period, in which the players generate signatures
on given messages.

The Adversary . We assume an adversary, ~4, which can corrupt up to t of
the n players in the network in each time period. A player is considered corrupted
during a time period if he was corrupted during that time period or if he was
corrupted during the preceeding refresh period. Furthermore, it is a raalic{ous
adversary, i.e. it learns all the information held by the corrupted players, and
may cause them to divert from the specified protocol in any (possible malicious)
way. We assume the adversary to be computationally bounded, implying that
he cannot forge RSA signatures. Furthermore, we assume the adversary to be
static s .

4 R o b u s t T h r e s h o l d R S A

Following the method set forth in this paper we shall share the RSA secret key
by a sum of shares, refer to these shares as additive-shares. We will achieve ro-
bustness by generating share back-up, i.e. each such additive-share will be further
shared using a robust threshold verifiable secret sharing (VSS) scheme. Thus,
we are guaranteed that we will not "lose" the additive-shares. Upon request
to generate a signature each player will produce a partial signature under his
additive-share. These partial signatures are combined to generate the signature.
In order to optimize the protocol we will first verify whether this combined sig-
nature is valid, and if it is not then we will proceed to detect the players who
have given incorrect partial signatures. We shall have a method which enables a
player to prove that his partial signature is correct. If a player fails to provide
the system with a correct partial signature his additive-share is reconstructed
from the back-up.

In order to make the composition of the additive-shares and the shares from
back-up work properly, an underlying assumption has been made, and it is that
the back-up value of a specific player is in fact the additive-share held by him.
For ease of exposition we assume that the original dealer, sharing the secret,
is honest and hence this property is satisfied, but when we move into the full
proactive solution this will no longer be a valid assumption. Thus, we bear in
mind this point, and will return to it in Section 5.

We shall start by directly describing the Robust Threshold RSA while assum-
ing a black-box VSS protocol. This VSS protocol enables to share a secret via

e In the full paper we shall give a proof for a static adversary at each time period.
And another proof for an adaptive adversary, but at a cost in the computations of
the zero-knowledge proofs.

95

its Sharing Phase, and to reconstruct a secret using its Reconstruction Phase.
Denote this protocol as Feldman-Z,~-VSS, (see Section 4.3).

The robust threshold RSA is comprised of two protocols, an initial key dis-
tribution which is carried out once at the onset of the system. The second is
the protocol for generating signatures. These protocols are described in detail in
Sections 4.1 and 4.2.

4.1 Di s t r ibu t ing the Secret Key

Before distributing the secret key we assume that a set-up process has been
carried out in which the RSA key generation took place and the RSA key pair
has been computed ~. Denote the public key by (A r, e) where/V -- pq and 9, q are
primes of the form s p = 2p ~ + 1, q = 2q ~ + 1 and p~, q~ are primes. The private
key is d where ed ~ 1 rood ~(N). Furthermore, the parameters of the system
are set, i.e. the number of players n and the threshold ~, where n >_ 2~ + 1. An
element g of high order is chosen. In order to enable the proof of security the

A
high order element will be computed by setting g = g0 ~ rood N where go is an

element of high order and L ~ n!.
After this set-up process the dealer proceeds to share the key d by generating

shares which sum up to the private key, and then backing-up each one of the
shares using a VSS protocol. Furthermore, as discussed we will need to be able
to verify partial signatures generated under each additive-key d~. The dealer
lays down this ability by generating a witness signature for each additive-key in
the form yd~ rood N. This witness will be utilized in the signature generation
protocol in order to verify partial signatures. In order to unify the description
for the players we added a public share dp~b~c, such that d -- dp~,bz~c + ~ = 1 d~.
The steps carried out by the dealer are described in Figure 1.

The size of the key used for signature generation, in our protocol is compa-
rable to that of [FGMY97b], and is 21og(nN), and much smaller than that of
[DDFY94] which is n l o g N and [FGMY97a] which is 1061ogN for n - 10,t =
4. Our memory requirements are comparable to those of [DDFY94] and are
2n log(nN), yet larger by a factor of n than those of [FGMY97b].

4.2 S igna ture Gene ra t ion

Given a message m, its signature under the public key is rr~ d rood N. In our
setting this signature needs to be generated by the players in a distributed
manner where each individual player uses his partial key. As the secret key

n d ---- d is shared using a sum, i.e. d dT~bl~c + ~-~i--1 i E Z, we have that rr~ ~

For a distributed key generation process see Boneh and Franklin [BF97]
8 The special form of the primes is required only to enable the efficient protocol of

[GJKR96b] for proving that a partial signature is correct. If there is a need to carry
out a distributed key generation then the requirement on the format of the primes
can be dropped and the techniques of [FGY96] can be employed for verifying the
partial signature.

96

Input: secret key d E Z~b(N), composite N, element g of high order in Z~r
number of players n and threshold t

1. Choose and hand P~ value d~ ER [- n N 2 . . n N 2] for 1 < i < n, set d~bz~ = d -
~-~= i d,.

2. Compute mad broadcast the witness z0~ ~ gd, mod N, 1 < i < n.
3. Share the value d~ using Feldman-ZN-VSS Sharing Phase (Figure 3) on input,

value d~, high order element 9, composite N, the number of players n, and
threshold t.

Fig. 1. Secret Key Dis t r ibu t ion

rnd,~,,~+y]~ffil d, _ radp~ho l-in__1 tad, rood N. Thus, if each player publicizes the
correct valt/e rt~ d~ rood N which we refer to as the partial signature, then the
signature can be directly computed from the partial signatures. And in fact the
signature can be generated and verified before proceeding to verify each partial
signature. Thus, if an error was detected we will require each player to prove
that he has generated his partial signature properly. For each share d~ there is a
public witness w~ rood N which can be viewed as a commitment to the value d~.
When player P~ is required to prove the correctness of his partial signature ~r~,
he will prove with respect to the witness w~ that the discrete log of the partial
signature is equivalent to the discrete log of the witness. If the player fails this
proof, i.e. he did not generate a proper partial signature, his share d~ will be
retrieved from the back-up VSS. This results in a constant round protocol even
in the presence of faults. The protocol for signature generation is described in
Figure 2.

Public information: high order element g, composite N
~o~ mod N for 1 < i < n witness for Pi's partial key

Input: message ra

1. Player P, publishes partial signature a~ = m d" mod N
2. P~ proves using the protocol of [GJKR96b] (see Footnote 8) that DL,,,a~ =

DLgw~.
3. If proof fails for player P~ all players reconstruct d~ using the Feldmsn-ZN-VSS

Reconstruction Phase (Figure 3), and compute ~, = ra ~" rood N.
4. Set S I G (r a) = ra ~p~b~*, lI~=l ~, mod N.

Fig. 2. Signature Generation

97

4.3 Ver i f i ab l e S e c r e t S h a r i n g (V S S) o v e r ZN

In our protocol we need to share a value s E I - a N 2..aN 2] in a verifiable method.
As explained above we are in effect "storing" the value s using the VSS protocol,
as a back-up in case one of the players fails. Given that the only motivat ion for
sharing s would be for back-up it seems that we could use any VSS protocol
computed over a prime field, where the prime is larger than the possible range
of s. In theory this is true, and we could use for example the VSS protocol of
[BGW88], which is information theoretically secure. But as we have alluded to
previously we will need to check that the value shared for player Pi using the
VSS corresponds to the actual additive-share held by this player. Using general
zero-knowledge proofs this could still be done. Yet, we would like to provide more
efficient methods for achieving these goals 9. Thus, we will depart from carrying
out the VSS over a prime field, and modify the protocol to work over the integers.
Such solutions have been given by [DF91,FGMY97b], yet their solutions need to
satisfy additional properties, which we do not require, hence these solutions are
slightly more complex 1~ The following protocol is similar to the one described in
[FGMu but which satisfies our needs. As the protocol is based on Feldman's
VSS [Fe187], we shall refer to it as Feldman-Z/v-VSS.

T h e o r e m 1. The protocol described in Figure 3 is a verifiable secret sharing
scheme satisfying the properties of unanimity, acceptance of good secrets, verifi-
ability and unpredictabilit~ 1.

We shall prove only the unpredictability property in Lemma 1 and 2, as the
proof of the other properties follow directly from Feldman's proof [Fe187]. We
defer the simulation of the protocol to Section 4.4 where we prove the Robust
Threshold B.SA.

L e m m a 1. Given a t-adversary who can corrupt at most t players, the view of
the adversary o/the secret shares generated by the protocol Feldman-g~r- VSS of
a secret s using a polynomial/(z), such that/(0) = s, and o/the sharing of a
random secret r by a polynomial r (z) with coe~cients taken from the appropriate
range are statistically indistinguishable.

Proof appears in Appendix A.

s It may be possible to use Feldrnan's VSS over a prime field, which also enables
efficient proofs of the above mentioned property, but this sharing would also reveal
ga" mod p. Though this additional ir~ormation may not weaken the system, we have
not found a way to prove its security.

10 [FGMY97b] need to work over groups where the polynomial interpolation can satisfy
that the Lagrangian coefficient of each component is emily computed and is in Z. In
our protocol when we decide to use the VSS back-up it will be to directly reconstruct
it, thus we can expose all shares end there is an option to carry out the interpolation
in a prime field (where the prime will be chosen to be of a certain size).

11 For the definition of VSS see [FM88].

98

Sharing Phase :

Input: secret value s G [- n N 2 . . n N 2] and composite N
element g of high order in Z~-
n number of players, t threshold value

The dealer carries out the following steps:

1. choose at al E [-nL2 NS..nL2 N s] and define f (z) = a,z t + ... + a t z + sL
2. compute f (i) E Z for 1 < i < n

and bt ~ g"~ ,bl ~ g~Z, b0 ~ g,L mod N
3. hand player Pi the value f (i) and broadcast bt ,b0

Verification steps:

1. Player Pi verifies that gY(0 1-1 t r b ~J = ll#=0~ ~J if the equation is not satisfied he
requests that the dealer make f (i) public.

2. The dealer broadcasts all shares requested in the previous step, if he fails to do
so he is disqualified.

3. Player Pi carries out the verification of Step 1 for all public shares. If the verifi-
cation fails the dealer is disqualified.

R e c o n s t r u c t i o n Phase:

Input: high order element g, composite N, number of players n, threshold t
values bt, ...,b0 rood N

I. Player P, broadcasts f(i)
2. P~ finds a set I of size t + 1 of indices such that Vi E I it holds that g/(i) =

I t tb ~J j----Ok J /

3. P~ chooses a prime P > 2nN 2 and computes the secret s, s =
E , e r f(i)1-I~ez,j#i ~_~/L rood P

Fig. 3. Feldman-ZN-VSS

/x
L e m m a 2. A s s u m e elements go, g = gLo 2 (L = n!) o f maz ima l order in Z~r.
Given values a l , . . .at and an additional value gs mod N it is possible to compute

values g=', ...,g=~ mod N such that the polynomial f (z) ___A atz t + ... + azz + s L
satisfies that f (i) = ai for 1 < i < t.

/x t
Proof. Define the polynomial f (z) a sL. Ei=0 I - I j # i (z - j) where a0 =

This polynomial satisfies the proper ty that f (i) = ai for 1 < i _< t, thus
it remains to be shown that we can compute g raised to the coefficients of
this polynomial . Rearranging terms we have tha t the coefficient of z k is ak =

t ~ i = 0 r~ a . ' . . . A k j for 0 < k < t, where the Ak,i are computable known con-

stants. A problem may arise tha t we would need to deal with fractions, i.e.

99

extract roots, which is infeasible, but this has been solved through the choice of
the element 9. Thus 9a~ can be effectively computed as follows:

f " l ' [,=o g = go ~ 1 7 6 = = l J . i = l ~gO ') .,..,..r~'-

, - - ,

-- �9 l l , i = z L 9 o ')

4.4 P r o o f of Robus t Th resho ld RSA Pro toco l

T h e o r e m 2. Under the assumption that factoring is intractable the protocol
described in Figures 1 and ~ is a constant round secure, robust, threshold RSA
scheme, in the presence of t malicious faults where the total number of players
is n > 2t + 1.

In order to prove the security of our scheme we will use a simulation argument
for the view of the adversary. Intuitively, this means that the adversary who
sees all the information of the corrupted players and the signature on m, could
generate by itself all the other public information produced by the protocol.
A simulator for the key distribution and the signature generation is shown in
Figure 4. It runs on input the elements 9, 90 the value gd mod N which is the
commitment to the key d, and the message m and its signature. The proof of
Theorem 2 appears in Appendix A.

5 P r o a c t i v e R S A

In the previous section we have described a robust threshold t~SA, and the
last property which we would like to add is proactive. Proactiveness is achieved
through changing the representation of the key, but not its value. Given that
the current representation of the key is dl + ... + d,~ we would like to change
it to d~ e~ + ... + dn n~w. Once we have changed the representation of the key we
will also need to change the representation of the back-up, and this is for two
reasons: the first being that it contains the current representation and thus it
should be removed, the second is that we need to have a valid back-up for the
new representation, otherwise the back-up would be worthless.

The essence of the proactivization protocol is that each player takes his
additive-share di of the key d, splits it into sub-shares which sum up to di,
and gives each player such a sub-share. Then each player adds up all the sub-
shares which he received in order to attain his new share for the new time period.
If all players act properly it is clear to see that the new sharing is still a sharing
of the key d, yet the sharing is totally independent of the previous sharing. Then
each player would further share his new additive share using the VSS protocol
to generate the share back-up.

As we do not assume that the players act properly we add steps to ensure
the correctness of the proactivization. The two issues for verification are the
following:

100

L 2 Input: elements go,g ~= go , the commitment to the signing key ga rood N
the number of players and threshold rh t
message m, and its signature m d rood N

Each step of the simulator corresponds to the same numbered step in the appropriate
protocol. Note that information held solely by good players is never exposed, and
thus we do not simulate it.

S ~ 1 - Computa t ion

Secret Key Dist r ibut ion

1. choose shares al, ..., J,,-1 6R [-nN2..nN 2] and Jp,,b~,~ ea [- ,2 N=..n= N= + IV]
2. (a) compute tb, =~ gJ*,..., ~b,~_, ~ ga~_~ rood N

(b) set 4,. = g~" ~= g'~l(gd~.,bii=] " [~* 4,i) rood N
3. Feldman-ZN-VSS

(a) using Steps 1-3 of Fig~e 3 share the value d=: for 1 < i < , - 1, this
results in polynomials f~(z) such that/~(0) = diL, and public information

ga,,, ...,ga,,,,ga, L mod N, where/i(z) = a~,tz' + ... + as,,z + d~L
(b) generate a polynomial r(z) with coefficients in [-.L=NS..nLaN "] and con-

^ A

stant term 0. Set f,~(i) = r(i), 1 < i < L Using Lemma 2 on input / . (i)
for 1 < i < t and ~b. ~ compute the values ga~,,, ...,ga~,, rood N

Signature Generat ion

1. (a) compute & , ~ m d ' m o d N f o r l < i < " - I
(b) set ~,~ ___A md/(&pt=b,,r 1~,~-~1 &i) rood N

2. execute simulation of zero-knowledge proof as in [FGY96,GJKR96b]

Fig. 4. Simulator for Key Distribution and Signature Generation

1. That the sum of the sub-shares which P~ generated is the value of the share
d~. This verification is easily achieved by generating witness/commitments
to the new additive sub-shares, and checking in the exponent that the dis-
tribution was done properly.

2. The second verification relates to the need to ensure that the back-up gen-
erated using the VSS is in fact the new additive share held by the player.
Note that after the above mentioned verification we have a witness for the
new additive-share (through some computation), this witness is of the form
t0~e~ = gd. ' " rood N. Furthermore, when the VSS protocol is carried out for
sharing a secret s, a by-product of this computation is the value g,L mod N.
Thus in order to verify tha t the player shared the correct value all that needs
to be checked is that gar. = (torero)r. mod N.

The share-refreshing protocol for the update period is presented in Figure 5.

101

Public information: element g, composite N
z0i rood N for 1 < i < n

Input of player Pi: secret share di such that g~' = wi mod N

I. Player Pi randomly chooses values di,~ Gn [-N~..N 2] for I _< j _< n, sets
di,r~bzic = di - ~"~'=x d~,~, computes and broadcasts g,,# = gd~,# rood N.

2. Player Pi sends to player Ps the value di,~.
3. Verification of distribution of proper share size and public commitments: Ps

verifies that di,s G [-N2..N 2] and that g~,a = ga,,# rood N if not then he requests
that di,s be made public and set gi,# to g raised to this public value.

4. If P~ does not cooperate in Step 3 then his value di is reconstructed using the
Reconstruction Phase (Figure 3).

5. Verification that the sub shares in fact sum up to the previous share of Pi: P#
verifies that z0i = gi,p=bzi~ Ilj"-~ gi,j rood N, if not then player Pi's share di is
reconstructed using the Reco~astruction Phase.

6. Pi computes his new share d~i "~" = ~"~=i ds,i (note that the value g d,'''~ mod

N = I'[~=i ga,,# rood N is already public), and shares it using Feldman-ZN-VSS

Sharing Phase. This results in a value gsL rood N where s is the secret that Pi
shared.

7. If P~ fails to share his secret or (g ~i'~'~")t" ~ g,L rood N then each phyer PJ
exposes d#,i. If Pj fails to expose d~,~ then da is reconstructed by all players.

Fig. 5. Share-refreshing Protocol

T h e o r e m 3. Under the assumption that factoring is intractable the protocol de-
scribed in Figures 1, ~ and 5 is a constant round secure, robust, threshold proac-
rive RSA scheme, in the presence of t malicious faults Iohere the total number of
players is n 3> 2t + 1.

We omit the simulator and lemmas related to the size of the shares, and the
fact that the repeated distribution of the signing key through additive shares
does not reveal any statistically significant information. These proofs are similar
in flavor to the ones appearing in [FGMY97a], and will appear in the full paper.

Acknowledgments

Special thanks go to Rosario Gennaro and Hugo Krawczyk for endless conversa-
tions on this topic. We thank Jessica Staddon for comments on an earlier version
of the paper.

R e f e r e n c e s

[BF97] D. Boneh and M. Franklin. Efficient generation of shared RSA keys. In
Crypto '97, pages 425-439, 1997. Springer-Verlag. LNCS No. 1294.

102

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems
for Noncryptographic Fault-Tolerant Distributed Computations. In Proc.
20th Annual Syrup. on the Theory of Computing, pages 1-10. ACM, 1988.

[Boy89] C. Boyd. Digital Multisignatures. In H. Baker and F. Piper, editors,
Cryptography and Coding, pages 241-246. Claredon Press, 1989.

[CGHN97] R. Canetti, R. Gennaro, A. Herzberg, and D. Naor. Proactive Security:
Long-term Protextion Against Break-ins. CryptoBytes, 3(1):1-8, 1997.

[CH89] R.A. Croft and S. P. Harris. Public-key cryptography and re-usable shared
secrets. In H. Baker and F. Piper, editors, Cryptography and Coding, pages
189-201. Claredon Press, 1989.

[CH94] R. Canetti and Amir Herzberg. Maintaining security in the presence of
transient faults. Crypto '94, pages 425-438, 1994. Springer-Verlag. LNCS
No. 839.

[CMI93] M. Cerecedo, T. Matsumoto, and H. Imai. Efficient and secure multiparty
generation of digital signatures based on discrete logarithms. IEICE Trans.
Fundamentals, E76-A(4):532-545, 1993.

[DDFY94] Alfredo De Santis, Yvo Desmedt, Yair Pranksl, and Moti Yung. How to
share a function securely. In Proc. 26th Annual Syrup. on the Theory of
Computing, pages 522-533. ACM, 1994.

IDes87] Yvo Desmedt. Society and group oriented cryptography: A new concept.
In Crypto '87, pages 120-127, Berlin, 1987. Springer-Verlag. LNCS No.
293.

IDes94] Yvo G. Desmedt. Threshold cryptography. European Transactions on
Telecommunications, 5(4):449--457, July 1994.

[DF89] Yvo Desmedt and Yair Prankel. Threshold cryptosystems. In G. Brassard,
editor, Advances in Cryptology - - Crypto '89, pages 307-315, Berlin, 1989.
Springer-Verlag. LNCS No. 435.

[DF91] Y. Desmedt and Y. Frankel. Shared generation of authenticators and
signatures. In J. Feigenbaum, editor, Advances in Cryptology - - Crypto
'91, pages 457-469, Berlin, 1991. Springer-Verlag. LNCS No. 576.

[DJ97] Y. Desmedt and S. Jajodia. Redistributing secret shares
to new access structures and its applications. Tech. Re-
port ISSE-TR-97-01, George Mason University, July 1997.
ftp: / /isse.gmu.edu/pub /techrep /97_Ol_~ajodia.ps.gz.

[FD92] Yair Prankel and Yvo Desmedt. Parallel reliable threshold multisignature.
TR-92-04-02, April, Dept. of EE and CS, U of Wisconsin, 1992.

[Fe187] P. Feldman. A Practical Scheme for Non-Interactive Verifiable Secret Shar-
ing. In Proc. 28th Annual FOCS, pages 427-437. IEEE, 1987.

[FGMY97a] Yalr Prankel, P. Gemmell, P. Mackenzie, and M. Yung. Proactive RSA.
In Crypto '97, pages 440-454, 1997. Springer-Verlag. LNCS No. 1294.

[FGMY97b] Y. Prankel, P. Gemmell, P. Mackenzie, and M. Yung. Optimal resilience
proactive public-key cryptosystems. In Proc. 38th FOCS, pages 384-393.
IEEE, 1997.

[FGY96] Y. Prankel, P. Gemmell, and M. Yung. Witness-based Cryptographic Pro-
gram Checking and Robust Function Sharing. In Proc. 28th STOC, pages
499-508. ACM, 1996.

[FM88] P. Feldman and S. Micali. An Optimal Algorithm for Synchronous Byzan-
tine Agreement. In Proc. 20th STOC, pages 148-161. ACM, 1988.

[Pra89] Y. Prankel. A practical protocol for large group oriented networks. In
Eurocrypt '89, pages 56-61, 1989. Springer-Verlag. LNCS No. 434.

103

[GHY87]

[GJKR96a]

[GJKR96b]

~ 9 4]

[HJJ§

[JJKY95]

[OY91]

Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure faut-
tolerant protocols and the public-key model. In Cr~pto '87, pages 135-155,
1987. Springer-Verlag. LNCS No. 293.
11. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold
DSS signatures. In Euroc~pt '96, pages 354-371, 1996. Springer-Verlag.
LNCS No. 1070.
it. Gennaro, S. Jarecki, H. Krawczyk, and T. 1%abin. Robust and ef/icient
sharing of RSA functions. In Grypto '96, pages 157-172, 1996. Springer-
Verlag. LNCS No. 1109.
L. Ham. Group oriented (t,n) digital signature scheme. IEE Proc..
ComputDigitTech, 141(5):307-313, Sept 1994.
Amir Herzberg, M. Jakobsson, Stanislaw Jarecki, Hugo Krawezyk, and
Moti Yung. Proactive public key and signature systems. In I99"[ACM
Co.]erence on Gomputers and Communication Security, 1997.
M. Jakobsson, S. larecki, H. Krawczyk, and M. Yung. Proactive RSA for
Constant-Size Thresholds. Upublished manuscript, 1995.
I%. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In
Proc. lOth PODC, pages 51-59. ACM, 1991.

A Proofs of T heorem and Lemmas from Sect ion 4

Proof. of L e m m a 1
Denote the set of players which the adversary has corrupted by Pb~d, and w.l.o.g
it is a set of maximal size, i.e. IPbad] = t. We prove that with high probability
there exists a sharing of r with a polynomial r(z) which satisfies that for each
player P~ G Pbad the share f (0 received in the sharing of s is equal to the share
received in the sharing of r, i.e. r(i) = f (0 . Furthermore, the coefficients of ~(z)
are taken from the appropriate range.

Define a polynomial h(z), such that h(0) -- (s - r)L and for all P~ 6 P ~
it holds that h(i) - O. As we have defined the polynomial h(z) in t T 1 points
we can interpolate and compute its coefficients. It remains to be shown that the
coefficients are integers and to compute their range.

i - j

The only non-zero value of h(z) is at evaluation point 0. Thus we have that
the above is equal to (, - ~)L rIpj~p, , t-~. The coefficient of ~' is:

The value L / I]P j~p~ , , (- J) is an integer (note L = n!) hence the coefficient

of z~ is an integer. Furthermore, the coefficient can be bounded (in absolute
value) by

- - i ! (t - 0! <- (" - r) L t ! <_ ~ L 2 N 2

104

The desired polynomial r (z) i s / (z) - h(z), its coefficients are integers and are
in the range [- (n L 2 N s + nL2N2)..nL2N s + r~L2N2]. Thus, the probability that
the coefficients of r (z) will not be in the right range is at most t 2 (, ~ r . ~ = j w) =

t []
N+I �9

Proof. of Theorem 2
Correctness ~ Robustness. We assume that the dealer carries out his pro-

n gd~ tOCOI properly 12, hence d = d~bl~c + ~-~=1 d~, ~ = mod N and the VSS
corresponding to player P~ in fact shares the value d~. It is easy to see that the
signature generation protocol computes the correct value.

Secur i ty . We give our proof by providing a simulator for the protocol, de-
noted 8 ~ M 1, which simulates both the key distribution protocol and the sig-
nature generation protocol. Fixing an adversary ~4, the view of the adversary
on execution of the protocol and its view on execution of the simulator are in-
distinguishable. W.l.o.g. assume that the adversary corrupts players P1,..., p lS.
We analyze the information viewed by the adversary which is generated by an
execution of the protocol and the simulator.
S e c r e t K e y D i s t r i b u t i o n

1. ~" is a random value in [-nN2..r~N 2] and so is d~ for 1 < i <_ t. The
value d p ~ c is a random value in [-n~N~..n~N ~ + N] where d ~ u c is from
[-n~ N 2 + d..u2 N~ + ~ these distributions are statistically indistinguishable
(details are clear).

2. (a) the values ~ are generated in the same manner as ~ and as the additive-

3. (a)

shares have the same distribution so do the ~ 's and w~ 's for 1 < i < n - 1
(b) as the distribution of @~bz~c is indistinguishable from that of dp~,b~c so

is the distribution of g~p=bt,o mod N and gdp,,~,,~ mod N.
(c) it is easily argued that the distribution ofg r mod N where r E [1..oral(g)]

and the distribution of gS rood N where s E [- n N 2. .nN 2] are statisti-
cally indistinguishable, hence gd~ is indistinguishable from 9d,~ (resp.).
the simulator carries out exactly the same protocol as the true execution
with input values which have the same distribution as the inputs of the
protocol, hence the resulting information from the VSS protocol has the
same distribution.

(b) the argument for this step follows from Lemma 1.

S i g n a t u r e G e n e r a t i o n

1. (a) follows from the argument on the distribution of ~'.
(b) same argument as in Step 2c

2. follows from the simulation proof of [FGY96,GJKR96a]
I"1

z2 We can relax this assumption by introducing more verification steps in the Key
Distribution Phase.

is W.l.o.g that it is the first t players, and that it is no less than t.

