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Abs t r ac t .  The exponentiation function in a finite field of order p (a 
prime number) is believed to be a one-way function. It is well known that 
O(log tog p) bits are simultaneously hazd for this function. We consider a 
special case of this problem, the discrete logarithm with short exponents, 
which is also believed to be hard to compute. Under this intractibility 
assumption we show that discrete exponentiation modulo a prime p can 
hide n-w(log n) bits (n = ~log p] and p = 2q§ where q is also a prime). 
We prove simultaneous security by showing that any information about 
the n - w(log n) bits can be used to discover the discrete log of g '  rood p 
where s has w(log n) bits. For all practical purposes, the size of s can be 
a constant c bits. This leads to a very efficient pseudo-random number 
generator which produces n - c bits per iteration. For example, when 
n = 1024 bits and c = 128 bits our pseudo-random number generator 
produces a tittle less than 900 bits per exponentiation. 

1 Introduction 

A function f is said to be one-way if it is easy to compute  but  hard to invert. 
With  appropriate  selection of parameters,  the discrete exponentiation function 
over a finite field, g~ modp,is believed to be a one-way function (where g is 
a generator of the cyclic group of non zero elements in the finite field). The 
intractabil i ty of  its inverse, the discrete logari thm problem, is the basis of various 
encryption, signature and key agreement schemes. Apar t  f rom finite fields, other 
finite groups have been considered in the context of discrete exponentiation. 
One such example is the group of points on an elliptic curve over a finite field. 
Koblitz and Miller (independently) [15], [17], considered the group law on an 
elliptic curve to define a public key encryption scheme suggesting tha t  elliptic 
curve addition is also a one-way function. Another number  theoretic problem 
tha t  is considered to be hard is the problem of factoring integers. Examples  of 
functions relying on factoring which are believed to be one-way are the RSA and 
Rabin functions. Closely related to factoring is the problem of deciding quadratic 
residuosity modulo a composite integer. 

A concept which is int imately connected to one-way functions is the notion 
of hard bits, which was first introduced by Blum & Micali. Informally, a hard 
bit B(.)  for a one way function f ( . )  is a bit which is as hard to compute  as it 
is to invert f .  Blum and Micali showed tha t  the most significant bit is a hard 
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bit for the discrete logarithm problem over a finite field. To be precise, their 
notion of most significant bit corresponds to the Boolean predicate which is 
one if the index of the exponent is greater than e.~ and zero otherwise. They 
defined and proved this hard bit and successfully used it to show the importance 
of hard bits in secure pseudo-random bit generation. Soon after, the hard bits 
of RSA & Rabin functions were also discovered by Ben-Or etal [2] which led 
to a new secure pseudo-random bit generator. Blum, Blum and Shub [3] used 
the quadratic residue problem over a composite integer to design yet another 
secure pseudo-random bit generator. Their work was based on the security of 
the quadratic residue problem which was investigated by Goldwasser and Micali 
[8]. Later Goldreich and Levin [7] proved that all one-way functions have a 
hard bit. More generally they were able to show that for any one-way function a 
logarithmic number of one bit predicates are simultaneously hard. This led to the 
work of [9], where they proved how to use any one-way function to build secure 
pseudo-random bit generators. The use of pseudo-random bits in cryptography 
relates to one time pad style encryption and bit commitment schemes, to name 
a few.  

All the above generators based on one bit predicates suffer from the same 
problem, namely they are too slow. All of them output one bit per modular ex- 
ponentiation. The concept of simultaneous hardness is the first step in speeding 
things up. Intuitively, the notion of simultaneous hardness applied to a group 
of bits associated to a one-way function f states that it is computationally as 
hard as the inverse of the one-way function to succeed in computing any infor- 
mation whatsoever about the given group of bits given only f(x).  Using this 
notion one can extract collections of bits per operation and hence the speed 
up. Long and Wigderson [16] and Peralta [20] showed that loglogp bits of the 
discrete log modulo a prime number p are simultaneously hard. On the other 
hand the works of Vazirani and Vazirani [24] and Alexi etal [1] address the no- 
tion of simultaneous hardness of RSA and Rabin bits. Later Kaliski [12] showed 
individual hardness of bits (in the Blum Micali sense) of the elliptic curve group 
addition problem using a novel oracle proof technique applicable to any finite 
Abelian group. His methods extend to show simultaneous hardness (stated but 
not proved in the paper) of log n bits where n is the order of the group. More 
recently, Hastad, Schrift and Shamir [10], have designed a much more efficient 
generator which produces ~ bits per iteration where n is the number of bits of 
the modulus. The one-way function they have considered is the discrete expo- 
nentiation function modulo a composite integer (to be precise a Blum integer). 
Once again the method of generation relies on the proof that ~ bits of every 
iteration are simultaneously hard. The use of a composite modulus allows them 
to relate individual and simultaneous hardness of bits to factoring the modulus. 
In all these works the common strings are the results of Yao contained in his 
seminal work [25] which laid the foundations to a complexity theoretic approach 
to cryptography which paved the way for a quantification of security in terms of 
known hard problems. 

In this paper we construct a very efficient cryptographic pseudo-random bit 
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generator attached to modular exponentiation in a finite field of cardinality p 
(where p is a prime number of the form 2q + 1, and q is also prime). This 
assumption on the structure of the finite field holds for the entire paper. We show 
that n-w(log n) bits of every iteration are simultaneously secure (where 2 ~176 
is a polynomial value in n and O(log n) is the order of the number of bits needed 
to represent a polynomial in n. Note that 2~ ~ is greater than any polynomial 
value in n and w(log n) is the order of the number of bits needed to represent it.) 
Hence each iteration produces more bits than any other method discovered so 
far. In fact, the construction that we present here is maximal since if we extract 
more bits then only O(log n) would have to be guessed, which can be exhaustively 
searched in polynomial time (since 2 ~176 is polynomial in n). The novelty in 
this work is to relate the security of the random bit generation to the problem 
of solving the discrete logarithm with short exponents. The motivation for this 
technique is derived from the above mentioned work of [10] where although they 
are using a modular exponentiation function modulo a composite, the security 
of the system is related to factoring the underlying modulus. In a similar but 
not so obvious sense, we use exponentiation in a finite field for the generation 
but relate the security to the strength of the discrete log problem (over the 
same prime modulus) but with s h o r t  exponents. The proofs are simple and rely 
on known techniques. In this paper an oracle for the i - t h  bit gives the value 
of i - t h  bit when the binary representation is used for the argument. This is 
a different representation of the i-th bit than that used by Blum-Micali and 
Long-Wigderson. 

The paper is organized as follows: In section 2 we discuss the discrete log 
problem and in particular the short exponent discrete log problem. Details of 
the oracles and hardness of bits are formalized in this section. In section 3 we 
show that the trailing n - w(log n) bits are individually hard with respect to 
the discrete logarithm problem with short exponents. In section 4 we prove 
simultaneous hardness of the trailing n - w(log n) bits. Once again this is with 
respect to the discrete log with short exponents problem. In section 5 we discuss 
the design of the pseudo-random generator and provide the proof of security and 
conclude in section 6. In the appendix, we discuss some extensions of this work 
to include other Abelian groups and possible ways to improve the efficiency of 
the pseudo random generator. 

2 T h e  D i s c r e t e  L o g a r i t h m  P r o b l e m  

We first define the discrete logarithm problem. Let p be a prime and g a generator 
for Zp*, the multiplicative cyclic group of nonzero elements in the finite field of 
order p. Then for 1 < z < p - 1 the function which maps x to gX mod p defines 
a permutation. 

P r o b l e m 1 .  The discrete logarithm problem is to find x given yeZp*  such that 
gX mod p - y. 
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Let n = rlogp] be the length of p in binary, then g= mod p is computable in 
Poly (n) time. However, there is no known deterministic or randomized algorithm 
which can compute the discrete logarithm in Poly (n) number of steps. The best 
algorithm to compute the discrete logarithm in a finite field of order p, is the 
index calculus method. Even this is infeasible if p is appropriately large (e.g. 
1024 bits) since the complexity is subexponential and not polynomial in n. On 
the other hand for primes such that p -  1 consists of only small factors, there are 
very fast algorithms whose complexity is equal to the complexity of the discrete 
log in a field whose cardinality is equal to its largest prime factor. This algorithm 
is due to Pohlig and Hellman [21]. 

2.1 Discrete  L o g a r i t h m  wi th  Short  Exponen t s  

For efficiency purposes the exponent ~ is sometimes restricted to c bits (e.g. 
c = 128 or 160 bits) since this requires fewer multiplications. There are square 
root time algorithms to find x in ~ steps, due to Shanks [14] and Pollard [22]. 
Thus c should be at least 128 bits to provide 64 bits of security. By this we 
mean an attacker should perform at least 264 operations in order to crack the 
discrete logarithm using these algorithms. At the moment, there is no faster way 
to discover the discrete logarithm even with x so restricted. In particular, the 
complexity of index calculus algorithms is a function of the size of the entire 
group and does not depend on the size of the exponent. 

We will also restrict x, in particular, we will restrict it to be slightly greater 
than O(log n) bits, but not to save on multiplications. The size of the exponent 
will be denoted w(logn), described in section 1. Hence, even with the square 
root attack one needs greater than 20(l~ steps or greater than a polynomial 
in n number of steps. 

The hard problem we consider in this paper is the inverse of this special case 
of the discrete exponentiation function. In other words: 

Problem 2. Let s be an integer which is significantly smaller compared to p. The 
DLSE problem is to find s given yr such that gS mod p - y. 

The DLSE problem has been studied by [19] in the context of the Diffie- 
Hellman key agreement scheme. The use of short exponents in the Diftie-I-Iellman 
protocol is to speed up the process of exponentiation. Typically the cost of 
computing g= is linearly related to the bit length of x, hence real-time computing 
costs have motivated the use of low order exponents. Care is necessary to ensure 
that such optimizations do not lead to security weaknesses. The above mentioned 
paper [19], presents a set of attacks and methods to rectify the situation. In 
particular their conclusions suggest the use of safe primes. 

Another example of the use of shorter exponents is in the generation of digital 
signatures. The digital signature standard (DSS) published by the NIST [6] is 
based on the discrete logarithm problem. It is a modification of the E1Gamal 
signature scheme. The E1Gamal scheme usually leads to a signature having 2n 
bits, where n is the number of bits ofp (the modulus). For potential applications 
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a shorter signature is desirable. DSS modifies the E1Gamal scheme so that  a 
160-bit message is signed using a 320 bit signature but computations are all 
done modulo a 512 bit prime. The methodology involves the restrictions of all 
computations to a subgroup of size 216~ The assumed security of the scheme is 
based on two different but very related problems. First of these is the discrete 
log in the entire group which uses a 512 bit modulus, where the index calculus 
algorithm applies. The second is the discrete log problem in the subgroup of 
the cyclic group of nonzero elements in the finite field. Here Shanks'square root 
algorithm reduces the complexity to O(2 s~ since the exponent is only 160-bits. 
Although the DLSE and the subgroup discrete log problems are not equivalent, 
the square root t ime attacks apply to both problems. 

2.2 Hardness o f  Bits 

As indicated in the introduction, the notion of hard bits is intimately connected 
to that  of a one-way function. In this paper we define a mild generalization of 
hard bits. 

D e f i n i t i o n 3 .  Let ),(z) and ), '(s) be one-way functions. Let B : - ,  {0, 1} be 
a Boolean predicate. Given ) , (z)  for some x, the predicate B ( z )  is said to be 
)"-hard if computing B(x) is as hard as inverting ),'(s), i.e. discovering s. 

When f and ),' are the same as are z and s, then we have the usual defi- 
nition of hard bits. For example, discovering the Blum-Micali bit is as hard as 
computing the discrete logarithm. But in this paper we allow ), and ),' to be 
different. An example of this phenomenon, is discrete exponentiation modulo a 
composite modulus. Here the discrete logarithm in the ring of integers modulo 
a composite is a hard function, and so is factoring. So ),(x) = g~ mod m and 
), '(s) = ), ' (s  = p, q) = m.  Clearly, there are boolean predicates B ( z )  which are 
)'-hard but there may be other predicates which are )"-hard, but not )'-hard. 
That  is computing B(x) is as hard as factoring the modulus m, but may be not 
as hard as the discrete log modulo a composite [10]. In this paper we consider a 
similar situation. We consider the one-way function of discrete exponentiation, 
but we prove that  the n -w( log  n) bits of the exponent are DLSE-s imul taneous ly  
hard. That  is for us ),(z) = g~ m o d p  and ), '(s) = g' m o d p  where s is a short 
exponent. The best previous result showed simultaneous hardness of -~ of the 
bits [10], but our result shows simultaneous hardness for almost all the n bits. 
Our results are maximal. In other words, in a pseudo-random generator, if in 
any iteration we hide only O(log n) or fewer bits, then any attacker can compute 
the seed of the generator by making a polynomial number of guesses. Hence one 
cannot further improve on these results regarding number of bits produced per 
iteration. 

2.3 Binary Representation 

The number x can be represented in binary as bn �9 2 '*-1 + bn-1 �9 2 n-2 + . . .  + b2" 
21 +bl  "2 o where bi is either 0 or 1. The i - t h  bit problem is to discover the value 
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of bi of z. The i - th bit is hard if computing it is as difficult as computing the 
inverse of f~(s). If we had an perfect oracle, Oi(g,p, y), which outputs the value 
of bi then the bit is hard if there is a Poly(n) time algorithm which makes Poly(n) 
queries to the oracle Oi(g, p, .) and computes the entire value of s. We know the 
least significant bit is not hard because there is a Poly (n) time algorithm to 
compute it, namely by computing the Legendre symbol. 

An imperfect oracle, O~(p, g, .), is usually defined as an oracle which outputs 
1 1 the correct bit value with probability greater than ~ + ~ .  Some of the most 

significant bits of x, in fact O(log n) most significant bits, can be biased, but as 
we shall see later they do not affect us. 

2.4 B l u m - M i c a l i  R e p r e s e n t a t i o n  

In this paper, we will use the binary representation when we discuss the security 
of the i-th bit, however, we want to mention another interpretation of the i th 
bit. Blum-Micali introduced a particular bit predicate, B(z)  and showed its 
hardness. S(x)  is 0 if 1 < x < ~ and B(z) is 1 if ~-~ < x < p -  1. This is 
sometimes referred to as the most significant bit of x and it is clearly different 
from the most significant bit of x under the binary representation. Others [16] 
have extended the definitions to define the k most significant bits. Often the 
Blum-Micali representation is used to refer to the most significant bits, while 
the binary representation is used for the least significant bits. In this paper we 
will use the binary representation when referring to the i th bit, unless specified 
otherwise. 

3 Individual Hardness of Bits  

In this section, we discuss the security of the trailing n - w(log n) bits, where 
w(log n) is as defined earlier. To be precise we show that  except the least sig- 
nificant bit, all the n - w(log n) lower bits are individually hard with respect 
to the DLSE problem. Based on definition 3, this amounts to proving the bits 
of the discrete logarithm are DLSE-hard. The proof techniques we employ are 
variations of techniques from [4] and [20]. 

Let Oi(g, y,p) be a perfect oracle which gives the i ~h bit (for any i E [2, n -  
w(log n)]. Note that  i increases from right to left and i = 1 for the least signifi- 
cant bit. Given this oracle we show that  in polynomial number of steps we can 
compute the short exponent discrete logarithm. In addition, we prove hardness 
of individual bits by showing that  given an imperfect oracle O~(g,y,p) with e 
advantage to predict the i th bit (for any i in the prescribed range), we can turn 
this into an algorithm to compute the discrete logarithm of a short exponent in 
probabilistic polynomial time by making a polynomial number of queries to this 
oracle. For the rest of the paper we will refer to lower k bits to mean lower k 
bits excluding the least significant bit, for any k. 

T h e o r e m 4 .  The lower n - w ( l o g n )  bits are individually DLSE-hard. 
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Proof: According to definition 3, it is enough to show that  given Oi(g, y ,p)  
(where g is a generator of the group in question) we can compute log y for all y 
such that  s = log y is a short exponent. In this paper we assume that  p -  1 = 2q, 
where q is an odd integer. 

(a) Perfect Oracles - Oi (g ,y ,p ) .  We are given g'  and g and we know in 
advance that  s is small (consisting of w(log n) bits). Now, computing the least 
significant bit is always easy, via the Legendre symbol. Hence we compute it and 
set it to zero. Let i = 2 and suppose we have an oracle for the 2nd bit. If this 
is a perfect oracle then we discover the second bit. Once this is known then we 
set it to zero and we will continue to refer to the new number as gS. Next we 

compute the square roots of gS. The roots are g�89 and g~+L=2"! where we refer 
to the former as the principal square root. Since the two least significant bits 
of ga are zero, we know that  the principal square root has LSB equal to zero 
(or equivalently Legendre symbol one). This allows us to identify the principal 
square root. Now run the oracle on the principal square root and compute the 
second least significant bit. This bit is really the third least significant bit of s. 
Once again, set this bit to zero and repeat the process. Clearly, in poly(n) steps 
we would have computed s one bit at a time from right to left, given an oracle 
for the second bit. 

Now, in general when we are given the oracle for the i ~h bit (i > 2) we square 
g8 i - 2  times. Then the 2nd LSB of s is at the i ~h position, and we run the oracle 
to compute this bit; we zero this bit and once again compute square roots. The 
principal square root corresponds to the root with LSB equal to zero. Now the 
(i q- 1) th bit of s can be computed by running the oracle on the principal square 
root. Continue this process and in c steps where c = log s, we would know s. 

(b) Imperfect Oracles - O~(g, y, p). Suppose we have an imperfect oracle which 
succeeds in finding the i ~h bit in only e more than fifty percent of the x E Z~. 
Then we can concentrate the stochastic advantage and turn this oracle into 
an oracle which answers any specific instance correctly with arbitrarily high 
probability. 

We divide the proof into two parts 
(i) The lower 2 __ i < n - w(log n) - O(log n) bits are individually hard. 
(ii) The middle n - w ( l o g  n ) - O ( l o g  n) < i < n - w ( l o g  n) bits are individually 

hard. 

(i) Let i -- 2 and suppose we have an imperfect oracle for the 2nd bit whose 
advantage is e, i.e., the oracle can give the correct answer on e more than fifty 
percent of the possible inputs (and we do not know which ones). Then let {rj} 
be a sequence of polynomial number of random numbers between 1 and p - 1. 
We run the oracle on gS+r~, where the LSB of s is zero. Via the weak law of 
large numbers [4], a simple counting of the majori ty of l~s and 0Is of the oracle 
output  (after neutralizing the effect of the random number) for the second LSB 
yields this bit with high probability. Now compute the square roots and pick 
the principal square root as earlier. Once again repeat the process with a fresh 
set of random numbers to discover the next bit. In c -- log s steps we recover a 
candidate and verify that  gcandidate __ gs mod p. If they are not equal then the 
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whole process is repeated. Clearly in poly(n) steps we would have discovered s 
one bit at a time from right to left. The details of the proofs are omitted, and 
we refer to [4] or [20] for further details. The only aspect that  needs additional 
mention is the fact, when we randomize it is possible that  for some rj when we 
add them to the exponent we may exceed p -  1. We refer to this as cycling. 
Assuming that  we pick our random numbers uniformly, then we argue that  the 
probability of this cycling is negligible because most of the leading bits of gS are 
z e r o .  

Suppose i > 2. Then we square gS i - 1 times, and repeat the above process 
and conclude that  any oracle which has an e advantage will lead to a polynomial 
t ime algorithm to compute s. The probability of cycling is still negligible for 
2 _< i < n - w(log n) - O(log n) because even in the extreme case when i = 
n - w ( l o g  n ) -  O(log n) the chance of cycling is ~ or less than one over any 
polynomial. 

(ii) The proof of this step is also similar to the second part of the proof of 
(i) except that  one has to set the initial t bits of s to zero by guessing, before 
we start the randomizing process. Even when i = n - w(log n) and s has been 
shifted so that  the 2 n~ least significant bit is in the i th position, the probability 
of cycling can be bounded by 1 for any Polynomial in n. Here t is up to 
O(log n) number of bits and hence the probability of cycling is bounded above 
by 1 and hence we need to increase the number of queries by a certain 
amount corresponding to the drop in advantage due to cycling. Once again the 
details are omitted for brevity (see [4]) and will be included in an expanded 
version of this paper. 

4 Discrete Logarithm Hides Almost n Bits 

In this section we prove the simultaneous hardness of n - w(log n) lower bits of 
the index in modular exponentiation. Intuitively, given a generator g of a finite 
field of order p, and gX for some x then we show that  gaining any information 
about the trailing n - w(log n) bits is hard. Here hardness is with respect to the 
DLSE problem. In other words, for any prime p given a random generator g and 
a random element g* of the finite field, any information on the relevant bits of 
z can be converted into an poly(n) algorithm to solve the DLSE problem. Now, 
the phrase gaining any information is rather vague, and this is clarified by the 
concept of simultaneous security which is defined below for any generic one-way 
function. 

D e f i n i t i o n 5 .  Let f be a one-way function. A collection of k bits, Bk(x) is said 
to be simultaneously secure for f if Bk(z) is easy to compute given x and for 
every Boolean predicate B an oracle which computes B(Bk(z))  correctly with 
probability greater than �89 given only f (x)  can be used to invert f in Poly(n) 
time. 

In this paper we will be employing a modified notion of simultaneous security 
relative to a possibly different one-way function. 
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D e f i n i t i o n 6 .  Let f and f '  be one-way functions. A k-bit predicate B k is said to 
be f'-simulta.neously hard if given f (x) ,  for every non-trivial Boolean predicate 
B on k bits, an oracle which outputs B ( B k ( z ) )  can be used to invert f '  in 
polynomial time. If B k is a f~ hard predicate then we say the bits of B k ( z )  are 
f '-simultaneously hard. 

The above definition, although precise, is not easy to apply when understand- 
ing simultaneous security. A more working definition is provided in definition 7, 
phrased in the language of the discrete logarithm problem over a prime modulus. 

D e f i n i t i o n  T. The bits of the exponentiation function gX m o d p  at location 
j < i < k are DLSE-simultaneously hard if the [j, k] bits of the discrete log- 
ari thm of g= mod p are polynomially indistinguishable from a randomly selected 
[j, k] bit string for random chosen (g, p, gZ mod p). In addition any polynomial 
distinguishability will lead to an oracle which solves the DLSE problem in poly- 
nomial time. 

Once again, proving polynomial indistinguishability of a group of bits as 
above is difficult. But the notion relative hardness helps alleviate this problem 
and in fact leads to a test of simultaneous security. 

D e f i n i t i o n  8. The i th bit, j < i < k, of the function g= mod p is relatively hard 
to the right in the interval [j, k] if no polynomial time algorithm can, given a 
random admissible triplet (g, p, g= mod p) and in addition given the k - i bits 
of the discrete logarithm of gr to its right, computes the i th bit of the discrete 

1 for any logarithm of g= with probability of success greater than �89 + 
polynomial poly(n) where n = logp. 

Based on this definition, we have a test for simultaneous security. The state- 
ment of this test is the following fact. 

Fac t  Definitions 7 and 8 are equivalent. 

The proof of this equivalence is implied by the well-known proof of the uni- 
versality of the next bit test due to Yao [25]. Now, using this fact and the 
intractibility of the DLSE problem we show that  the trailing n - w(log n) bits 
are simultaneously hard. 

T h e o r e m  9. The n -  w(log n) trailing bits of g x mod p are simultaneously hard, 
with respect to the DLSE problem. 

Proof: Based on the above fact, it is sufficient to show that  every trailing bit of 
z (given g and g=) is relatively hard to the right in the interval [2, n - w(log n)]. 
Following the definitions and theorem above we know that ,  in order to show 
simultaneous security, we are allowed to use only a weak oracle: given g=, to 
predict the i th bit of z , all the i - 1 trailing bits of the unknown z should also 
be given to the oracle. Such a weak oracle may not work in general. 

Assume the theorem is false. Then, for some i e [2, n - w(log n)] there exists 
an oracle which when supplied with the trailing i - 1 bits of a generic z succeeds 
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1 in predicting the i th bit of x with advantage e (where e is pozy--Tb-('~)" Now pick 
an element S = ga where s is a short exponent. We can shift s to the left by 
squaring S the appropriate  number  of times. Now all the bits to the right of the 
i th bit are zero. Since 0 < i < n -  to(log n) we can shift s by i - 1 bits to the 
left without cycling. Recall, by cycling we mean the exponent exceeds p -  1 and 
hence its remainder modulo p - 1 replaces the exponent.  Now the 2nd LSB of 
s rests on the i th bit and we can run the oracle repeatedly by multiplying by 
gr mod  p where r is a random number  between 0 and p -  1. In order to make 
sure that  the probabil i ty of cycling is low we may  have to set the t = O( logn)  
leading bits of s to zero which we can exhaustively guess and run the algorithm 
for each guess. Since we will continue to have an d > e -  ~ advantage we can 
deduce the bit from the oracle in poly(n) time. We know the 2nd LSB of s in 
this manner.  We set that  bit to zero, and take the square root of  the number.  
Of the two roots we should pick the one which is the quadratic residue because 
all the lower bits are zero to begin with and hence the square root should have 
a zero in the LSB. Now the next bit of s is in the i th position and we can run 
the oracle repeatedly to discover this bit and so on to recover all the bits of s. 
At the end of the algori thm we have a candidate and we can see if geandidate 
equals S. If  it does then we stop or else repeat the algori thm with another guess 
for t bits or different random numbers r. Note the oracle is very weak unlike the 
case for the individual bit oracle. The oracle here will tell you the i th bit with 
e advantage provided you also supply all the i - 1 bits to the right of  i. However 
we are able to do this because all the bits to the right of the shifted s are known 
to be zero, since we star ted with a short exponent. Now we have shown that  for 
every i such that  2 _< i < to(log n) we can use this weak oracle to discover s thus 
we have shown the trailing bits to be simultaneously hard provided the function 
g8 mod  p with s of size to(log n) is hard to invert. 

5 P s e u d o  R a n d o m  B i t  G e n e r a t o r  

In this section we provide the details of the new pseudo-random bit generator. 
In particular we extend the scheme used by Blum-Micali [4] to extract  more bits. 
This is the same scheme that  Long-Wigderson [16] used in their generator but 
their output  consisted of log n bits per iteration. In our new scheme we produce 
n - w ( l o g  n) bits per iteration. Recall f rom section 2 tha t  the Blum-Micali scheme 
used a mildly different definition of "bits". We use the same definition of bits as 
[10], but we do not encounter the difficulties they did in defining the generation 
scheme since our exponentiation induces a permuta t ion  on Zp*. 

N E W  G E N E R A T O R  Pick a seed zo from Zp*. Define x~+z = gX~ mod p. 
A t  the i th step (i > O) output the lower n - to(log n) bits of  xi ,  except the least 
significant bit. 
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5.1 P r o o f  o f  S e c u r i t y  

Suppose A is an e-distinguisher of the I (1 is poly in n) long output  of our 
generator, then there is a (e/0-distinguisher for some output  at the i th step. 
By appropriately running the generator then there is a (e/0-distinguisher for 
n - w(log n) bits of so. According to our definitions in the previous section, due 
to Yao [25], we can use a distinguisher to create a weak oracle which will tell us 
the i-th bit of s provided we also give it the rightmost i - 1 bits of s. 

Now we note that  we can use this to discover s given g'  mod p where s has 
w(log n) bits. We repeatedly invoke the "weak oracle" by setting so = g, gr. Thus 
we can discover the i bit in poly(n) time. Using techniques shown in theorem 
9 we can discover the entire s. So if the output  sequence of our generator is 
e-distinguishable then in poly(n) t ime we can discover s of our exponentiation 
function. Assuming it is intractable to invert the function g'  mod p where s has 
w(log n) bits (i.e., short exponent) then the output  sequence of our generator is 
polynomially indistinguishable. 

6 Conclusion 

We have shown that  the discrete logarithm rood a prime p hides n -w( log  n) bits 
by showing the simultaneous hardness of those bits. The hardness in this result 
is with respect to the discrete logarithm problem with short exponents, i.e., 
DLSF,-simultaneously hard (as defined in section 2 of this paper). This allows us 
to extract  n - w(log n) bits at a t ime for pseudo-random generation and other 
applications. As an example for n of size 1024 bits and s of size 128 bits this 
allows us to extract  almost 900 bits per exponentiation. Spoken informally, we 
note that  the security of this example is 264 since it takes 0(264 ) for the best 
known algorithm to crack a modular exponentiation with 128 bits. Also, if one 
desires more security at every step then we can decrease the number of bits 
extracted at every stage. This generator outputs the maximal number of bits 
from a single iteration. Extracting any more bits in any iteration leads to a 
prediction of bits - since we would then be hiding O(log n) or fewer bits and 
hence in polynomial number of guesses we would know the complete exponent 
in every iteration. 
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7 Appendix 

In this section we discuss some extensions of our results which will be addressed 
in the future. 



316 

7.1 Improving Efficiency of Computations 

Let us focus on the mechanics of the generator. We start with a finite field, and 
a generator g of its multiplicative cyclic group. Let x0 be a secret seed. Then 
we define x~+l - g~ iteratively. The output of the generator are the trailing 
n -w(log n) bits of xi for all i > 0, where n = logp. 

Although the number of bits generated per iteration is large, each iteration 
involves a large exponent and this could impact on the speed of the generator. 
Instead, we could start with p, g, and x0 as earlier but at each stage we define 
x~+l = g"  where st = leading w(log n) bits of xi. This will ensure that at each 
stage we are using short exponents and hence guarantee a significant speed up. 
This raises some interesting questions. 

Question 10. Will this speed impact the security of the generator? 

Note that when we restrict our exponents we no longer have a permutation. 
Hence the simple construction used here is inapplicable. A possible method of 
settling this problem is outlined in Hastad-eta/ in the context of discrete log- 
arithms over composite moduli [10]. In particular, exploiting a certain hashing 
lemma proved in [11] they construct a perfect extender and the pseudo-random 
generation is achieved through repeated applications of the extender to a random 
seed. 

Question 11. Are there efficient extenders which guarantee the same level of 
security (as the DLSE) but yet perform short exponent exponentiation at each 
step? 

7.2 Discrete Logarithms in Abelian Groups 

Let G be a finite Abelian group. Let g E G and let y = gX (where x is unknown 
and we are using the multiplicative notation to denote the group operation). The 
discrete logarithm problem in the subgroup generated by g asks for the value of 
x given g and y. 

In this context, Kaliksi [12] has shown that under the intractibility assump- 
tion of the discrete log in the subgroup generated by g the individual bits of 
x are hard. In this paper the Blum-MicMi notion of bits is employed, and the 
proof of individual hardness is based on a novel and new oracle proof technique. 
The main idea being, the identification of bits is based on a correlation function 
which automatically accommodates cycling and changes in bits due to random- 
ization. In addition, he completely avoids the computation of square roots which 
is central to several of the other works on individual bit security. This paper also 
states that log n bits are simultaneously hard. Presumably, the techniques of 
Long-Wigderson once applied in the framework of generic Abelian groups yields 
this result. 

Now, we note that assuming the discrete logarithm problem with short ex- 
ponents is also hard in the chosen Abelian group our results on simultaneous 
hardness of the trailing bits may be applicable. This result will be very useful 
when applied to the group of points on an elliptic curve over a finite field. 
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7.3 Discrete Logarithms in Small Subgroups 

The security of the digital signature standard (DSS) is based on the intractability 
of the discrete logarithm in small subgroups (DLSS). This leads to a natural 
question: 

Question 12. Are there k-bit predicates attached to the input of the discrete 
exponentiation function that are simultaneously hard with respect to DLSS? In 
particular, is k = n -t0(log n)? 


