
An Efficient Discrete Log Pseudo R a n d o m
Generator

Sarvar Patel and Ganapa thy S. Sundaram

Bell Labs
67 Whippany Rd, Whippany, NJ 07981, USA
sarvar~bell-labs.com, ganeshs~bell-labs.com

Abs t r ac t . The exponentiation function in a finite field of order p (a
prime number) is believed to be a one-way function. It is well known that
O(log tog p) bits are simultaneously hazd for this function. We consider a
special case of this problem, the discrete logarithm with short exponents,
which is also believed to be hard to compute. Under this intractibility
assumption we show that discrete exponentiation modulo a prime p can
hide n-w(log n) bits (n = ~log p] and p = 2q§ where q is also a prime).
We prove simultaneous security by showing that any information about
the n - w(log n) bits can be used to discover the discrete log of g ' rood p
where s has w(log n) bits. For all practical purposes, the size of s can be
a constant c bits. This leads to a very efficient pseudo-random number
generator which produces n - c bits per iteration. For example, when
n = 1024 bits and c = 128 bits our pseudo-random number generator
produces a tittle less than 900 bits per exponentiation.

1 Introduction

A function f is said to be one-way if it is easy to compute but hard to invert.
With appropriate selection of parameters, the discrete exponentiation function
over a finite field, g~ modp,is believed to be a one-way function (where g is
a generator of the cyclic group of non zero elements in the finite field). The
intractabil i ty of its inverse, the discrete logari thm problem, is the basis of various
encryption, signature and key agreement schemes. Apar t f rom finite fields, other
finite groups have been considered in the context of discrete exponentiation.
One such example is the group of points on an elliptic curve over a finite field.
Koblitz and Miller (independently) [15], [17], considered the group law on an
elliptic curve to define a public key encryption scheme suggesting tha t elliptic
curve addition is also a one-way function. Another number theoretic problem
tha t is considered to be hard is the problem of factoring integers. Examples of
functions relying on factoring which are believed to be one-way are the RSA and
Rabin functions. Closely related to factoring is the problem of deciding quadratic
residuosity modulo a composite integer.

A concept which is int imately connected to one-way functions is the notion
of hard bits, which was first introduced by Blum & Micali. Informally, a hard
bit B(.) for a one way function f (.) is a bit which is as hard to compute as it
is to invert f . Blum and Micali showed tha t the most significant bit is a hard

305

bit for the discrete logarithm problem over a finite field. To be precise, their
notion of most significant bit corresponds to the Boolean predicate which is
one if the index of the exponent is greater than e.~ and zero otherwise. They
defined and proved this hard bit and successfully used it to show the importance
of hard bits in secure pseudo-random bit generation. Soon after, the hard bits
of RSA & Rabin functions were also discovered by Ben-Or etal [2] which led
to a new secure pseudo-random bit generator. Blum, Blum and Shub [3] used
the quadratic residue problem over a composite integer to design yet another
secure pseudo-random bit generator. Their work was based on the security of
the quadratic residue problem which was investigated by Goldwasser and Micali
[8]. Later Goldreich and Levin [7] proved that all one-way functions have a
hard bit. More generally they were able to show that for any one-way function a
logarithmic number of one bit predicates are simultaneously hard. This led to the
work of [9], where they proved how to use any one-way function to build secure
pseudo-random bit generators. The use of pseudo-random bits in cryptography
relates to one time pad style encryption and bit commitment schemes, to name
a few.

All the above generators based on one bit predicates suffer from the same
problem, namely they are too slow. All of them output one bit per modular ex-
ponentiation. The concept of simultaneous hardness is the first step in speeding
things up. Intuitively, the notion of simultaneous hardness applied to a group
of bits associated to a one-way function f states that it is computationally as
hard as the inverse of the one-way function to succeed in computing any infor-
mation whatsoever about the given group of bits given only f(x). Using this
notion one can extract collections of bits per operation and hence the speed
up. Long and Wigderson [16] and Peralta [20] showed that loglogp bits of the
discrete log modulo a prime number p are simultaneously hard. On the other
hand the works of Vazirani and Vazirani [24] and Alexi etal [1] address the no-
tion of simultaneous hardness of RSA and Rabin bits. Later Kaliski [12] showed
individual hardness of bits (in the Blum Micali sense) of the elliptic curve group
addition problem using a novel oracle proof technique applicable to any finite
Abelian group. His methods extend to show simultaneous hardness (stated but
not proved in the paper) of log n bits where n is the order of the group. More
recently, Hastad, Schrift and Shamir [10], have designed a much more efficient
generator which produces ~ bits per iteration where n is the number of bits of
the modulus. The one-way function they have considered is the discrete expo-
nentiation function modulo a composite integer (to be precise a Blum integer).
Once again the method of generation relies on the proof that ~ bits of every
iteration are simultaneously hard. The use of a composite modulus allows them
to relate individual and simultaneous hardness of bits to factoring the modulus.
In all these works the common strings are the results of Yao contained in his
seminal work [25] which laid the foundations to a complexity theoretic approach
to cryptography which paved the way for a quantification of security in terms of
known hard problems.

In this paper we construct a very efficient cryptographic pseudo-random bit

306

generator attached to modular exponentiation in a finite field of cardinality p
(where p is a prime number of the form 2q + 1, and q is also prime). This
assumption on the structure of the finite field holds for the entire paper. We show
that n-w(log n) bits of every iteration are simultaneously secure (where 2 ~176
is a polynomial value in n and O(log n) is the order of the number of bits needed
to represent a polynomial in n. Note that 2~ ~ is greater than any polynomial
value in n and w(log n) is the order of the number of bits needed to represent it.)
Hence each iteration produces more bits than any other method discovered so
far. In fact, the construction that we present here is maximal since if we extract
more bits then only O(log n) would have to be guessed, which can be exhaustively
searched in polynomial time (since 2 ~176 is polynomial in n). The novelty in
this work is to relate the security of the random bit generation to the problem
of solving the discrete logarithm with short exponents. The motivation for this
technique is derived from the above mentioned work of [10] where although they
are using a modular exponentiation function modulo a composite, the security
of the system is related to factoring the underlying modulus. In a similar but
not so obvious sense, we use exponentiation in a finite field for the generation
but relate the security to the strength of the discrete log problem (over the
same prime modulus) but with s h o r t exponents. The proofs are simple and rely
on known techniques. In this paper an oracle for the i - t h bit gives the value
of i - t h bit when the binary representation is used for the argument. This is
a different representation of the i-th bit than that used by Blum-Micali and
Long-Wigderson.

The paper is organized as follows: In section 2 we discuss the discrete log
problem and in particular the short exponent discrete log problem. Details of
the oracles and hardness of bits are formalized in this section. In section 3 we
show that the trailing n - w(log n) bits are individually hard with respect to
the discrete logarithm problem with short exponents. In section 4 we prove
simultaneous hardness of the trailing n - w(log n) bits. Once again this is with
respect to the discrete log with short exponents problem. In section 5 we discuss
the design of the pseudo-random generator and provide the proof of security and
conclude in section 6. In the appendix, we discuss some extensions of this work
to include other Abelian groups and possible ways to improve the efficiency of
the pseudo random generator.

2 T h e D i s c r e t e L o g a r i t h m P r o b l e m

We first define the discrete logarithm problem. Let p be a prime and g a generator
for Zp*, the multiplicative cyclic group of nonzero elements in the finite field of
order p. Then for 1 < z < p - 1 the function which maps x to gX mod p defines
a permutation.

P r o b l e m 1 . The discrete logarithm problem is to find x given yeZp* such that
gX mod p - y.

307

Let n = rlogp] be the length of p in binary, then g= mod p is computable in
Poly (n) time. However, there is no known deterministic or randomized algorithm
which can compute the discrete logarithm in Poly (n) number of steps. The best
algorithm to compute the discrete logarithm in a finite field of order p, is the
index calculus method. Even this is infeasible if p is appropriately large (e.g.
1024 bits) since the complexity is subexponential and not polynomial in n. On
the other hand for primes such that p - 1 consists of only small factors, there are
very fast algorithms whose complexity is equal to the complexity of the discrete
log in a field whose cardinality is equal to its largest prime factor. This algorithm
is due to Pohlig and Hellman [21].

2.1 Discrete L o g a r i t h m wi th Short Exponen t s

For efficiency purposes the exponent ~ is sometimes restricted to c bits (e.g.
c = 128 or 160 bits) since this requires fewer multiplications. There are square
root time algorithms to find x in ~ steps, due to Shanks [14] and Pollard [22].
Thus c should be at least 128 bits to provide 64 bits of security. By this we
mean an attacker should perform at least 264 operations in order to crack the
discrete logarithm using these algorithms. At the moment, there is no faster way
to discover the discrete logarithm even with x so restricted. In particular, the
complexity of index calculus algorithms is a function of the size of the entire
group and does not depend on the size of the exponent.

We will also restrict x, in particular, we will restrict it to be slightly greater
than O(log n) bits, but not to save on multiplications. The size of the exponent
will be denoted w(logn), described in section 1. Hence, even with the square
root attack one needs greater than 20(l~ steps or greater than a polynomial
in n number of steps.

The hard problem we consider in this paper is the inverse of this special case
of the discrete exponentiation function. In other words:

Problem 2. Let s be an integer which is significantly smaller compared to p. The
DLSE problem is to find s given yr such that gS mod p - y.

The DLSE problem has been studied by [19] in the context of the Diffie-
Hellman key agreement scheme. The use of short exponents in the Diftie-I-Iellman
protocol is to speed up the process of exponentiation. Typically the cost of
computing g= is linearly related to the bit length of x, hence real-time computing
costs have motivated the use of low order exponents. Care is necessary to ensure
that such optimizations do not lead to security weaknesses. The above mentioned
paper [19], presents a set of attacks and methods to rectify the situation. In
particular their conclusions suggest the use of safe primes.

Another example of the use of shorter exponents is in the generation of digital
signatures. The digital signature standard (DSS) published by the NIST [6] is
based on the discrete logarithm problem. It is a modification of the E1Gamal
signature scheme. The E1Gamal scheme usually leads to a signature having 2n
bits, where n is the number of bits ofp (the modulus). For potential applications

308

a shorter signature is desirable. DSS modifies the E1Gamal scheme so that a
160-bit message is signed using a 320 bit signature but computations are all
done modulo a 512 bit prime. The methodology involves the restrictions of all
computations to a subgroup of size 216~ The assumed security of the scheme is
based on two different but very related problems. First of these is the discrete
log in the entire group which uses a 512 bit modulus, where the index calculus
algorithm applies. The second is the discrete log problem in the subgroup of
the cyclic group of nonzero elements in the finite field. Here Shanks'square root
algorithm reduces the complexity to O(2 s~ since the exponent is only 160-bits.
Although the DLSE and the subgroup discrete log problems are not equivalent,
the square root t ime attacks apply to both problems.

2.2 Hardness o f Bits

As indicated in the introduction, the notion of hard bits is intimately connected
to that of a one-way function. In this paper we define a mild generalization of
hard bits.

D e f i n i t i o n 3 . Let),(z) and), '(s) be one-way functions. Let B : - , {0, 1} be
a Boolean predicate. Given) , (z) for some x, the predicate B (z) is said to be
)"-hard if computing B(x) is as hard as inverting),'(s), i.e. discovering s.

When f and),' are the same as are z and s, then we have the usual defi-
nition of hard bits. For example, discovering the Blum-Micali bit is as hard as
computing the discrete logarithm. But in this paper we allow), and),' to be
different. An example of this phenomenon, is discrete exponentiation modulo a
composite modulus. Here the discrete logarithm in the ring of integers modulo
a composite is a hard function, and so is factoring. So),(x) = g~ mod m and
), '(s) =), ' (s = p, q) = m. Clearly, there are boolean predicates B (z) which are
)'-hard but there may be other predicates which are)"-hard, but not)'-hard.
That is computing B(x) is as hard as factoring the modulus m, but may be not
as hard as the discrete log modulo a composite [10]. In this paper we consider a
similar situation. We consider the one-way function of discrete exponentiation,
but we prove that the n -w(log n) bits of the exponent are DLSE-s imul taneous ly
hard. That is for us),(z) = g~ m o d p and), '(s) = g' m o d p where s is a short
exponent. The best previous result showed simultaneous hardness of -~ of the
bits [10], but our result shows simultaneous hardness for almost all the n bits.
Our results are maximal. In other words, in a pseudo-random generator, if in
any iteration we hide only O(log n) or fewer bits, then any attacker can compute
the seed of the generator by making a polynomial number of guesses. Hence one
cannot further improve on these results regarding number of bits produced per
iteration.

2.3 Binary Representation

The number x can be represented in binary as bn �9 2 '*-1 + bn-1 �9 2 n-2 + . . . + b2"
21 +bl "2 o where bi is either 0 or 1. The i - t h bit problem is to discover the value

309

of bi of z. The i - th bit is hard if computing it is as difficult as computing the
inverse of f~(s). If we had an perfect oracle, Oi(g,p, y), which outputs the value
of bi then the bit is hard if there is a Poly(n) time algorithm which makes Poly(n)
queries to the oracle Oi(g, p, .) and computes the entire value of s. We know the
least significant bit is not hard because there is a Poly (n) time algorithm to
compute it, namely by computing the Legendre symbol.

An imperfect oracle, O~(p, g, .), is usually defined as an oracle which outputs
1 1 the correct bit value with probability greater than ~ + ~ . Some of the most

significant bits of x, in fact O(log n) most significant bits, can be biased, but as
we shall see later they do not affect us.

2.4 B l u m - M i c a l i R e p r e s e n t a t i o n

In this paper, we will use the binary representation when we discuss the security
of the i-th bit, however, we want to mention another interpretation of the i th
bit. Blum-Micali introduced a particular bit predicate, B(z) and showed its
hardness. S(x) is 0 if 1 < x < ~ and B(z) is 1 if ~-~ < x < p - 1. This is
sometimes referred to as the most significant bit of x and it is clearly different
from the most significant bit of x under the binary representation. Others [16]
have extended the definitions to define the k most significant bits. Often the
Blum-Micali representation is used to refer to the most significant bits, while
the binary representation is used for the least significant bits. In this paper we
will use the binary representation when referring to the i th bit, unless specified
otherwise.

3 Individual Hardness of Bits

In this section, we discuss the security of the trailing n - w(log n) bits, where
w(log n) is as defined earlier. To be precise we show that except the least sig-
nificant bit, all the n - w(log n) lower bits are individually hard with respect
to the DLSE problem. Based on definition 3, this amounts to proving the bits
of the discrete logarithm are DLSE-hard. The proof techniques we employ are
variations of techniques from [4] and [20].

Let Oi(g, y,p) be a perfect oracle which gives the i ~h bit (for any i E [2, n -
w(log n)]. Note that i increases from right to left and i = 1 for the least signifi-
cant bit. Given this oracle we show that in polynomial number of steps we can
compute the short exponent discrete logarithm. In addition, we prove hardness
of individual bits by showing that given an imperfect oracle O~(g,y,p) with e
advantage to predict the i th bit (for any i in the prescribed range), we can turn
this into an algorithm to compute the discrete logarithm of a short exponent in
probabilistic polynomial time by making a polynomial number of queries to this
oracle. For the rest of the paper we will refer to lower k bits to mean lower k
bits excluding the least significant bit, for any k.

T h e o r e m 4 . The lower n - w (l o g n) bits are individually DLSE-hard.

310

Proof: According to definition 3, it is enough to show that given Oi(g, y ,p)
(where g is a generator of the group in question) we can compute log y for all y
such that s = log y is a short exponent. In this paper we assume that p - 1 = 2q,
where q is an odd integer.

(a) Perfect Oracles - Oi (g ,y ,p) . We are given g' and g and we know in
advance that s is small (consisting of w(log n) bits). Now, computing the least
significant bit is always easy, via the Legendre symbol. Hence we compute it and
set it to zero. Let i = 2 and suppose we have an oracle for the 2nd bit. If this
is a perfect oracle then we discover the second bit. Once this is known then we
set it to zero and we will continue to refer to the new number as gS. Next we

compute the square roots of gS. The roots are g�89 and g~+L=2"! where we refer
to the former as the principal square root. Since the two least significant bits
of ga are zero, we know that the principal square root has LSB equal to zero
(or equivalently Legendre symbol one). This allows us to identify the principal
square root. Now run the oracle on the principal square root and compute the
second least significant bit. This bit is really the third least significant bit of s.
Once again, set this bit to zero and repeat the process. Clearly, in poly(n) steps
we would have computed s one bit at a time from right to left, given an oracle
for the second bit.

Now, in general when we are given the oracle for the i ~h bit (i > 2) we square
g8 i - 2 times. Then the 2nd LSB of s is at the i ~h position, and we run the oracle
to compute this bit; we zero this bit and once again compute square roots. The
principal square root corresponds to the root with LSB equal to zero. Now the
(i q- 1) th bit of s can be computed by running the oracle on the principal square
root. Continue this process and in c steps where c = log s, we would know s.

(b) Imperfect Oracles - O~(g, y, p). Suppose we have an imperfect oracle which
succeeds in finding the i ~h bit in only e more than fifty percent of the x E Z~.
Then we can concentrate the stochastic advantage and turn this oracle into
an oracle which answers any specific instance correctly with arbitrarily high
probability.

We divide the proof into two parts
(i) The lower 2 __ i < n - w(log n) - O(log n) bits are individually hard.
(ii) The middle n - w (l o g n) - O (l o g n) < i < n - w (l o g n) bits are individually

hard.

(i) Let i -- 2 and suppose we have an imperfect oracle for the 2nd bit whose
advantage is e, i.e., the oracle can give the correct answer on e more than fifty
percent of the possible inputs (and we do not know which ones). Then let {rj}
be a sequence of polynomial number of random numbers between 1 and p - 1.
We run the oracle on gS+r~, where the LSB of s is zero. Via the weak law of
large numbers [4], a simple counting of the majori ty of l~s and 0Is of the oracle
output (after neutralizing the effect of the random number) for the second LSB
yields this bit with high probability. Now compute the square roots and pick
the principal square root as earlier. Once again repeat the process with a fresh
set of random numbers to discover the next bit. In c -- log s steps we recover a
candidate and verify that gcandidate __ gs mod p. If they are not equal then the

311

whole process is repeated. Clearly in poly(n) steps we would have discovered s
one bit at a time from right to left. The details of the proofs are omitted, and
we refer to [4] or [20] for further details. The only aspect that needs additional
mention is the fact, when we randomize it is possible that for some rj when we
add them to the exponent we may exceed p - 1. We refer to this as cycling.
Assuming that we pick our random numbers uniformly, then we argue that the
probability of this cycling is negligible because most of the leading bits of gS are
z e r o .

Suppose i > 2. Then we square gS i - 1 times, and repeat the above process
and conclude that any oracle which has an e advantage will lead to a polynomial
t ime algorithm to compute s. The probability of cycling is still negligible for
2 _< i < n - w(log n) - O(log n) because even in the extreme case when i =
n - w (l o g n) - O(log n) the chance of cycling is ~ or less than one over any
polynomial.

(ii) The proof of this step is also similar to the second part of the proof of
(i) except that one has to set the initial t bits of s to zero by guessing, before
we start the randomizing process. Even when i = n - w(log n) and s has been
shifted so that the 2 n~ least significant bit is in the i th position, the probability
of cycling can be bounded by 1 for any Polynomial in n. Here t is up to
O(log n) number of bits and hence the probability of cycling is bounded above
by 1 and hence we need to increase the number of queries by a certain
amount corresponding to the drop in advantage due to cycling. Once again the
details are omitted for brevity (see [4]) and will be included in an expanded
version of this paper.

4 Discrete Logarithm Hides Almost n Bits

In this section we prove the simultaneous hardness of n - w(log n) lower bits of
the index in modular exponentiation. Intuitively, given a generator g of a finite
field of order p, and gX for some x then we show that gaining any information
about the trailing n - w(log n) bits is hard. Here hardness is with respect to the
DLSE problem. In other words, for any prime p given a random generator g and
a random element g* of the finite field, any information on the relevant bits of
z can be converted into an poly(n) algorithm to solve the DLSE problem. Now,
the phrase gaining any information is rather vague, and this is clarified by the
concept of simultaneous security which is defined below for any generic one-way
function.

D e f i n i t i o n 5 . Let f be a one-way function. A collection of k bits, Bk(x) is said
to be simultaneously secure for f if Bk(z) is easy to compute given x and for
every Boolean predicate B an oracle which computes B(Bk(z)) correctly with
probability greater than �89 given only f (x) can be used to invert f in Poly(n)
time.

In this paper we will be employing a modified notion of simultaneous security
relative to a possibly different one-way function.

312

D e f i n i t i o n 6 . Let f and f ' be one-way functions. A k-bit predicate B k is said to
be f'-simulta.neously hard if given f (x) , for every non-trivial Boolean predicate
B on k bits, an oracle which outputs B (B k (z)) can be used to invert f ' in
polynomial time. If B k is a f~ hard predicate then we say the bits of B k (z) are
f '-simultaneously hard.

The above definition, although precise, is not easy to apply when understand-
ing simultaneous security. A more working definition is provided in definition 7,
phrased in the language of the discrete logarithm problem over a prime modulus.

D e f i n i t i o n T. The bits of the exponentiation function gX m o d p at location
j < i < k are DLSE-simultaneously hard if the [j, k] bits of the discrete log-
ari thm of g= mod p are polynomially indistinguishable from a randomly selected
[j, k] bit string for random chosen (g, p, gZ mod p). In addition any polynomial
distinguishability will lead to an oracle which solves the DLSE problem in poly-
nomial time.

Once again, proving polynomial indistinguishability of a group of bits as
above is difficult. But the notion relative hardness helps alleviate this problem
and in fact leads to a test of simultaneous security.

D e f i n i t i o n 8. The i th bit, j < i < k, of the function g= mod p is relatively hard
to the right in the interval [j, k] if no polynomial time algorithm can, given a
random admissible triplet (g, p, g= mod p) and in addition given the k - i bits
of the discrete logarithm of gr to its right, computes the i th bit of the discrete

1 for any logarithm of g= with probability of success greater than �89 +
polynomial poly(n) where n = logp.

Based on this definition, we have a test for simultaneous security. The state-
ment of this test is the following fact.

Fac t Definitions 7 and 8 are equivalent.

The proof of this equivalence is implied by the well-known proof of the uni-
versality of the next bit test due to Yao [25]. Now, using this fact and the
intractibility of the DLSE problem we show that the trailing n - w(log n) bits
are simultaneously hard.

T h e o r e m 9. The n - w(log n) trailing bits of g x mod p are simultaneously hard,
with respect to the DLSE problem.

Proof: Based on the above fact, it is sufficient to show that every trailing bit of
z (given g and g=) is relatively hard to the right in the interval [2, n - w(log n)].
Following the definitions and theorem above we know that , in order to show
simultaneous security, we are allowed to use only a weak oracle: given g=, to
predict the i th bit of z , all the i - 1 trailing bits of the unknown z should also
be given to the oracle. Such a weak oracle may not work in general.

Assume the theorem is false. Then, for some i e [2, n - w(log n)] there exists
an oracle which when supplied with the trailing i - 1 bits of a generic z succeeds

313

1 in predicting the i th bit of x with advantage e (where e is pozy--Tb-('~)" Now pick
an element S = ga where s is a short exponent. We can shift s to the left by
squaring S the appropriate number of times. Now all the bits to the right of the
i th bit are zero. Since 0 < i < n - to(log n) we can shift s by i - 1 bits to the
left without cycling. Recall, by cycling we mean the exponent exceeds p - 1 and
hence its remainder modulo p - 1 replaces the exponent. Now the 2nd LSB of
s rests on the i th bit and we can run the oracle repeatedly by multiplying by
gr mod p where r is a random number between 0 and p - 1. In order to make
sure that the probabil i ty of cycling is low we may have to set the t = O(logn)
leading bits of s to zero which we can exhaustively guess and run the algorithm
for each guess. Since we will continue to have an d > e - ~ advantage we can
deduce the bit from the oracle in poly(n) time. We know the 2nd LSB of s in
this manner. We set that bit to zero, and take the square root of the number.
Of the two roots we should pick the one which is the quadratic residue because
all the lower bits are zero to begin with and hence the square root should have
a zero in the LSB. Now the next bit of s is in the i th position and we can run
the oracle repeatedly to discover this bit and so on to recover all the bits of s.
At the end of the algori thm we have a candidate and we can see if geandidate
equals S. If it does then we stop or else repeat the algori thm with another guess
for t bits or different random numbers r. Note the oracle is very weak unlike the
case for the individual bit oracle. The oracle here will tell you the i th bit with
e advantage provided you also supply all the i - 1 bits to the right of i. However
we are able to do this because all the bits to the right of the shifted s are known
to be zero, since we star ted with a short exponent. Now we have shown that for
every i such that 2 _< i < to(log n) we can use this weak oracle to discover s thus
we have shown the trailing bits to be simultaneously hard provided the function
g8 mod p with s of size to(log n) is hard to invert.

5 P s e u d o R a n d o m B i t G e n e r a t o r

In this section we provide the details of the new pseudo-random bit generator.
In particular we extend the scheme used by Blum-Micali [4] to extract more bits.
This is the same scheme that Long-Wigderson [16] used in their generator but
their output consisted of log n bits per iteration. In our new scheme we produce
n - w (l o g n) bits per iteration. Recall f rom section 2 tha t the Blum-Micali scheme
used a mildly different definition of "bits". We use the same definition of bits as
[10], but we do not encounter the difficulties they did in defining the generation
scheme since our exponentiation induces a permuta t ion on Zp*.

N E W G E N E R A T O R Pick a seed zo from Zp*. Define x~+z = gX~ mod p.
A t the i th step (i > O) output the lower n - to(log n) bits of xi , except the least
significant bit.

314

5.1 P r o o f o f S e c u r i t y

Suppose A is an e-distinguisher of the I (1 is poly in n) long output of our
generator, then there is a (e/0-distinguisher for some output at the i th step.
By appropriately running the generator then there is a (e/0-distinguisher for
n - w(log n) bits of so. According to our definitions in the previous section, due
to Yao [25], we can use a distinguisher to create a weak oracle which will tell us
the i-th bit of s provided we also give it the rightmost i - 1 bits of s.

Now we note that we can use this to discover s given g' mod p where s has
w(log n) bits. We repeatedly invoke the "weak oracle" by setting so = g, gr. Thus
we can discover the i bit in poly(n) time. Using techniques shown in theorem
9 we can discover the entire s. So if the output sequence of our generator is
e-distinguishable then in poly(n) t ime we can discover s of our exponentiation
function. Assuming it is intractable to invert the function g' mod p where s has
w(log n) bits (i.e., short exponent) then the output sequence of our generator is
polynomially indistinguishable.

6 Conclusion

We have shown that the discrete logarithm rood a prime p hides n -w(log n) bits
by showing the simultaneous hardness of those bits. The hardness in this result
is with respect to the discrete logarithm problem with short exponents, i.e.,
DLSF,-simultaneously hard (as defined in section 2 of this paper). This allows us
to extract n - w(log n) bits at a t ime for pseudo-random generation and other
applications. As an example for n of size 1024 bits and s of size 128 bits this
allows us to extract almost 900 bits per exponentiation. Spoken informally, we
note that the security of this example is 264 since it takes 0(264) for the best
known algorithm to crack a modular exponentiation with 128 bits. Also, if one
desires more security at every step then we can decrease the number of bits
extracted at every stage. This generator outputs the maximal number of bits
from a single iteration. Extracting any more bits in any iteration leads to a
prediction of bits - since we would then be hiding O(log n) or fewer bits and
hence in polynomial number of guesses we would know the complete exponent
in every iteration.

R e f e r e n c e s

[1]

[2] ,

[3]

[4]

W. Alexi, B. Chor, O. Goldreich and C. P. Schnorr, RSA/Rabin bits are
1/2+l/poly(log N) secure, Proceedings of P5th FOCS, 449-457, 1984.
M. Ben-Or, B. Chor, A. Shamir, On the cryptographic security of single RSA
bits, Proceedings of 15th STOC, 421-430, 1983.
L. Blum, M. Blum, and M. Shub, A simple secure pseudo-random number
generator, SIAM J. Computing, 15 No. 2:364-383, 1986.
M. Blum, and S. Micali, How to generate cryptographically strong sequences
of pseudo random bits, SIAM J. Computing, 13 No. 4:850-864, 1984.

315

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[24]

[25]

R. B. Boppana, and R. Hirschfeld, Pseudorrandom generators and complexity
classes, Advances in Computing Research, 5 (S. Micali, Ed.), JAI Press, CT.
U. S. Department of Commerce/N. I. S. T, Digital Signature Standard, FIPS
186, May 1994.
O. Goldreich, and L. A. Levin, A haM-core predicate for all one way func-
tions, Proceedings of Zlst STOC, 25-32, 1989.
S. Goldwasser, and A. Micali, Probabilistic encryption, Journal o] Computer
and Systems Science, 28: 270-299, 1984.
J. ttastad, R. Impagliazzo, L. A. Levin, and M. Luby, Construction of pseudo-
random generator from any one-way function, SIAM J. Computing, to ap-
pear.
J. Hastad, A. W. Schrift, and A. Shamir, The discrete logarithm modulo a
composite modulus hides O(n) bits, Journal o] Computer and System Sci-
ences, 47: 376-404, 1993.
R. Impagliazzo, L. A. Levin, and M. Luby, Pseudo-random generation from
one-way functions, Proceddings of 20th STOC, 12-24, 1988.
B. S. Kaliski, A pseudo-random bit generator based on elliptic logarithms,
Advances in Cryptology - CRYPTO '86 (LNCS 263), 84-103, 1987.
J. Kilian, S. Micali, and R. Ostrovsky, Minimum resource zero-knowledge
proofs, Precedings of 30th FOCS, 474-489, 1989.
D. E. Knuth, The Art of Computer Programming (vol 3): Sorting and Search-
ing, Addison Wesley, 1973.
N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation,
48:203-209, 1987.
D. L. Long, and A. Wigderson, The discrete log hides O(log n) bits, SIAM
J. Computing, 17:363-372, 1988.
V. Miller, Elliptic curves and cryptography, Advances in Cryptology .
CRYPTO '85 (LNCS ~18), 417-426, 1986.
M. Naor, Bit commitment using pseudo-randomness, Advances in Crvptology
- CRYPTO '89 (LNCS 435), 128-136, 1989.
P. van Oorschot, M. Wiener, On Diffie-Hellman key agreement with short
exponents, Advances in Cryptology - EUROCRYPT '96 (LNCS 1070), 332-
343, 1996.
R. Peralta, Simultaneous security of bits in the discrete log, Advances in
Cryptology - EUROCRYPT '85 (LNCS 219), 62-72, 1986.
S. C. Pohlig, and M. E. Hellman, An improved algorithm for computing over
GF(p) and its cryptographic significance, IEEE Trans. IT, 24: 106-110, 1978.
J. M. Pollard, Monte Carlo methods for index compution (rood p), Mathe-
matics of Computation, 32, No. 143:918-924, 1978.
U. V. Vazirani, and V. V. Vazirani, Efficient and secure pseudo-random num-
ber generators, Proceedings of 25th FOCS, 458-463, 1984.
A. C. Yao, Theory and applications of trapdoor functions, Proceedings of
23rd FOCS, 80-91, 1982.

7 Appendix

In this section we discuss some extensions of our results which will be addressed
in the future.

316

7.1 Improving Efficiency of Computations

Let us focus on the mechanics of the generator. We start with a finite field, and
a generator g of its multiplicative cyclic group. Let x0 be a secret seed. Then
we define x~+l - g~ iteratively. The output of the generator are the trailing
n -w(log n) bits of xi for all i > 0, where n = logp.

Although the number of bits generated per iteration is large, each iteration
involves a large exponent and this could impact on the speed of the generator.
Instead, we could start with p, g, and x0 as earlier but at each stage we define
x~+l = g" where st = leading w(log n) bits of xi. This will ensure that at each
stage we are using short exponents and hence guarantee a significant speed up.
This raises some interesting questions.

Question 10. Will this speed impact the security of the generator?

Note that when we restrict our exponents we no longer have a permutation.
Hence the simple construction used here is inapplicable. A possible method of
settling this problem is outlined in Hastad-eta/ in the context of discrete log-
arithms over composite moduli [10]. In particular, exploiting a certain hashing
lemma proved in [11] they construct a perfect extender and the pseudo-random
generation is achieved through repeated applications of the extender to a random
seed.

Question 11. Are there efficient extenders which guarantee the same level of
security (as the DLSE) but yet perform short exponent exponentiation at each
step?

7.2 Discrete Logarithms in Abelian Groups

Let G be a finite Abelian group. Let g E G and let y = gX (where x is unknown
and we are using the multiplicative notation to denote the group operation). The
discrete logarithm problem in the subgroup generated by g asks for the value of
x given g and y.

In this context, Kaliksi [12] has shown that under the intractibility assump-
tion of the discrete log in the subgroup generated by g the individual bits of
x are hard. In this paper the Blum-MicMi notion of bits is employed, and the
proof of individual hardness is based on a novel and new oracle proof technique.
The main idea being, the identification of bits is based on a correlation function
which automatically accommodates cycling and changes in bits due to random-
ization. In addition, he completely avoids the computation of square roots which
is central to several of the other works on individual bit security. This paper also
states that log n bits are simultaneously hard. Presumably, the techniques of
Long-Wigderson once applied in the framework of generic Abelian groups yields
this result.

Now, we note that assuming the discrete logarithm problem with short ex-
ponents is also hard in the chosen Abelian group our results on simultaneous
hardness of the trailing bits may be applicable. This result will be very useful
when applied to the group of points on an elliptic curve over a finite field.

317

7.3 Discrete Logarithms in Small Subgroups

The security of the digital signature standard (DSS) is based on the intractability
of the discrete logarithm in small subgroups (DLSS). This leads to a natural
question:

Question 12. Are there k-bit predicates attached to the input of the discrete
exponentiation function that are simultaneously hard with respect to DLSS? In
particular, is k = n -t0(log n)?

