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Abstract. We propose a cryptosystem modulo pkq based on the RSA 
cryptosystem. We choose an appropriate modulus pkq which resists two 
of the fastest factoring algorithms, namely the number field sieve and 
the elliptic curve method. We also apply the fast decryption algorithm 
modulo pk proposed in [22]. The decryption process of the proposed cryp- 
tosystems is faster than the RSA cryptosystem using Chinese remainder 
theorem, known as the Quisquater-Couvreur method [17]. For example, 
if we choose the ?68-bit modulus p2q for 256-bit primes p and q, then the 
decryption process of the proposed cryptosystem is about 3 times faster 
than that of RSA cryptosystem using Quisquater-Couvreur method. 
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1 I n t r o d u c t i o n  

The RSA cryptosystem is one of the most practical public key cryptosystems 
and is used throughout the world [19]. Let n be a public key, which is the product 
of two appropriate primes, e be an encryption key, and d be a decryption key. 
The algorithms of encryption and decryption consist of exponentiation to the e th 
and d th powers modulo n, respectively. We can make e small, but must consider 
low exponent attacks [3] [4] [6]. The encryption process takes less computation 
and is fast. On the other hand, the decryption key d must have more than one 
fourth the number of bits of the public key n to preclude Wiener's attack [24] 
and its extension [23]. Therefore, the cost of the decryption process is dominant 
for the RSA cryptosystem. 

In this paper, we propose an RSA-type cryptosystem modulo n = pkq. Even 
though the modulus is not of the form pq, we choose appropriate sizes for the 
secret primes p and q to preclude both the number field sieve and the elliptic 
curve method. Using this modulus pkq, we construct a fast decryption public-key 
cryptosystem. In the key generation, we generate the public key e and secret key 
d using the relation ed =_ 1 (rood L), where L = LCM ( p -  1, q -  1). Note that  L is 
not the same as r = pk-1 (p_ 1) (q -  1) or even ~(n) = LCM(p k-x ( p -  1), q -  1). 
Thus, the secret exponent d becomes much smaller than n = pkq. Moreover, for 
decrypting M r - M (mod pk) we show that  it is possible to apply the fast 
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decryption algorithm proposed in [22]. The running time for computing Mp is 
essentially equivalent to that for C d (rood p). Therefore, the decryption pro- 
cess is much faster than in the RSA cryptosystem using the Chinese remainder 
theorem [17]. 

The paper is organized as follows. In Section 2, we describe the algorithm 
of the proposed cryptosystem. We discuss the size of the secret primes which 
prevents the use of both the number field sieve and the elliptic curve method 
in Section 3. Then, we show the running time of the proposed cryptosystem in 
comparison with the RSA cryptosystem using the Quisquater-Couvreur method 
in Section 4. We explain the effectiveness of Wiener's attack in Section 5. We 
show some properties of our cryptosystem related to some attacks in Section 6. 

Notation: Z is an integer ring. Zn is a residue ring Z / n Z  and its complete 
residue class is {0, 1,2, . . .  ,n - 1}. Z x is a reduced residue group modulo n. 
LCM(ml,m2) is the least common multiple of ml and m2. GCD(ml,m2) is the 
greatest common divisor of ml and m2. 

2 P r o p o s e d  p u b l i c - k e y  c r y p t o s y s t e m  

In this section, we describe an RSA-type cryptosystem modulo pkq, and discuss 
the size of its secret keys and the running time. 

2.1 Algorithm 

1. Generation of the keys: Generate two random primes p, q, and let n = pkq. 
Compute L = LCM (p -  1, q -  1), and find e, d which satisfies ed - 1 (rood L) 
and GCD(e,p) = 1. Then e, n are public keys, and d,p, q are the secret keys. 

2. Encryption: Let M ~ Z x be the plaintext. We encrypt the plaintext by the 
equation: 

C - = M  e (modn).  (1) 

3. Decryption: We decrypt Mp = M (mod pk) and Mq = M (mod q) using 
the secret key d,p, q. The plaintext M can be recovered by the Chinese 
remainder theorem. Here, Mq is computed by Mq = C d (mod q) and Mp is 
computed by the fast algorithm described in [22]. 

2.2 Details of  the decryption algorithm 

The order of the group Z x is pk-1 (p_ 1). When M v = M (mod pk) is recovered pk 
using the standard algorithm of RSA, we have to compute Mp = C d (mod pk) 
for d = e -1 (mod LCM(pk-l(p - 1),q - 1)). Then the running time is slower 
than that of the method using the Chinese remainder theorem for n = pq [17], 
so there are no significant advantages in using the modulus pkq. Instead, we 
apply the method described in [22], where the author presents a fast algorithm 
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for computing RSA decryption modulo n k using n-adic expansion. Then, the 
running time for computing Mp becomes essentially equivalent to computing 
M r -- C d (mod p) for d -~ e -1 (mod LCM(p - 1, q - 1)). 

First, we modify the algorithm into a more efficient form. We denote the 
ciphertext reduced modulo pk by Cp. Then the relationship between the cipher- 
text C r and the plaintext is Cp = M~ (mod pk). Note that M r the plaintext 
modulo pk, has the p-adic expansion such that 

M r - Ko +pK1 +p2K2 + . . .  +pk-IKk-1 (mod pk). (2) 

Here, we define the function F~(X0, X1,..., Zi) as follows: 

F (Xo, X l , . .  ., = (Xo + + . . .  + 

where i = 0, 1 , . . . ,  k - 1. f k _ l ( Z  0 .~-pZ 1 -~-... "-}-pk-lXk_l)e is the same as the 
function that encrypts the plaintext M r in equation (2). By reducing modulo 
pi+l, we get the relationship 

Fi(Zo,Xl , . . .  ,Xi) ~-- Fi-1 jrpiVi_iZi  (mod pi+l), 

where F~-I = Fi-l  (Xo + pX1 +. . .  "~t'pi-l Xi-1)e and Gi-1 : e(Xo "JcpXl "}-...--~ 
p~-lXi_l)e-1 for i = 0, 1 , . . . ,  k - 1. From this relationship, we can recursively 
calculate K I , . . . , K k - 1 .  For i = 1, /(1 is the solution of the following linear 
equation of XI: 

C =- Fo(go) +pGo(go)Xl  (mod p2). (3) 

Assume we have already calculated K1,K2, . . .  , K  i-1. Using these values, we 
compute F~-I (K0, K1 , . . . ,  Ki-1), Gi-1 (/to, K1, �9 �9 Ki-1) in Z, and denote them 
by Fi-1, Gi-1, respectively. Then, Ks is the solution of the following linear equa- 
tion of .I"/: 

C = Fi-1 +p iGi - lX i  (mod pi+l). (4) 

Note that (Gi-l ,p) = 1, because GCD(Ko,p) = GCD(e,p) = 1, so we can 
uniquely decrypt K~. 

After computing Ko, K1,. �9 �9 Kk-1, we can evaluate Mp (mod pk) from equa- 
tion (2). Finally, the plaintext M (mod pkq) is also computed from the values 
Mp (mod pk), Mq (mod q), and the Chinese remainder theorem. 

Moreover, note that we do not have to use the secret exponent d for evaluating 
/(1,/(2, . . . ,  K~-I.  Thus, when we compute the two values of Ko =- C d (rood p) 
and Mq - C '~ (mod q), the secret exponent d can be reduced modulo p - 1 and 
q - 1. Indeed, C d - C d,' (mod p) and C d - C d, (mod q) hold, where dp -- d 
(rood p - 1) and dq - d (rood q - 1). 

In Appendix A, we describe the decryption program written in pseudo-code. 
For x E Z and a positive integer N, [X]N denotes the remainder of x modulo N, 
which is in {0 ,1 , . . . ,  N - 1}. 
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3 Size of secret parameters 

Here, we discuss the size of the secret parameters p and q. The RSA cryptosystem 
uses a composite number of the symmetry type pq, where p and q are the same 
bit size. The cryptosystem proposed in this paper depends on the security of 
factoring the modulus pkq. We have to carefully choose the size of p and q. 

There are two types of fast factoring algorithm to consider: the number 
field sieve [11] and the elliptic curve method [10]. Other factoring algorithms 
have the same or slower running times, so the size of the RSA-modulus can 
be estimated by these two factoring algorithms [7] [13] [20]. Let LN[s,c] = 
exp((c + o(1))logS(N)loglogl-S(N)). The number field sieve is the fastest fac- 
toring algorithm, and the running time is estimated from the total bit size of the 
integer n to be factored, which is expected as Ln[1/3, (64/9)1/3]. If we choose 
n to be larger than 768 bits, the number field sieve becomes infeasible. In our 
case, we have to make the modulus n = pkq larger than 768 bits. The elliptic 
curve method is effective for finding primes which are divisors of the integer n to 
be factored. The running time is estimated in terms of the bit size of the prime 
divisor p. Its expected value is Lp[1/2, 21/2]. Note that the running time of the 
elliptic curve method is different from that of the number field sieve, and the 
order is much different. If we choose p to be larger than 256 bits, the elliptic 
curve method becomes infeasible. In our case, we have to make the primes p and 
q of the modulus larger than 256 bits. 

The factoring algorithm strongly depends on the implementation. In my 
knowledge, the fastest implementation record for the number field sieves fac- 
tored 130-digit RSA modulus [5] and that for the elliptic curve method found 
48-digit prime factor [8]. Here, we again emphasize that there is a big difference 
in the cost between the number field sieve and the elliptic curve method. There- 
fore, if we choose the 768-bit modulus p2q with 256-bit primes p and q, neither 
of the factoring algorithms is feasible, so the scheme is secure for cryptographic 
purposes. But the size of secret primes must be thoroughly discussed for the 
practical usage of our proposed cryptosystem, and this is work in progress. 

Here, we wonder if there exists factoring algorithms against the modulus 
with a square factor p2q. This factoring problem appeared in the list of the open 
problems in number theoretic complexity by Adleman and McCurley [1], and it 
is unknown whether there exists Lp[1/3]-type sub-exponential algorithm which 
finds the primes of the composite number p2q. Recently, Peralta and Okamoto 
proposed a factoring algorithm against numbers of the form p2q based on the 
elliptic curve method [16]. They focused on the fact the Jacobi symbol is equal 
to one for a square integer, and the running time becomes a little bit faster than 
that of the original elliptic curve method. 

Remark 1. A digital signature scheme [14] and two public key cryptosystems 
[9] [15] which rely on the difficulty of factoring numbers of the type p2q have 
been proposed. These cryptosystems are fast and practical. For secure usage of 
these cryptosystems and our proposed cryptosystem, the research of factoring 
algorithms against a composite number with a square factor is desirable. 
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4 Running t ime 

In this section, we estimate the running time of the proposed cryptosystem. We 
assume that the public modulus n = p2q is 768 bits for 256-bit primes p and q 
in the following. We also assume the running time for computing Z a (mod b) is 
O(log~(b) log2(a)). Below, we estimate the worst-case running time. 

In the decryption process of the proposed cryptosystem, the algorithm does 
not depend on the secret exponent d except when we compute 

C d (modp), C a (mod q). (5) 

After calculating C d (mod p), we compute only a few multiplications for ob- 
taining Mp -- M (mod pk). This costs the same as the encryption process. If we 
choose a very small e, this algorithm is very efficient. For example, if the mod- 
ulus be p2q, then we only compute at most [log 2 eJ multiplications modulo p2 
and one division of p, two multiplications modulo p, and one inversion modulo p. 
Moreover, when we compute the two values of equation (5), the secret exponent 
d can be reduced modulo p -  1 and q -  1. In other words, C d - C ap (mod p) and 
C d =_ C dq (rood q) hold, where dp -= d (mod p - 1) and dq =- d (rood q - 1). 
Thus, the size of the secret exponent can be reduced. 

Denote by T the running time for computing the decryption algorithm of the 
original RSA cryptosystem, i.e., C a' (rood n), where d' is as large as n. Then, 
the running time of the proposed cryptosystem for a 768-bit modulus is about 
(2(1/3) 3 + ae)T = (0.074 + ae)T, where ae depends only on the encryption 
exponent e. When we make the encryption exponent e very small, ae becomes 
negligible. 

A similar decryption algorithm for the RSA cryptosystem using Chinese re- 
mainder theorem, the Quisquater-Couvreur method, mainly computes C d (mod p) 
and C d (mod q), where n = pq is the RSA modulus, both p and q are as large 
as (log 2 n ) / 2  bits, and we assume d is as large as p and q. So, the running time 
of Quisquater-Couvreur method is about 4 times faster than the original RSA 
cryptosystem. 

Here, we compare the running time of our proposed cryptosystem with that 
of Quisquater-Couvreur method. The comparison is carried out based on the 
common bit length of the modulus. The proposed cryptosystem with the small 
encryption exponent e is about 3 times faster than the RSA cryptosystem ap- 
plying the Quisquater-Couvreur method for the 768-bit modulus. 

In addition, consider the RSA cryptosystem with the square-free modulus 
n = p l p 2 " " P l ,  where we assume that pi are as large as ( log2n) / l  bits for i = 
1, 2 , . . .  ,l. As we discussed in Section 3, we can use a 768-bit modulus n = 
plp2p3 with 256-bit primes pi( i  = 1, 2, 3) for the cryptographic purpose. This 
version of RSA will be faster when we use the decryption technique using the 
Chinese remainder theorem. Indeed, the decryption time with this modulus is 
dominant for computing C d~ (mod pi), where we assume dl are as large as Pi for 
i = 1, 2, 3. So, the running time of this RSA variant is about 9 times faster than 
the original RSA cryptosystem. Here, we compare this RSA variant with our 
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proposed cryptosystem. Our proposed cryptosystem is about  1.5 times faster for 
a 768-bit modulus. 

5 Short secret exponent  d 

A short secret exponent is desirable for the fast decryption algorithm. However, 
Wiener reported an attack based on the continued fraction algorithm which 
detects a short secret exponent d [24]. This attack is effective for d < n 1/4. 

The secret key d and the public key e of the proposed cryptosystem have 
the relation ed _= 1 (rood L C M ( p -  1,q - 1)), and the primes p and q are much 
smaller than n. So, we wonder if Wiener's attack is applicable to larger secret 
exponents d. Moreover, if the attacker can compute d ~ such that  

ed' =- 1 (mod L C M ( p k - l ( p -  1),q - 1)), (6) 

then proposed cryptosystem will also be broken. 
Here, we discuss Wiener's attack for relation (6). From LCM(p k-1 (p - 1), q -  

1) = pk-1 ( p _ l ) ( q _ l ) / G C D ( p k - l ( p _ l ) ,  q - l ) ,  we have ed' = l+mpk- l (p--1)(q  - 
1) /GCD(p k-1 ( p -  1), q -  1) for some integer m. Generally, GCD(p k-1 ( p -  1), q -  1) 
is very small compared with p and q. Let m / G C D ( p k - I ( p -  1),q - 1) = h/g,  
where GCD(h, g) = 1. Then, we get the relation 

e h I = (7) 
~ q  gd I I 

where 5 ~ = h P ~ T P h - l q - p ~ - l - @ / h  From h/d~g < 1, the upper bound of 5 * is of 
gd ~ p~q �9 _ 

the size n -1/(k+1). It  is known that  for a rational number x such that  [ x - P / Q]  < 
1/2Q 2, P / Q  is a convergent in the continued fraction of x, where P and Q 
are relatively prime integers. Therefore, if n -1/(~+1) < 1/2(gd~) 2 holds, then 
Wiener's at tack is applicable by computing the continued fraction of e/pkq. 

1 

Therefore, Wiener's attack is effective for d' < n 2-(~-~. During key generation 
one must ensure that  d ~ -- e -1 (mod LCM(p~-I(P - 1), (q - 1)) is sufficiently 
large. 

In the same manner, we can discuss tile Wiener's attack for the relation ed =_ 1 
(rood LCM(p - 1, q - 1)). In this case, we get the relation 

q gdp ~-1 

where 5 = h p + q - - l - g / h  p~q . The lower bound on 5 is of the size 1/gdn k/(k+l), and 

1/gdn k/(k+l) is larger than the upper bound 1/2(gdpk-1) 2 ,., 1/2(gdn(a-1)/(k+l)) 2 
which the continued fraction can detect. So, Wiener's at tack seems infeasible for 
the relation ed = 1 (mod L C M ( p -  1, q - 1)). Further work on this is in progress. 
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6 O t h e r  p r o p e r t i e s  

In this section, we describe some attacks against our proposed cryptosystem and 
some other properties of it. 

Permutation: Let S be a finite set, and let F(x) be a function from S to S. The 
function F(x) is called a permutation function if every pair x, Y E S that satisfies 
F(z) -- F(F) also satisfies x -- y. The encryption function must be a permutation 
function in order to have unique decryption. The encryption function of the 
proposed cryptosystem is F(X) - X e (mod pkq). This function is a permutation 
function if and only if GCD(p - 1,e) -- GCD(q - 1,e) = GCD(p,e) -- 1. The 
last condition is always satisfied for small e, so this condition becomes the same 
as that for the original RSA cryptosystem. 

Message concealing: A function F(x) is called unconcealed when F(x) = x 
holds for some x. If the encryption function is unconcealed, some plaintexts are 
not encrypted. Blakley and Borosh showed that the encryption function of the 
RSA cryptosystem is unconcealed [2]. And they also estimated the number of 
unconcealed messages for a modulus having the form pkq. They proved 

N = (1 + GCD(e - 1,pk-l(p - 1)))(1 + GCD(e - 1, (q - 1))). 

This number is negligible because we choose e to be small in our proposed 
cryptosystem. 

Cycling attack: The cycling attack is to find an integer s such that C e~ _ 
C (rood pkq) [12] [25]. If we find such an integer, then the modulus pkq can 
be factored with probability greater than 1/2. From a recent result by Rivest 
and Silverman, it is known that the probability of the cycling attack success is 
negligible [20]. This analysis is also true for our proposed cryptosystem, because 
p and q must be chosen to be more than 256-bit primes. Here, denote by ord,~(Q) 
the order of the point Q in the group Zm for some integer m, and ordord. (O)(e)Is 
holds. Note that ordm(Q)lord,(Q) for rain and Q in Zn. The probability that 
plordph (Q) for a random point Q in Zph is 1 - 1/p, so plordn(C) holds for a 
random ciphertext C in Zn with high probability, and ordp(e) is greater than 
the largest prime of p - 1, which is more than 50 bits with high probability. 
Therefore, the integer s is greater than 50 bits with high probability. 

Other attacks: All other attacks are applicable, for example, the low exponent 
attacks [3] [4] [6], the common modulus attack, and the chosen message attack 
(See, for example, [7] [13]). 

Digital signature: Of course, the proposed algorithm can be used for a digital 
signature. 1 The prominent property of our proposed cryptosystem is the run- 
ning time for generating the signature, which it is faster than that of the RSA 
cryptosystem using Chinese remainder theorem. 

Rabin-type cryptosystem: We can construct a ttabin-type cryptosystem by 
applying the algorithm proposed in this paper. We can also prove that the ex- 
tended Rabin-type cryptosystem is as intractable as factoring the modulus pkq. 

1 Shamir proposed a variation of RSA cryptosystem with an unbalanced modulus [21]. 
As he stated in the paper, Shamir's RSA can not be used for digital signatures. 
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A D e c r y p t i o n  a l g o r i t h m  

In this appendix, we describe the decryption program writ ten in pidgin ALGOL. 
For x E Z and a positive integer N, [X]N will denote the remainder of x modulo 
N,  which is in {0, 1 , . . . ,  N - 1}. The plaintext M is encrypted by C _= M e 
(mod pkq). The  relation between the encryption exponent e and the decryption 
exponent d is ed - 1 (mod LCM(p - 1, q - 1)). 

procedure D E C R Y P T I O N :  

I N P U T :  d,p, q, e, k, C 
O U T P U T :  M 

(1) dp := [d]p-l,dq := [d]q_l; 
(2) Ko := [Cd']p,Mq := [Caqlq; 

(3) A0 := K0; 
FOR. i = l t o ( k - 1 )  do 

Fi := [A~-~'lp,+l; 
E~ := [C - /~]~,+1 ; 
Bi := Ei/p i in Z; 

g~ := [(eF~)-lA~-~Bi]~; 
Ai := Ai-1 +piKi in Z; 

(4) Mp := Ak-1; 

(5) p~ := [(v~)-~]~, q~ := [q-1],,~; 

(6) U := [qlqMp +plpkMq]p~q. 


