
T h e S o l u t i o n

o f M c C u r l e y ' s D i s c r e t e L o g C h a l l e n g e

Damian Weber 1, Thomas Denny ~

1 Institut ffir Techno- und Wirtschaftsmathematik
Erwin-SchrSdinger-Str. 49

D-67663 Kaiserslautern
weber~itwm, uni-kl, de

2 debis IT Security Services
Rabinstrat3e 8
]3-53111 Bonn

t-denny@it sec-debis, de

Abstract

We provide the secret Diitie-Hellman-Key which is requested by Kevin Mc-
Curley's challenge of 1989. The DH-protocol in question has been carried out in
(,~/p,~)* where p is a 129-digit prime of special form. Our method employed
the Number Field Sieve. The linear algebra computation was done by the Lanc-
zos algorithm.

Keywords" Discrete Logarithms, Number Field Sieve, Index Calculus, Lanczos

1 I n t r o d u c t i o n

When discrete log cryptosystems are designed the groups (~/p~)* serve as a
standard choice, as for example in [3, 4, 14]. In view of the Diflle-Hellman key
exchange protocol introduced in [3], McCurley stated a challenge by using the
following setup [11]:

bA ---- 12740218011997394682426924433432284974938204258693
16216545577352903229146790959986818609788130465951
66455458144280588076766033781

bB = 18016228528745310244478283483679989501596704669534
66973130251217340599537720584759581769106253806921
01651848662362137934026803049

p = (739- 7149 -- 736)/3

q = (p - 1)/(2. 739)

The order of the multiplicative group, which is generated by the element 7, splits
as follows: [(~ / p ~) *] = 2. 739. q.

459

- Alice computes (using her secret key x.4) as 7 ~A - bA (modp)
- Bob computes (using his secret key xs) as 7 xs - bB (modp)

Kevin McCurley asked for the common secret key K _-- 7 (zA'zs) (modp)
which we computed at 03:50pro Middle European Time on Jan 25, 1998 as

K = 38127280411190014138078391507929634193998643551018670285056375615
045523966929403922102172514053270928872639426370063532797740808, (I)

by first calculating

zn -- 6185869085965188327359333165203790426798764306952171345914622218
49525998156144877820757492182909777408338791850457946749734, (2)

the secret key of Alice.
Since p is of a special form it is very convenient to use the number field

sieve discrete log algorithm [17, 5] for the precomputation. This step has already
been carried out in [21]. It was unclear whether one could keep that attractive
number field chosen there for computing the individual logarithms as well [18].
Readers not familiar with the number field sieve are recommended to look up
these references. We note that for "general" p, the record for discrete logarithms
is 85 decimal digits [20].

In contrast to factoring with the number field sieve, some additional compu-
tational difficulties have to be dealt with. For example, it is costly to transform
the original congruence to another form such that the number field sieve is actu-
ally applicable. Another constraint is the smaller size of factor bases - otherwise
the linear algebra step would be infeasible.

After the introduction of notation in section 2 we start with a description of
how we transformed the original problem to a problem where only logarithms
of "small" elements have to be computed in section 3. Section 4 deals with the
choice of the polynomial defining the number field. Section 5 is devoted to lattice
sieving techniques for discrete log computations. In section 6 we pay attention
to computing the solution of the resulting sparse linear system rood q, which
eventually yielded the solution to the original discrete log problem.

2 N o t a t i o n of t he N u m b e r Field Sieve P a r a m e t e r s

Let the discrete logarithm problem be a = _= b (modp), p prime. Let f be an irre-
ducible polynomial of degree n, the coefficient of X n be called h . Furthermore,
let a E C be a root of f . There should be at least one root m of .f(X) modulo
p. S e t w = h . a. In this case there exists a ring homomorphism

~ : ~[~1 > ~ / p ~
w ~ h . m .

We set g (X) := X - m . We denote with 5rBalg (the algebraic factor base) a
finite set of prime ideals in the ring of integers of Q(c~), and with JrBra t (the
rational factor base) a finite set of prime numbers in ~ .

460

3 Reduction of the Original Problem

With the number field sieving step, logarithms of elements s E ~/p~ can be
obtained, if a smooth o E ~o-l(s) C ~[w] is known. In particular, this is the
case if s lies in the rational factor base. Having planned to use a rational factor
base size of 30000 this would mean to aim at bounding s by the 30000-th prime,
that is 350381. With the current available methods this is not feasible. With
the following relation, however, we are reduced to s's which are not bigger than
5.05. 101s:

t
a 141266132 " bA =- - (modp),

I/

where

with

t = 2 3 . 31 .s l . s3 .s6 .ss'slo .811
v = 3 5 3 . s 2 . s 4 . s s . s T , s9 . s12 .

(3)

81 : 603623,

S2 = 165073039,

S3 = 1571562367,

$4 = 1601141623,

S5 = 1715568391,

S6 = 7575446399,

S7 = 13166825869,

S8 = 265542836371,

S9 = 371303006453,

810 = 4145488613977,

S n = 4338202139093,

S12 = 5041332876473.

We proceed with how equation (3) has been found. Each b E (~/p~)* can
be expressed as a quotient b = t/v (modp) with It[, Iv[< x/~+l [19, Th.67]. Such
a representation can be found by applying the extended Euclidean algorithm. In
the challenge computation we computed bl :-- 7 z �9 b (modp) for many l's, found
the quotient b~ ~ tt/vz and tried to split t~ and vs. The p-function [6] tells us how
many pairs we need to test until a successful decomposition occurs. The term
pi(c~) denotes the probability that the i-th largest prime factor of the number n
is at most •I/a. We set p(c~) := pl(ct).

We started looking for factors of t and v with at most 15 decimal digits
simultaneously. The probability that a 65-digit number has at most 15 digits
is p(13/3) ~ 2.12 �9 10 -3. Assuming t and v behave as random integers of this
size we expect to find a successful I after ~ 1/(2.12.10-3) 2 ~ 222500 trials.
We distributed the interval [141200001; 141422500] among 40 Sparc ELC and 20
Sparc 4. As a Sparc 4 is about four times faster than a Sparc ELC, we chose the
interval length for the ELC as 1850 in contrast to 7500 for the Sparc 4 stations.

Each machine carried out four different stages; we give the average running
times for each stage (Sparc 4 workstation) per h

461

I. trial division up to I0 s (1.35 sec),
2. ECM for factors up to I0 ~ (7.11 sec),
3. ECM for factors up to 10 I~ (30.02 sec),
4. ECM for factors up to 10 Is (128.80 sec),

where ECM is an acronym for Lenstra's elliptic curve factoring method [10]. We
label these stages by TDIV, ECM9, ECM12 and ECM15, respectively.

A pair (t, v) is useless if either t or v contains a prime factor above our
smoothness bound 1015. We can estimate beforehand how many pairs i t, v) will
be recognized as useless by each stage if we evaluate the P2 function.

Table 1. Probability of a number of 65 digits recognized as useless.

t t with probability 0.243 0.190

Using trial division in combination with ECM is a very tedious smoothness
test; we experimented with an early abort strategy. Such a technique has been
used in several algorithms, originating from [16]. In our case, after each stage we
removed a third of the pairs it, v) - those with the biggest unfactored part - from
our list. The following behaviour is to be expected when applying this strategy
on each Sparc 4 processor. On such a machine we start with 7500 pairs (t, v).
From table 1 we estimate that approximately (1-0.184) 2 ~ 66.6 %, tha t is 4994,
will survive the trial division step. Our early abort condition removes a third
of the pairs, this leaves 3329. Prom these approximately (1 - 0.238) 2 ~ 58.2 %
survive ECM9 0933). Another cut by early aborting leaves 1288. ECM12 yields
738 pairs left. After removing a third of these pairs, 492 are left for ECM15.
In case of no successful pair being found we can now estimate the time of the
smoothness tests per processor as:

7500.1.35 + 3329.7.11 + 1288.30.02 + 492. 128.8 = 135829.55 sec ~ 37.7 h.

Table 2. Reduction sieve: ~ pairs per stage.

ml Biwmimmla Ul
n a m: aalnl:m' r iailnl mliL l a nlnn " m

462

From table 2, which summarizes the output of six Spaxc 4 processors, we see
tha t the theoretical prediction of the useless pairs can be used to get a good
est imate of the actual to ta l running t ime per processor.

4 Choice of the Polynomial

This section is devoted to finding an appropriate polynomial f for the number
field sieve (see section 2). According to practical experience we should consider
number fields of degree n -- 3, 4, 5, 6. In order to make the best choice, i.e.
to find a maximum number of relations, we examine the probability of finding
relations over two factor bases of optimal size with respect to the expected norm
of elements c+da of that number ring. In order to construct suitable polynomials
of such degrees we may use the identities

21p = 739. (7s~ s - 5152

3p = 5173. (737) 4 - 736

21p = 739. (73~ s - 5152

21p = 739. (725) s - 5152.

We therefore have to choose among the following pairs of polynomials

g (X) = X - 750
g (X) = X - 737
g (X) = X - 7 s~
g (X) = X - 725

f (X) = 7 3 9 . X s - 5 1 5 2

f (X) = 5173. X 4 - 736

f (X) = 7 3 9 . X 5 - 5 1 5 2

f (X) = 7 3 9 . X s - 5 1 5 2

In order to compare the four different possible choices of the degree, we
look at the values c + dra, N(c + d~) to be decomposed over the factor bases.
On the rat ional side we get c + d m ~ din; on the algebraic side, we obtain
- 7 3 9 . c n - 5152d n ~ - 7 3 9 . c n. As a sieving rectangle of 10 s x 10 s was expected
to be needed, we got table 3 with the aid of the p-function.

Table 3. Comparing different degrees

Idegreel m I dm I h ' c " l l F B ~ l l l F B ~ l l # t r i a l s p e r f u l l
3 1.8.1042 1.8.1043 1021 19800 20200 3.7.1011

4 1.9- 1031 1.9.1037 1023 19900 20100 6.2-109

5 2.3.1025 2.3-1031 l033 19600 20400 3.7.109

6 1.3.1021 1.3.1027 1039 16400 23600 1.1.10 l~

We see from this table tha t degree 4 and 5 were competing with slight advan-
tage of degree 5. The only way to find out which is the bet ter one is to give bo th

463

a try and continue with the one which produced more relations. Test sieving has
been carried out for x-t-ym and N(x+ya) in the rectangle [-10 e, 10 s] • [1, 5000].

From the following amount of relations it is evident that degree 5 is the better
choice indeed (running time in sec on a Sparc 4).

Table 4. Relations after test sieving.

type degree 4 degree 5
full 16 127
1 LP (alg) 49 411
1 LP (rat) 114 631
2 LP 344 2056

running time
5653 9535

5 Sieving

After fixing the polynomials f , g we had to choose appropriate sieving para-
meters. The precomputation in 1995 was carried out with the quadruple large
prime variant. We repeated the precomputations for two reasons: firstly, several
improvements in the linear algebra step allowed to use a bigger factor base,
secondly, we wanted to find out how effective the double large prime variant
would perform for this setting. Table 5 depicts the parameters and the sieving
results of 1995 (quadruple large prime variation) and 1997 (double large prime
variation).

Both setups produced the result we wished: a linear system the solution of
which yields the logarithms of particular elements of ~ / p ~ . We comment on
the figures in table 5. We raised the large prime bound in order to increase
the likelihood to encounter a partial relation, which now contained at most one
large prime for f and g. We shrinked the sieving interval for two reasons. In
the polynomial N(X § Ya) = -739X 5 - 5152Y 5 both variables contribute to
the same extent to the absolute value of the norm. In our first run, however,
we observed that after covering the first half of the square we have already had
enough relations. So we attempted to end up with a square sieving range instead
of a rectangle which was roughly achieved. The running time of the first run is
a very crude estimate on behalf of mips years (mega instructions per second).
Although this measurement is outdated, we want to stick to it, in order to have
the running times comparable to many of the previous publications concerning
discrete log and factoring computations. Our run-time measurement is based on
the observation that the UltraSparc we used was eight times faster than a Sparc
ELC workstation which is rated at 21 mips.

464

Table 5. Parameters and sieving results

] quadruple large prime I double large prime
parameters

FB rat
FB alg
LP rat
LP alg

x-range
y-range

run-time

20000
20000

10 s
5.10 ~

15.100
2.10 ~

ll0mips y

30000
30000
5.10 r
5.10 r
5.106
4.100

~180mips y
relations

full
1 LP
2 LP
3 LP
4 LP

3199
42407

211888
478543
388685

10797
196734
895415

combined partials
full I 306717 I 75592

By utilizing the amount of relations depicted in table 5, logarithms of specific
factor base elements can be computed. Now let's turn to the computation of
logarithms of elements not lying in the factor base.

One of the open questions in [18] was: is it possible to compute the loga-
rithm of an arbitrary element of (~ / p ~) * without abandoning the especially
comfortable polynomial]? Changing f is required by the theory but its analysis
is for p --~ oo. In our computation, however, we pursued another route which has
already been indicated in section 3. This is the attempt to transform the original
problem such that the remaining elements, the logarithm of which is unknown,
can be treated like factor base elements.

Let s be one of the primes of the right hand side of (3). A relation of the
following form is required for each s:

c + d m = s f i r re ' , product over r E ~rBra t,

[c + dc~] = l'It t~', product over r E ~'Balg.

The lattice sieve satisfies this request by defining

(4)

M8 := {(e,d) [c + d m _ = 0 (mods)}

and searching for smooth elements among (c + dm)/s and c + da with (c, d)
taken from a subset of Ms. This will be called the lattice sieve for s. Analogously,
one may introduce lattice sieving for prime ideals. This is a standard technique
in number fidd sieve implementations introduced by [15].

465

In general it is difficult to find directly a relation like (4). What may be
expected is to find relations of the form

c + d m = s . R1R2 l'Ir re", product over r E ~CBra t,
(5)

[c + da] = ~19~2 rIr re=, product over r E YrBalg,

with large prime (ideals) R1, R2, ~tz, fit2. As with the large prime variation of
the classical number field sieve, with additional relations containing each one of
the R1, R2, fftz, fit2, these can be turned into a relation only containing one large
prime, namely s.

The heuristic algorithm which eventually led to the solution of the challenge
was as follows:

1. by lattice sieving for s find a quadruple large prime relation of the form (5)
2. let 9~ run through the list R1, R2, ~1, fit2; with the lattice sieve for !R find

either
- a single large prime relation containing only the large prime 9~ and pro-

ceed with the next fit from the list, or
- a double large prime relation containing only the large prime fit and

another large prime which we call !R'; in this case repeat the second step
of this algorithm with fit replaced by Vt' (called iteration in table 7).

Step 1 from above (finding (5) for s = sl, 1 < i < 12) has been performed
with the following sieving range:

Table 6. Lattice sieve step 1, sieving rectangle.

primes x-range y-range

sz to ss

S6

S7 to 811

S12

[-35ooo;ssooo]
[-ssooo;ssooo]
[-30000;30000]
[- 5 0 0 0 0 ; 5 0 0 0 0]

[1;12000]
[1;25000]

[1;sooo]
[1;5oooo]

After performing step one - the time of which is shown in table 7 - the
lattice sieve iterations had to be carried out for primes which lay in the interval
[105; 10z~ the lower bound due to the maximal factor base element having a
norm of 349949 (algebraic) and 350377 (rational). The upper bound is due to
the difficulty of finding appropriate relations for the s's above s5; s6 has already
10 decimal digits.

Each lattice sieve iteration for the ~ ' was carried out with a sieving rectangle
of [-35000, 35000] • [1, 20000] spending about 5000 sec for each on a Sparc 20.
Summing this up, about 211 h in total on one Sparc 20 were needed. Clearly, it
is trivial to distribute each s and each iteration to different workstations.

This concludes the description of all sieving tasks.

466

Table 7. Running times of lattice sieve steps.

prime time (s e c) ~ L P in (5)~i te ra t ions ofstep 2
sl 5680 1 1
s2 3089 2 4
ss 3691 3 8
s4 4696 2 ?
s5 5003 1 5
s6 50941 4 13
sT 1300 2 9
ss 1314 2 16
s9 1389 2 11
slo 1343 4 21
sll 1394 4 13
s12 96810 4 8

6 Linear Algebra

In this section we describe the method of how to solve the linear system which
consists of the exponents of the free and full relations, the combined part ials
(table 5) and the special relations produced by the heuristic algori thm in section
5. There are five more columns containing additive characters to ensure tha t
q - th powers in Q(c~) can be constructed [17]. Hence, we are left with a mat r ix
of a form shown in figure 1.

rat. FB alg. FB s i

free relations 1.98%
. ~.~

full relations 14.28%

.

combined partials 83.72% ', .~
, N i i �9

. ~

i

special relations 0.02%,,
t

columns: 60000 12

Fig. I . Relation matrix.

467

The subsequent computation has been divided into two steps.

1. a preprocessing step (refinement of structured Ganssian elimination),
2. the Lanczos algorithm (description in [7], [8]).

The practicability of a possible alternative method, a combination of struc-
tured Gauss and ordinary Ganssian elimination suffers from enourmous space
requirements (in our example about 2 GB of main memory).

We define n to be the number of unknowns and w to be the total number of
non-zero entries in the linear system. The running time of the Lanczos algorithm
is known to be O(n 2 + nw). The goal of step 1 is to iteratively decrease n while
increasing w as long as this running time is decreasing. To make a firm decision
at this point, we need to predict the actual running time of step 2 on the machine
we are using. Starting from the basic operations in the Lanczos algorithm, the
following sections develop the model which we apply for that purpose.

6.1 Operations

The basic operations over ~ / q ~ that are performed during an iteration of the
Lanczos algorithm are

- computation of inner products
- matrix-vector multiplication
- vector updates (adding a multiple of a vector to another vector).

In order to speed up the computations over Z~/q~ we used the Montgomery
representation [12]. Due to the fact that the linear system consists of exponents
from decomposing integers, almost 95 % of the non-zero entries are equal to :t:l.
The remaining entries c~ are relatively small (-40 ___ ci ~_ 40). Table 8 classifies
the non-zero entries of our linear system before and after step 1.

Table 8. Compactification of relation matrix.

original system after preprocessing

unknowns 60 001 35 666
equations 75 592 35 688
avg. weight/equation 49.8 164.6

1-entries 1 785 588 2 657 470
(-1)--entries 1 761 865 2 711 635
ci--entries 219 483 332 644

We could greatly reduce the time to perform a matrix-vector multiplication
in ~ / q ~ by computing all intermediate results in ~ (but in Montgomery
representation) and doing the reduction mod q only once, while creating the

468

result vector. By this technique (lazy reduction) we achieve the substantial gain
of 29% of the running time for the matrix-vector multiplication (timing on Sparc
20, different linear system):

T a b l e 9. Average running time of one matrix-vector multiplication.

running time original version lazy reduction

addition 14.05 s 10.47 s

subtraction 13.22 s 11.08 s

scalar mult 6.17 s 1.70 s

final reduction - 0.58 s

total 33.44 s I 23.83 s

6.2 Running time model

An examination of all operations performed during the Lanczos algorithm to
solve a linear system of dimension n with wl 1-entries, w2 (-1)-entries and wa
ci-entries lead to the following formula:

where

T (n , w , r) = n 2. t2 + n . (2.w-I- tl) (6)

w = cache1. (•1" T(Add) + cry 2 �9 T(Sub)) + caches, w3" T(krnult)

tl = cache2. (T(Inv) + (2 + r) . T (M u l t))

t2 = cache2. (T(Square) + 2. T(Sub_m) + (2 + r) . T(Add_m)

+(3 + r) . T (M u l t)) + 2. cache3. T(Red) .

In this formula r is the number of solutions that need to be calculated and
T(operation) is the time needed to perform a single arithmetic operation on
integers of magnitude of q. The variables cachel, cache2 and caches represent
the time needed to access main memory, first level cache and second level cache,
respectively. For a Sparc 20 workstation we may take cachez = 2.0, cache2 = 1.0,
caches = 1.3. These values are strongly machine dependent and have to be
determined by experiment. By using (6), the time needed to solve a linear system
of equations can be accurately predicted. This is crucial to decide whether an
iteration of step 1 from above does improve the running time.

We now proceed by deriving a bound A (> 0) for the maximal increase of w
while decrementing n. This depends on the number and type of entries in our
linear system as well as on the time of arithmetic and memory operations. To
achieve a speed up and save memory, we have the condition

T (n , w , r) - T (n - l ,w + A , r) > O.

469

Solving this for A, we obtain

A < (2 . n - 1)-t2 + 2 .w +tl
2 . - 1)

In practice, this upper bound lies between 100 and 1200.

6.3 Resu l t s

Using this formula and the ideas of the structured Gaussian elimination the
running time of the Lanczos algorithm to compute 22 solutions of the original
system was reduced by more than 50 %. The reduction in the dimension also led
to an enormous reduction in the main memory requirements (approx. 30 MB)
as 25 vectors have to be stored (see table 8 above).

Table 10 depicts the running time for the basic operations and the total
running time of the original and the compactified system of linear equations
(timings on Sparc 20).

T a b l e 10. Speed up by compactification.

operation original system after preprocessing

matrix-vector multiplication 24.1 s 34.9 s
update vector 7.4 s 4.4 s
update solutions 85.0 s 48.3 s
inner product computation 3.7 s 2.2 s

single iteration 120.1 s 92.0 s

complete computation 2002.3 h 911.0 h

The solutions computed by the Lanczos algorithm finally yielded the loga-
rithms of 2, 353, sl, . . . , s12. The logarithm of 31 has already been known from
[21]. By using the identities of (3), Alice's key was easy to obtain (2). The final
task was to compute the common key K of Bob and Alice from K - b ~ A (modp)
shown in (1).

A c k n o w l e d g e m e n t s

The authors are particularily grateful to Kevin McCurley for offering that chal-
lenge.

For providing the computing power we thank Ulrich G r ~ (Sun Microsys-
terns Benchmark Center/Germany) and Raimund Seidel (University of Saar-
land/Germany). The integer computations have been performed by two reliable
and efficient multi-precision libraries, LiDIA and FREELIP. Accordingly, many

470

thanks go to the LiDIA Group (University of D a r m s t a d t / G e r m a n y) and Arjen
Lenstra (Ci t ibank/USA). Additionally, we wish to thank Johannes Buchmann,
Oliver Schirokaner, Thomas Setz and JSrg Zayer.

References

1. I. Biehl and J. Buchmann and Th. Papanikolaou. LiDIA - a library for compu-
tational number theory. Technical report, Universit~it des Saarlandes/Germany,
1995. http://www, informat ik . th-darmst adt. de/TI/LiDIA

2. Th. F. Denny. L~sen grosser d~innbesetzter Gleichungssysteme ~iber endlichen
Primk~rpern. PhD thesis, Universit~it des Saarlandes/Germany, 1997.

3. W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Infor-
mation Theory ~P, pages pp. 472-492, 1976.

4. T. E1Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Information Theory, 31:469-472, 1985.

5. D. Gordon. Discrete logarithms in GF(p) using the number field sieve. SIAM J.
Discrete Math., 6:124-138, 1993.

6. D. E. Knuth and L. Trabb Pardo. Analysis of a simple factorization algorithm.
Theoretical Computer Science, 3:321-348, 1976.

7. M. LaMacchia and A. Odlyzko. Solving large sparse linear systems over finite
fields. In Advances in Cryptology - Crypto '90, number 537 in Lecture Notes in
Computer Science, pages 109-133, 1990.

8. M. LaMacchia and A. Odlyzko. Computation of discrete logarithms in prime fields.
Designs, Codes and Cryptography, 1:46-62, 1991.

9. A. K. Lenstra, H. W. Lenstra, Jr. (eds.). The development of the number field
sieve. Number 1554 in Lecture Notes in Mathematics. Springer, 1993.

10. H. W. Lenstra, Jr. Factoring integers with elliptic curves. Ann. of Math., 126:649-
673, 1987.

11. K. S. McCurley. The discrete logarithm problem. In Cryptology and Computational
Number Theory, number 42 in Proc. Syrup. in Applied Mathematics, pages 49-74.
American Mathematical Society, 1990.

12. P. L. Montgomery. Modular multiplication without trial division. Math. Comp.,
44:519-521, 1985.

13. V. Miiller and Th. F. Denny. On the reduction of composed relations from the
number field sieve. In H. Cohen, editor, Algorithmic Number Theory - ANTS II,
number 1122 in Lecture Notes in Computer Science, 1996.

14. National Bureau of Standards. Digital signature standard, 1994. FIPS Publication
186.

15. J. M. Pollard. The lattice sieve. Number 1554 in Lecture Notes in Mathematics.
Springer, 1993.

16. C. Pomerance and S. S. Wagstaff. Implementation of the continued fraction inte-
ger factoring algorithm. In Proc. 12th Manitoba Conf., Winnipeg/Manitoba 198~,
Congr. Numerantium, volume 37 of Numerical mathematics and computing, pages
99-118, 1983.

17. O. Schirokauer. Discrete logarithms and local units. Phil. Trans. R. Soc. Lond. A
355, pages 409-423, 1993.

18. O. Schirokauer, D. Weber, and Th. F. Denny. Discrete logarithms: the effectiveness
of the index calculus method. In H. Cohen, editor, Algorithmic Number Theory -
ANTS II, number 1122 in Lecture Notes in Computer Science, 1996.

471

19. D. Shanks. Solved and unsolved problems in number theory (3rd ed.). Chelsea
Publishing Company, 1985.

20. D. Weber. Computing discrete logarithms with quadratic number rings. In Euro-
crypt'98, Lecture Notes in Computer Science, 1998. To appear.

21. D. Weber. Computing discrete logarithms with the number field sieve. In H. Cohen,
editor, Algorithmic Number Theory - A N T S II, number 1122 in Lecture Notes in
Computer Science, 1996.

22. D. Weber. On the computation o/discrete logarithms in finite prime fields. PhD
thesis, Universit~t des Saarlandes/Germany, 1997.

23. D. Weber. An implementation of the number field sieve to compute discrete log-
arithms rood p. Advances in Gryptology - Eurocrypt'gs. number 921 in Lecture
Notes in Computer Science, 1995.

24. J. Zayer. Faktorisieren mit dem Number Field Sieve. PhD thesis, Universit~it des
Saarlandes/Germany, 1995.

