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Abstract 

We provide the secret Diitie-Hellman-Key which is requested by Kevin Mc- 
Curley's challenge of 1989. The DH-protocol in question has been carried out in 
(,~/p,~)* where p is a 129-digit prime of special form. Our method employed 
the Number Field Sieve. The linear algebra computation was done by the Lanc- 
zos algorithm. 
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1 I n t r o d u c t i o n  

When discrete log cryptosystems are designed the groups (~/p~)* serve as a 
standard choice, as for example in [3, 4, 14]. In view of the Diflle-Hellman key 
exchange protocol introduced in [3], McCurley stated a challenge by using the 
following setup [11]: 

bA ---- 12740218011997394682426924433432284974938204258693 
16216545577352903229146790959986818609788130465951 
66455458144280588076766033781 

bB = 18016228528745310244478283483679989501596704669534 
66973130251217340599537720584759581769106253806921 
01651848662362137934026803049 

p = (739- 7149 -- 736)/3 

q = (p - 1)/(2. 739) 

The order of the multiplicative group, which is generated by the element 7, splits 
as follows: [ ( ~ / p ~ ) * ]  = 2. 739. q. 
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- Alice computes (using her secret key x.4) as 7 ~A - bA (modp) 
- Bob computes (using his secret key xs)  as 7 xs - bB (modp) 

Kevin McCurley asked for the common secret key K _-- 7 (zA'zs) (modp) 
which we computed at 03:50pro Middle European Time on Jan 25, 1998 as 

K = 38127280411190014138078391507929634193998643551018670285056375615 
045523966929403922102172514053270928872639426370063532797740808, (I) 

by first calculating 

zn -- 6185869085965188327359333165203790426798764306952171345914622218 
49525998156144877820757492182909777408338791850457946749734, (2) 

the secret key of Alice. 
Since p is of a special form it is very convenient to use the number field 

sieve discrete log algorithm [17, 5] for the precomputation. This step has already 
been carried out in [21]. It was unclear whether one could keep that attractive 
number field chosen there for computing the individual logarithms as well [18]. 
Readers not familiar with the number field sieve are recommended to look up 
these references. We note that for "general" p, the record for discrete logarithms 
is 85 decimal digits [20]. 

In contrast to factoring with the number field sieve, some additional compu- 
tational difficulties have to be dealt with. For example, it is costly to transform 
the original congruence to another form such that the number field sieve is actu- 
ally applicable. Another constraint is the smaller size of factor bases - otherwise 
the linear algebra step would be infeasible. 

After the introduction of notation in section 2 we start with a description of 
how we transformed the original problem to a problem where only logarithms 
of "small" elements have to be computed in section 3. Section 4 deals with the 
choice of the polynomial defining the number field. Section 5 is devoted to lattice 
sieving techniques for discrete log computations. In section 6 we pay attention 
to computing the solution of the resulting sparse linear system rood q, which 
eventually yielded the solution to the original discrete log problem. 

2 N o t a t i o n  of  t he  N u m b e r  Field Sieve P a r a m e t e r s  

Let the discrete logarithm problem be a = _= b (modp), p prime. Let f be an irre- 
ducible polynomial of degree n, the coefficient of X n be called h .  Furthermore, 
let a E C be a root of f .  There should be at least one root m of .f(X) modulo 
p.  S e t  w = h .  a. In this case there exists a ring homomorphism 

~ :  ~[~1 > ~ / p ~  
w ~ h . m .  

We set g ( X )  := X - m .  We denote with 5rBalg (the algebraic factor base) a 
finite set of prime ideals in the ring of integers of Q(c~), and with JrBra t (the 
rational factor base) a finite set of prime numbers in ~ .  
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3 Reduction of the Original Problem 

With the number field sieving step, logarithms of elements s E ~/p~ can be 
obtained, if a smooth o E ~o-l(s) C ~[w] is known. In particular, this is the 
case if s lies in the rational factor base. Having planned to use a rational factor 
base size of 30000 this would mean to aim at bounding s by the 30000-th prime, 
that is 350381. With the current available methods this is not feasible. With 
the following relation, however, we are reduced to s's which are not bigger than 
5.05. 101s: 

t 
a 141266132 " bA =- - (modp), 

I/ 

where 

with 

t = 2 3 .  31 .s l . s3  .s6 .ss'slo .811 
v = 3 5 3 . s 2  . s 4 .  s s . s T ,  s9 . s12 .  

(3) 

81 : 603623, 

S2 = 165073039, 

S3 = 1571562367, 

$4 = 1601141623, 

S5 = 1715568391, 

S6 = 7575446399, 

S7 = 13166825869, 

S8 = 265542836371, 

S9 = 371303006453, 

810 = 4145488613977, 

S n  = 4338202139093, 

S12 = 5041332876473. 

We proceed with how equation (3) has been found. Each b E (~/p~)* can 
be expressed as a quotient b = t/v (modp) with It[, Iv[ < x/~+l [19, Th.67]. Such 
a representation can be found by applying the extended Euclidean algorithm. In 
the challenge computation we computed bl :-- 7 z �9 b (modp) for many l's, found 
the quotient b~ ~ tt/vz and tried to split t~ and vs. The p-function [6] tells us how 
many pairs we need to test until a successful decomposition occurs. The term 
pi(c~) denotes the probability that the i-th largest prime factor of the number n 
is at most •I/a. We set p(c~) := pl(ct). 

We started looking for factors of t and v with at most 15 decimal digits 
simultaneously. The probability that a 65-digit number has at most 15 digits 
is p(13/3) ~ 2.12 �9 10 -3. Assuming t and v behave as random integers of this 
size we expect to find a successful I after ~ 1/(2.12.10-3) 2 ~ 222500 trials. 
We distributed the interval [141200001; 141422500] among 40 Sparc ELC and 20 
Sparc 4. As a Sparc 4 is about four times faster than a Sparc ELC, we chose the 
interval length for the ELC as 1850 in contrast to 7500 for the Sparc 4 stations. 

Each machine carried out four different stages; we give the average running 
times for each stage (Sparc 4 workstation) per h 
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I. trial division up to I0 s (1.35 sec), 
2. ECM for factors up to I0 ~ (7.11 sec), 
3. ECM for factors up to 10 I~ (30.02 sec), 
4. ECM for factors up to 10 Is (128.80 sec), 

where ECM is an acronym for Lenstra's elliptic curve factoring method [10]. We 
label these stages by TDIV, ECM9, ECM12 and ECM15, respectively. 

A pair ( t, v) is useless if either t or v contains a prime factor above our 
smoothness bound 1015. We can estimate beforehand how many pairs i t, v) will 
be recognized as useless by each stage if we evaluate the P2 function. 

Table 1. Probability of a number of 65 digits recognized as useless. 

t t with probability 0.243 0.190 

Using trial division in combination with ECM is a very tedious smoothness 
test; we experimented with an early abort strategy. Such a technique has been 
used in several algorithms, originating from [16]. In our case, after each stage we 
removed a third of the pairs it, v) - those with the biggest unfactored part  - from 
our list. The following behaviour is to be expected when applying this strategy 
on each Sparc 4 processor. On such a machine we start  with 7500 pairs ( t, v). 
From table 1 we estimate that  approximately (1-0.184) 2 ~ 66.6 %, tha t  is 4994, 
will survive the trial division step. Our early abort condition removes a third 
of the pairs, this leaves 3329. Prom these approximately ( 1 - 0.238) 2 ~ 58.2 % 
survive ECM9 0933). Another cut by early aborting leaves 1288. ECM12 yields 
738 pairs left. After removing a third of these pairs, 492 are left for ECM15. 
In case of no successful pair being found we can now estimate the time of the 
smoothness tests per processor as: 

7500.1.35 + 3329.7.11 + 1288.30.02 + 492. 128.8 = 135829.55 sec ~ 37.7 h. 

Table 2. Reduction sieve: ~ pairs per stage. 

ml Biwmimmla  Ul  
n a  m:   aalnl:m'  r iailnl  mliL l  a nlnn " m 
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From table  2, which summarizes the output  of six Spaxc 4 processors, we see 
tha t  the theoretical prediction of the useless pairs can be used to get a good 
est imate of the actual  to ta l  running t ime per processor. 

4 Choice of the Polynomial 

This section is devoted to finding an appropriate polynomial f for the number 
field sieve (see section 2). According to practical experience we should consider 
number fields of degree n -- 3, 4, 5, 6. In order to make the best choice, i.e. 
to find a maximum number of relations, we examine the probability of finding 
relations over two factor bases of optimal size with respect to the expected norm 
of elements c+da of that number ring. In order to construct suitable polynomials 
of such degrees we may use the identities 

21p = 739. (7s~ s - 5152 

3p = 5173. (737) 4 - 736 

21p = 739. (73~ s - 5152 

21p = 739. (725) s - 5152. 

We therefore have to choose among the following pairs of polynomials  

g ( X )  = X - 750 
g ( X )  = X - 737 
g ( X )  = X - 7 s~ 
g ( X )  = X - 725 

f ( X ) =  7 3 9 . X  s - 5 1 5 2  

f (X)  = 5173. X 4 - 736 

f ( X ) =  7 3 9 . X  5 - 5 1 5 2  

f ( X ) =  7 3 9 . X  s - 5 1 5 2  

In order to compare  the four different possible choices of the degree, we 
look at the values c + dra, N(c + d~) to be decomposed over the factor bases. 
On the rat ional  side we get c + d m  ~ din; on the algebraic side, we obtain  
- 7 3 9 .  c n - 5152d n ~ - 7 3 9 .  c n. As a sieving rectangle of 10 s x 10 s was expected 
to be needed, we got table  3 with the aid of the p-function. 

Table  3. Comparing different degrees 

Idegreel m I dm I h ' c " l l F B ~ l l l F B ~ l l # t r i a l s p e r f u l l  
3 1.8.1042 1.8.1043 1021 19800 20200 3.7.1011 

4 1.9- 1031 1.9.1037 1023 19900 20100 6.2-109 

5 2.3.1025 2.3-1031 l033 19600 20400 3.7.109 

6 1.3.1021 1.3.1027 1039 16400 23600 1.1.10 l~ 

We see from this table tha t  degree 4 and 5 were competing with slight advan- 
tage of degree 5. The only way to find out which is the bet ter  one is to give bo th  
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a try and continue with the one which produced more relations. Test sieving has 
been carried out for x-t-ym and N(x+ya) in the rectangle [-10 e, 10 s] • [1, 5000]. 

From the following amount of relations it is evident that degree 5 is the better 
choice indeed (running time in sec on a Sparc 4). 

Table 4. Relations after test sieving. 

type degree 4 degree 5 
full 16 127 
1 LP (alg) 49 411 
1 LP (rat) 114 631 
2 LP 344 2056 

running time 
5653 9535 

5 Sieving 

After fixing the polynomials f ,  g we had to choose appropriate sieving para- 
meters. The precomputation in 1995 was carried out with the quadruple large 
prime variant. We repeated the precomputations for two reasons: firstly, several 
improvements in the linear algebra step allowed to use a bigger factor base, 
secondly, we wanted to find out how effective the double large prime variant 
would perform for this setting. Table 5 depicts the parameters and the sieving 
results of 1995 (quadruple large prime variation) and 1997 (double large prime 
variation). 

Both setups produced the result we wished: a linear system the solution of 
which yields the logarithms of particular elements of ~ / p ~ .  We comment on 
the figures in table 5. We raised the large prime bound in order to increase 
the likelihood to encounter a partial relation, which now contained at most one 
large prime for f and g. We shrinked the sieving interval for two reasons. In 
the polynomial N(X § Ya) = -739X 5 - 5152Y 5 both variables contribute to 
the same extent to the absolute value of the norm. In our first run, however, 
we observed that after covering the first half of the square we have already had 
enough relations. So we attempted to end up with a square sieving range instead 
of a rectangle which was roughly achieved. The running time of the first run is 
a very crude estimate on behalf of mips years (mega instructions per second). 
Although this measurement is outdated, we want to stick to it, in order to have 
the running times comparable to many of the previous publications concerning 
discrete log and factoring computations. Our run-time measurement is based on 
the observation that the UltraSparc we used was eight times faster than a Sparc 
ELC workstation which is rated at 21 mips. 
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Table 5. Parameters and sieving results 

] quadruple large prime I double large prime 
parameters 

FB rat 
FB alg 
LP rat 
LP alg 

x-range 
y-range 

run-time 

20000 
20000 

10 s 
5.10 ~ 

15.100 
2.10 ~ 

ll0mips y 

30000 
30000 
5.10 r 
5.10 r 
5.106 
4.100 

~180mips y 
relations 

full 
1 LP 
2 LP 
3 LP 
4 LP 

3199 
42407 

211888 
478543 
388685 

10797 
196734 
895415 

combined partials 
full I 306717 I 75592 

By utilizing the amount of relations depicted in table 5, logarithms of specific 
factor base elements can be computed. Now let's turn to the computation of 
logarithms of elements not lying in the factor base. 

One of the open questions in [18] was: is it possible to compute the loga- 
rithm of an arbitrary element of ( ~ / p ~ ) *  without abandoning the especially 
comfortable polynomial ]?  Changing f is required by the theory but its analysis 
is for p --~ oo. In our computation, however, we pursued another route which has 
already been indicated in section 3. This is the attempt to transform the original 
problem such that the remaining elements, the logarithm of which is unknown, 
can be treated like factor base elements. 

Let s be one of the primes of the right hand side of (3). A relation of the 
following form is required for each s: 

c + d m  = s f i r  re ' ,  product over r E ~rBra t, 

[c + dc~] = l'It t~', product over r E ~'Balg. 

The lattice sieve satisfies this request by defining 

(4) 

M8 := {(e,d) [ c + d m _ =  0 (mods)} 

and searching for smooth elements among (c + dm)/s  and c + da with (c, d) 
taken from a subset of Ms. This will be called the lattice sieve for  s. Analogously, 
one may introduce lattice sieving for prime ideals. This is a standard technique 
in number fidd sieve implementations introduced by [15]. 
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In general it is difficult to find directly a relation like (4). What may be 
expected is to find relations of the form 

c + d m  = s .  R1R2 l'Ir re", product over r E ~CBra t, 
(5) 

[c + da] = ~19~2 rIr re=, product over r E YrBalg, 

with large prime (ideals) R1, R2, ~tz, fit2. As with the large prime variation of 
the classical number field sieve, with additional relations containing each one of 
the R1, R2, fftz, fit2, these can be turned into a relation only containing one large 
prime, namely s. 

The heuristic algorithm which eventually led to the solution of the challenge 
was as follows: 

1. by lattice sieving for s find a quadruple large prime relation of the form (5) 
2. let 9~ run through the list R1, R2, ~1, fit2; with the lattice sieve for !R find 

either 
- a single large prime relation containing only the large prime 9~ and pro- 

ceed with the next fit from the list, or 
- a double large prime relation containing only the large prime fit and 

another large prime which we call !R'; in this case repeat the second step 
of this algorithm with fit replaced by Vt' (called iteration in table 7). 

Step 1 from above (finding (5) for s = sl, 1 < i < 12) has been performed 
with the following sieving range: 

Table 6. Lattice sieve step 1, sieving rectangle. 

primes x-range y-range 

sz to  ss 

S6 

S7 to 811 

S12 

[-35ooo;ssooo] 
[-ssooo;ssooo] 
[-30000;30000] 
[ - 5 0 0 0 0 ; 5 0 0 0 0 ]  

[1;12000] 
[1;25000] 

[1;sooo] 
[1;5oooo] 

After performing step one - the time of which is shown in table 7 - the 
lattice sieve iterations had to be carried out for primes which lay in the interval 
[105; 10z~ the lower bound due to the maximal factor base element having a 
norm of 349949 (algebraic) and 350377 (rational). The upper bound is due to 
the difficulty of finding appropriate relations for the s's above s5; s6 has already 
10 decimal digits. 

Each lattice sieve iteration for the ~ '  was carried out with a sieving rectangle 
of [-35000, 35000] • [1, 20000] spending about 5000 sec for each on a Sparc 20. 
Summing this up, about 211 h in total on one Sparc 20 were needed. Clearly, it 
is trivial to distribute each s and each iteration to different workstations. 

This concludes the description of all sieving tasks. 
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Table  7. Running times of lattice sieve steps. 

prime time ( s e c ) ~ L P  in (5)~i te ra t ions  ofstep 2 
sl 5680 1 1 
s2 3089 2 4 
ss 3691 3 8 
s4 4696 2 ? 
s5 5003 1 5 
s6 50941 4 13 
sT 1300 2 9 
ss 1314 2 16 
s9 1389 2 11 
slo 1343 4 21 
sll  1394 4 13 
s12 96810 4 8 

6 Linear Algebra 

In this section we describe the method of how to solve the linear system which 
consists of the exponents of the free and full relations, the combined part ials  
(table 5) and the special relations produced by the heuristic algori thm in section 
5. There  are five more columns containing additive characters to ensure tha t  
q - th  powers in Q(c~) can be constructed [17]. Hence, we are left with a mat r ix  
of a form shown in figure 1. 

rat. FB alg. FB s i 

free relations 1.98% 
. . . . . . . . . . . . . . . . . . . . . . . .  ~.~ 

full relations 14.28% 

. . . . . . . . . . . . . . . . . . . . . . . .  

combined partials 83.72% ', .~ 
, N i i �9 

. . . . . . . . . . . . . . . . . . . . . . .  ~ 

i 

special relations 0.02%,, 
t 

columns: 60000 12 

Fig. I .  Relation matrix. 
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The subsequent computation has been divided into two steps. 

1. a preprocessing step (refinement of structured Ganssian elimination), 
2. the Lanczos algorithm (description in [7], [8]). 

The practicability of a possible alternative method, a combination of struc- 
tured Gauss and ordinary Ganssian elimination suffers from enourmous space 
requirements (in our example about 2 GB of main memory). 

We define n to be the number of unknowns and w to be the total number of 
non-zero entries in the linear system. The running time of the Lanczos algorithm 
is known to be O(n 2 + nw). The goal of step 1 is to iteratively decrease n while 
increasing w as long as this running time is decreasing. To make a firm decision 
at this point, we need to predict the actual running time of step 2 on the machine 
we are using. Starting from the basic operations in the Lanczos algorithm, the 
following sections develop the model which we apply for that purpose. 

6.1 Operations 

The basic operations over ~ / q ~  that are performed during an iteration of the 
Lanczos algorithm are 

- computation of inner products 
- matrix-vector multiplication 
- vector updates (adding a multiple of a vector to another vector). 

In order to speed up the computations over Z~/q~ we used the Montgomery 
representation [12]. Due to the fact that the linear system consists of exponents 
from decomposing integers, almost 95 % of the non-zero entries are equal to :t:l. 
The remaining entries c~ are relatively small (-40 ___ ci ~_ 40). Table 8 classifies 
the non-zero entries of our linear system before and after step 1. 

Table 8. Compactification of relation matrix. 

original system after preprocessing 

unknowns 60 001 35 666 
equations 75 592 35 688 
avg. weight/equation 49.8 164.6 

1-entries 1 785 588 2 657 470 
(-1)--entries 1 761 865 2 711 635 
ci--entries 219 483 332 644 

We could greatly reduce the time to perform a matrix-vector multiplication 
in ~ / q ~  by computing all intermediate results in ~ (but in Montgomery 
representation) and doing the reduction mod q only once, while creating the 
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result vector. By this technique (lazy reduction) we achieve the substantial gain 
of 29% of the running time for the matrix-vector multiplication (timing on Sparc 
20, different linear system): 

T a b l e  9. Average running time of one matrix-vector multiplication. 

running time original version lazy reduction 

addition 14.05 s 10.47 s 

subtraction 13.22 s 11.08 s 

scalar mult 6.17 s 1.70 s 

final reduction - 0.58 s 

total 33.44 s I 23.83 s 

6.2 Running time model 

An examination of all operations performed during the Lanczos algorithm to 
solve a linear system of dimension n with wl 1-entries, w2 (-1)-entries and wa 
ci-entries lead to the following formula: 

where 

T ( n , w , r )  = n 2. t2 + n .  (2.w-I- tl) (6) 

w = cache1. (•1" T(Add)  + cry 2 �9 T(Sub))  + caches, w3" T(krnult)  

tl  = cache2. (T( Inv )  + (2 + r) . T ( M u l t ) )  

t2 = cache2. (T(Square)  + 2.  T(Sub_m) + (2 + r) . T(Add_m) 

+(3 + r) . T ( M u l t )  ) + 2.  cache3. T(Red) .  

In this formula r is the number of solutions that need to be calculated and 
T(operation) is the time needed to perform a single arithmetic operation on 
integers of magnitude of q. The variables cachel, cache2 and caches represent 
the time needed to access main memory, first level cache and second level cache, 
respectively. For a Sparc 20 workstation we may take cachez = 2.0, cache2 = 1.0, 
caches = 1.3. These values are strongly machine dependent and have to be 
determined by experiment. By using (6), the time needed to solve a linear system 
of equations can be accurately predicted. This is crucial to decide whether an 
iteration of step 1 from above does improve the running time. 

We now proceed by deriving a bound A (> 0) for the maximal increase of w 
while decrementing n. This depends on the number and type of entries in our 
linear system as well as on the time of arithmetic and memory operations. To 
achieve a speed up and save memory, we have the condition 

T ( n , w , r )  - T ( n -  l ,w  + A , r )  > O. 
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Solving this for A, we obtain 

A < ( 2 . n -  1)-t2 + 2 .w +tl 
2 .  - 1)  

In practice, this upper bound lies between 100 and 1200. 

6.3 Resu l t s  

Using this formula and the ideas of the structured Gaussian elimination the 
running time of the Lanczos algorithm to compute 22 solutions of the original 
system was reduced by more than 50 %. The reduction in the dimension also led 
to an enormous reduction in the main memory requirements (approx. 30 MB) 
as 25 vectors have to be stored (see table 8 above). 

Table 10 depicts the running time for the basic operations and the total 
running time of the original and the compactified system of linear equations 
(timings on Sparc 20). 

T a b l e  10. Speed up by compactification. 

operation original system after preprocessing 

matrix-vector multiplication 24.1 s 34.9 s 
update vector 7.4 s 4.4 s 
update solutions 85.0 s 48.3 s 
inner product computation 3.7 s 2.2 s 

single iteration 120.1 s 92.0 s 

complete computation 2002.3 h 911.0 h 

The solutions computed by the Lanczos algorithm finally yielded the loga- 
rithms of 2, 353, sl, . . . ,  s12. The logarithm of 31 has already been known from 
[21]. By using the identities of (3), Alice's key was easy to obtain (2). The final 
task was to compute the common key K of Bob and Alice from K - b ~  A (modp) 
shown in (1). 
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