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Abstract. We state the basic requirements for time-stamping systems 
applicable as the necessary support to the legal use of electronic doc- 
uments. We analyze the main drawbacks of the time-stamping systems 
proposed to date and present a new system that meets all the stated 
requirements. We prove that these requirements cannot be significantly 
tightened. 

1 Introduction 

Time-stamping ([HS91], [BdM91], [BHS92]) is a set of techniques enabling us 
to ascertain whether an electronic document was created or signed at a cer- 
tain time. The real importance of time-stamping becomes clear when there is 
a need for a legal use of electronic documents with a long lifetime. Without 
time-stamping we neither can trust signed documents when the cryptographic 
primitives used for signing have become unreliable nor solve the cases when the 
signer himself repudiates the signing, claiming that he has accidentally lost his 
signature key. During the last years, especially in the context of legal regulation 
of using digital signatures, the organizational and legal aspects of time-stamping 
itself have become the subject of world-wide attention. In addition to defining 
the responsibilities of the owner of the signature, duties and responsibilities of 
the third party (Time-Stamping Service, TSS) must be stated as well. Hence, 
there is an increasing interest in time-stamping systems where the need to trust 
the TSS is minimized. In order to make users liable only for their own mistakes, 
there has to be a possibility to ascertain the offender. 

Unlike physical objects, digital documents do not comprise the seal of time. 
Thus, the association of an electronic document uniquely with a certain moment 
of time is very complicated, if not impossible. Even by the theory of relativity, no 
absolute time exists. The best we can achieve with time-stamping is the relative 
temporal authentication (RTA) based on the complexity-theoretic assumption 
on the existence of collision-resistant one-way hash functions. RTA enables the 
verifier given two time-stamped documents to verify which of the two was created 
earlier. 

The main drawbacks of the time-stamping systems proposed to date concern 
(1) the need to unconditionally trust the TSS and (2) the time-complexity of 
RTA, which is linear on the number of issued time-stamps. 
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In the current paper theoretical and practical requirements are discussed 
and a new time-stamping system is presented (1) in which the need to trust the 
TSS is significantly diminished and (2) which offers RTA with the complexity 
proportional to the logarithm of the number of issued time-stamps. 

In Sect. 2 the time-stamping solutions proposed to date are analyzed. Sect. 3 
clarifies the security objectives of time-stamping by giving essential requirements 
to the time-stamping systems. In Sect. 4 the protocols of the new time-stamping 
system are described using the linear linking scheme. In Sect. 5 binary linking 
schemes are introduced and a scheme with logarithmic verifying time is pre- 
sented. In Sect. 6 we prove that the requirements stated in Sect. 3 cannot be 
tightened. 

2 Existing Time-Stamping Systems 

By a simple time-stamping protocol ([HS91], Sect. 4), the TSS appends the 
current time t to the submitted document X, signs the composite document 
( t ,X) and returns the two values t and s = sigwss(t,X) to the client. The 
weaknesses of this scheme are the unreliability of old time-stamps after a possible 
leakage of the signature key of the TSS and the impossibility of verifying whether 
s was issued actually at time t stated in the time-stamp, implying that the TSS  
has to be unconditionally trusted. Because of these drawbacks it has been widely 
accepted that a secure time-stamping system cannot rely solely on keys or on any 
other secret information. An overview of the existing time-stamping solutions is 
given in [MQ97]. 

2.1 Linear Linking Scheme (LLS) 

In order to diminish the need for trust, the users may demand that the TSS links 
all time-stamps together into a chain using a collision-resistant hash function H 
as was proposed in [HS91], Sect. 5.1 (variant 1). In this case the time-stamp for 
the n-th submitted document Xn is 

s = sigTss(n,  tn, ID,~, Xn, Ln) , 

where tn is the current time, IDn is the identifier of the submitter and Ln is the 
linking information defined by the recursive equation 

Ln : :  (tn-1, IDn-1, X,~-I,  H(Ln-1) )  �9 

There are several complications with the practical implementation of this 
scheme. At first, the number of steps needed to verify the one-way relationship 
between two time-stamps is linear with respect to the number of time-stamps 
between them. Hence, a single verification may be as costly as it was to create 
the whole chain. This solution has impractical trust and broadcast requirements, 
as it was pointed out already in [BdM91]. A modification was proposed in [HS91] 
(Sect. 5.1, variant 2) where every time-stamp is linked with k > 1 time-stamps 
directly preceding it. This variation decreases the requirements for broadcast by 
increasing the space needed to store individual time-stamps. 
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2.2 Tree-Like Schemes  

Two similar tree-like schemes have been proposed [BdM91, BHS92]. In the 
Haber-Stornetta scheme [BHS92, HS97], the time-stamping procedure is divided 
into rounds. The time-stamp Rr for round r is a cumulative hash of the time- 
stamp Rr-1 for round r - 1 and of all the documents submitted to the TSS 
during the round r. After the end of the r-th round a binary tree T~ is built. Ev- 
ery participant Pi who wants to time-stamp at least one document in this round, 
submits to the TSS a hash y~,i which is a hash of R~-I and of all the documents 
he wants to time-stamp in this round. The leafs of Tr are labeled by different 
Yr,i. Each inner node k of Tr is recursively labeled by Ilk := H(HkL, Hk,), where 
kL and kR are correspondingly the left and the right child nodes of k, and H is a 
collision-resistant hash function. The TSS has to store only the time-stamps R r 
for rounds (Fig. 1). All the remaining information, required to verify whether a 
certain document was time-stamped during a fixed round, is included into the 
individual time-stamp of the document. 

' , , y , r  
Y~.4 

r 

R r 

Y~.4 

Fig. 1. An example of the time-stamp for round r by the schemes presented in [BdM91] 
(left) and [BHS92] (right). 

For example, the individual time-stamp for Yr,s is It; (Yr,4, L), (/-/4, R)]. The 
verifying procedure of the time-stamp of Yr,3 consists of verifying the equality 
Rr = H(H(H4, H(yr,3, Yr,4)), Rr-1). Here, the size of a single time-stamp is log- 
arithmic with respect to the number of participants submitting their documents 
to the TSS for the current round. 

The Haber-Stornetta linking scheme [BHS92, HS97] differs slightly from the 
Benaloh-de Mare scheme [BdM91]. Here, the time-stamp Rn for the n-th round 
is linked directly to Rn-1, enabling the verifier to check one-way dependen- 
cies between P~ without examining the individual time-stamps of the submitted 
documents. This is impossible in the Benaloh-de Mare scheme. However, in the 
Haber-Stornetta scheme the individual time-stamps in the n-th round are not 
linked to the time-stamp Rn-1 for previous round. 

These schemes are feasible but provide the RTA for the documents issued 
during the same round only if we unconditionally trust the TSS to maintain 
the order of time-stamps in Tr. Therefore, this method either increases the need 
for trust or otherwise limits the maximum temporal duration of rounds to the 
insignificant units of time (one second in Digital Notary system). However, if 
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the number of submitted documents during a round is too small, the expenses 
of time-stamping a single document may become unreasonably large (Sect. 3.3). 

3 S e c u r i t y  O b j e c t i v e s  

In the following we give a definition of time-stamping systems applicable in legal 
situations. Later we will justify our approach and compare it to older systems. 

A time-stamping system consists of a set of principals with the time-stamping 
server (TSS) together with a triple (S, V, A) of protocols. The stamping protocol 
S allows each participant to post a message. The verification protocol V is used 
by a principal having two time-stamps to verify the temporal order between those 
time-stamps. The audit protocol A is used by a principal to verify whether the 
TSS carries out his duties. Additionally, no principal (in particular, TSS) should 
be able to produce fake time-stamps without being caught. 

A time-stamping system has to be able to handle time-stamps which are 
anonymous and do not reveal any information about the content of the stamped 
data. The TSS is not required to identify the initiators of time-stamping requests. 

Our notion of time-stamping system differs from the one given in, e.g., 
[BdM91] by several important aspects. Below we motivate the differences. 

3.1 Relative Temporal Authenticat ion 

The main security objective of time-stamping is temporal authentication [Jus98]- 
ability to prove that a certain document has been created at a certain moment of 
time. Although the creation of a digital data item is an observable event in the 
physical world, the moment of its creation cannot be ascertained by observing 
the data itself (moreover, no such thing as the absolute thing exists). The best 
one can do is to check the relative temporal order of the created data items 
(i.e., prove the RTA) using one-way dependencies defining the arrow of time, 
analogous to the way in which the growth of entropy defines the arrow of time in 
the physical world ([Haw88], Chap. 9). For example, if H is a collision-resistant 
one-way hash function, one can reliably use the following "rough" derivation 
rule: if H ( X )  and X are known to a principal P at a moment t, then someone 
(possibly P himself) used X to compute H ( X )  at a moment prior to t. To date, 
the existence of one-way functions has not been proved. Therefore, the proposed 
time-stamping systems make sense only under the hypothesis of the existence of 
collision free one-way hash functions. 

Definition 1. A collision-resistant one-way hash function ([MOV96], Sect. 9.2) 
is a function H which has the properties of compression, ease of computation, 
preimage resistance, 2nd-preimage resistance and collision resistance. 

Definition 2. Let p be a binary relation on ~I, such that x p y implies x < y 
and H be a collision-resistant one-way hash function. A (p, H)-linking scheme/s 



490 

a procedure to link a family (Hn) of data items together using auxiliary linking 
items La satisfying the recursive formula 

La := H(Ha,Ln l , . . .  ,Laup_l(.)) , (1) 

where nl >_ .. .  >_ n~p-~(n) are exactly the elements of p-l(n)  :-- {m I m p n} 
(the preimage of n by p). A sequence (m~)~=l , where mi p mi+l, is called a 
verifying chain between ml and m~ with length g. 

In the context of time-stamping Ha = H(n, Xn), where Xn denotes the n-th 
time-stamped document. The linking item Ln is also referred to as a time-stamp 
of Xn. Note that a one-way relationship between Ln and Lm (n < m) does not 
prove that in the moment of creating Xn the bit-string Xm did not exist. All we 
know is that Xa did exist at the moment of creating Lm. 

We have omitted the tn in the formula for H~, whereas it should not be taken 
for granted that the value ta indeed represents the submission time of Xn. The 
only way for a principal to associate a time-stamp with a certain moment of time 
is to time-stamp a nonce at this moment. By a nonce we mean a sufficiently long 
random bit-string, such that the probability it has been already time-stamped 
is negligible. In order to verify the absolute creating time of a document time- 
stamped by another principal, the verifier has to compare the time-stamp with 
the time-stamps of nonces generated by the verifier herself. In this solution there 
are neither supplementary duties to the TSS nor to the other principals. The 
use of nonces illustrates the similarity between time-stamping and ordinary au- 
thentication protocols, where nonces are used to prevent the possible reuse of 
old messages from previous communications. 

By using RTA it is possible to determine not only the submitting time of the 
signature but also the time of signing the document. Before signing a document 
X the principal P generates a nonce N and time-stamps it. He then includes the 
time-stamp L(N) of N to the document, signs it and obtains the time-stamp 
L(a) of the signature a = sigp(L(N), X).  From the view-point of the TSS these 
stamping events are identical (he need not be aware whether he is time-stamping 
a nonce or meaningful data). For the verification of the document X, the verifier 
has to compare both these time-stamps with the time-stamps trusted by her. 
As there are one-way dependencies between L(N), a and L(a) the verifier may 
conclude that the signature was created in the time-frame between the moments 
of issuance of L(N) and of L(a) respectively. If these moments are close enough, 
the signing time can be ascertained with necessary precision. 

3.2 Detection of  Forgeries 

A time-stamping system must have properties enabling users to verify whether 
an arbitrary time-stamp is correct or not. Possession of two documents with cor- 
responding time-stamps is not enough to prove the RTA between the documents 
because everyone is able to produce fake chains of time-stamps. 

A time-stamping system should allow (1) to determine whether the time- 
stamps possessed by an individual have been tampered with; and (2) in the case 
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of tampering, to determine whether the time-stamps were tampered by the TSS 
or tampered after the issuing (generally by unknown means). In the second case, 
there is no-one to bring an action against. The principals interested in legal use 
of time-stamps should themselves verify their correctness immediately after the 
issuing (using signatures and other techniques discussed later) because if the 
signature of the TSS becomes unreliable, the signed time-stamps cannot be used 
as an evidence. In order to increase the trustworthiness of the time-stamping 
services it should be possible for the clients to periodically inspect the TSS. 
Also, in the case when the TSS is not guilty he should have a mechanism to 
prove his innocence, i.e., that he has not issued a certain time-stamp during a 
certain round. 

Additionally, the TSS must publish regularly, in an authenticated manner, 
the time-stamps for rounds [BdM91] in mass media. If the time-stamping proto- 
col includes (by using collision-resistant one-way hash functions) (1) the message 
digest of any time-stamp issued during the r-th round into the time-stamp for 
r-th round, and (2) the message digest of the time-stamp for round r - 1 into 
any time-stamp issued during the r-th round, it will be intractable for anyone 
to undetectably forge a time-stamp. The forgery detection procedures should be 
simple. Forgeries should be determinable either during the stamping protocol 
(when the time-stamp, signed by the TSS, fails to be correct) or later when it 
is unable to establish the temporal order between two otherwise correct time- 
stamps (see Sect. 4 for details). 

3.3 Feasibi l i ty  R e q u i r e m e n t s  

The time-stamping systems of [BdMgl] and [HS97] use nonlinear partial order- 
ing of time-stamps and therefore do not support the RTA. Sect. 4 shows how to 
modify the linear linking scheme ([HS91], Sect. 5.1) to fulfill the security objec- 
tives (RTA and detection of forgeries). On the other hand, in practice, in this 
scheme the detection of forgeries would take too many steps. As noted in [Jus98], 
it is easy to forge time-stamps when we can assume that the verifier has limited 
computational power. This leads us to the question of feasibility. In order to 
make RTA feasible in the case when time-stamps belong to different rounds, it 
is reasonable to define an additional layer of links between the time-stamps for 
rounds. 

Def ini t ion 3. Assume we are given (p, H) and (6, H) linking schemes and a 
monotonically increasing function ~ : ]N --+ IN. By a (p, ~, 6, H)-linking scheme 
we mean a procedure for linking a family (Hn) of data items together using 
auxiliary linking items L~ and s satisfying the recursive formulae 

L n : = H ( H n ,  L m , . . .  ,L,up_l(.) ) i f n ~ ( ] N )  

s := L~(~) = H(74r,s ,s 

7/~ := H(Hm,Lm~,... ,Lm~p_~(.)) , 

where m = ~(r), p- l (n)  = {ml , . . .  ,rnl~p-a(n)} (ml > ... >_ m~p-l(n)) and 
6-1(r) = {r l , . . .  ,rlt~-l(r)} (rl > . . .  >__ rlI6-1(r)). 
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The values L:r are also referred to as the time-stamps for rounds. Note that 
the time-stamps requested from the TSS during the verification protocol should 
belong to the set of time-stamps for rounds because only these time-stamps are 
available in the time-stamping server. 

Defini t ion 4. A (p, 4, 6, H)-linking scheme is said to be an Accumulated Link- 
ing Scheme (ALS) with rank m, if 

1. / ]4(r)  < n < 4(r + 1) then p-l(n) C [4(r),4(r + 1)] U 4(1N); 
2. 4(r + 1) - 4(r) > m. 

We say that a (p, H)-linking scheme enables accumulated time-stamping if for 
arbitrary positive m there exists 4, such that the (p, 4, P, H)-scheme is an ALS 
with rank m. 

If the linking scheme used enables accumulated time-stamping, the duration 
of the rounds can be flexibly enlarged in order to guarantee that only a negligible 
fraction of the time-stamps are kept in the memory of the time-stamping server. 

Let n be the total number of time-stamps issued till the moment of the 
current run of stamping/verification protocol. The feasibility requirements can 
be summarized with the following: 

1. The number of the evaluations of the hash function during the verification 
protocol should be O(logn). In particular, the number of time-stamps ex- 
amined during a single run of the verification protocol should be O(log n); 

2. There should be a conveniently small upper bound to the length of rounds, 
whereas the clients want to get their time-stamps in reasonable time. It seems 
to be sensible to require that the stamping protocol of the n-th document 
must terminate before the TSS has received additional O(log n) time-stamp 
requests. In real applications it is desirable for the average length of rounds 
to be constant (this would guarantee that for an arbitrary constant c there 
would be only negligible fraction of rounds with length greater than c). 

3. The size of an individual time-stamp should be small. 

As we will show later (Thin. 2), there is a trade-off between these quantities. 
In Sect. 5 and the following sections we present an improvement of the scheme 
of Sect. 4. 

4 F i r s t  V e r s i o n  o f  O u r  S y s t e m :  L i n e a r  L i n k i n g  

For pedagogical reasons, we outline the protocols and the basic organizational 
principles of our system using the linear linking scheme. This scheme fulfills all 
the trust requirements but is impractical. Further, the described scheme is sig- 
nificantly improved by replacing the linear scheme with a binary linking scheme. 

Let the number Air of time-stamps per round be a constant known to the 
participants (clients) and all the data items Xn be of fixed size. Therefore, in 
the case of the linear linking scheme, the time-stamp for the r-th round has a 
number 4r = M .  r. 
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4.1 Role  o f  the TSS 

The TSS maintains the following three databases: 

1. the database :De of the time-stamps of the current round. 
2. the database Dp of the time-stamps of the previous round. 
3. the database :Dr of the time-stamps for rounds. 

These databases are considered to be on-line in the sense that any client can 
make requests into them at any moment. The fourth database (the complete 
data-base of time-stamps) is also stored but not on-line (it may be stored into 
an archive of CD-s). Requests to this database are possible, but costly (e.g., 
requiring human interaction). After the end of each round, the time-stamps in 
:Dp are stored to a separate CD (this process may be audited). Thereafter, Dp 
is emptied. The time-stamp Rr for the current round is computed, added to 
:Dr and published in a newspaper (two processes which should be audited). The 
database :De is copied into Dp and a new database Dc is created. 

4.2 Stamping Protoco l  

Suppose, the current round number is r. 

1. Client sends X~ to the TSS. 
2. The TSS finds Hn = H(n, Xn) and Ln = (Hn,Ln-z), and adds the pair 

(Hn, Ln) to Dc. 
3. The TSS signs the pair (n, Ln) and sends (n, Ln, sigwss(n , Ln)) back to the 

client. 
4. The TSS sends the tuple head(n) = (Hn-z, Hn-2, . . .  , H~._I+z) to the client. 
5. The client verifies the signature of TSS and checks, whether 

H(Hn, g ( g n - 1 , . . ,  g(g~._l+z,  L~._I)... )) = Ln , (2) 

where the true values L~ can be found either from the newspaper or by 
requesting for their values from the on-line database :Dr of the TSS. 

After the M requests have been answered the TSS finishes the round by 
finding L~. = H(H~, L~._I) (where H~. = H(H~., L~.-z)) and publishing L6. 
and his public key KTSS in the newspaper. The client may now continue, during 
a limited period, the protocol in order to get the complete individual time-stamp 
for X . .  

6. The client sends a request to the TSS. 
7. Let tail(n) = (H~.-z, H~-2 , . . .  , Hn+2, Hn+l) The TSS answers by sending 

(tail(n), sigwss(tail(n)) ) to the client. 
8. The client checks whether 

L~. = H(H~.-1, H(He . -2 , . . .  H(H~+2, H(Hn+I, Ln)). . .  )) �9 (3) 
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Defini t ion 5. The complete individual time-stamp sn ]or the n-th document is 

sn := (tail(n), head(n), n, Ln, sigwss(n, Ln)) �9 

Every client who is interested in the legal use of a time-stamp, should validate 
it during the stamping protocol. In a relatively short period between the 1st and 
the 3rd step and between the 4th and 6th step, the signature key of TSS is 
trusted to authenticate him and therefore, his signature on an invalid head(n) 
or tail(n) can be used as an evidence in the court. But the client is responsible for 
doing it when the signature key of TSS can still be trusted. Later, the signature 
of TSS may become unreliable and therefore only the one-way properties can be 
used. 

4.3 Verif icat ion P r o t o c o l  

Let r(n) denote the round where sn was issued. Assume, the verifier has two 
time-stamped documents (Xm, s,n) and (Xn, sn) where m < n. 

1. The verifier checks the validity of the equations (2) and (3) for both time- 
stamps. 

2. If r(m) = r(n) then the data hold in tail(m) and hea~i(n) will be enough to 
check whether 

Ln = H(Hn, H(Hn-1 , . . .  g(Hm+l,  Lm) . . .  )) �9 

3. If r(m) < r(n), the verifier sends a request to the TSS. 
4. The TSS answers by sending the tuple 

/H' H'  

and the signature Sigwss(Vmn ) to the verifier. 
5. The verifier validates the signature, finds Lcr(~,) using (3), finds Lr(n)-i using 

the formula 

Lr(n)-1 H(H~cn)_ ~ H(H'~r~ 2' ' L . . . . ,  ( )_ H(H~(~), ~ ,~) ) . . . ) )  

and finally, compares the value of Ln in sn with the value given by (2). 

4.4 Aud i t  P r o t o c o l  

Because of the possible legal importance of the time-stamps issued by the TSS, 
there should be some mechanism to audit TSS. One easy way to do it is to 
periodically ask time-stamps from the TSS and verify them. If these time-stamps 
are linked inconsistently (i.e., the Eq. (2) and (3) hold for both time-stamps but 
the verification protocol fails), the TSS can be proven to be guilty. Also, there 
has to be a mechanism for the TSS to prove that he has not issued a certain 
time-stamp S in a certain round r. This can be done if the TSS presents all the 
time-stamps issued during the r-th round, shows that S is not among them and 
that the time-stamp for the r-th round, found by using these time-stamps and 
the linking rules, coincides with the published time-stamp. 
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5 Binary Linking Schemes 

In the current section we give a construction of a practical linking scheme with 
logarithmic upper bound to the length of the shortest verifying chain between 
any two time-stamps. 

Definition 6. Let f and g be functions from IN to IN satisfying the condition 
f(n) < g(n) < n for any n. A (f ,  g, H ) - b i n a r y  linking scheme (BLS) is a (p, H)-  
linking scheme where for any n, p-1 (n) = {] (n) ,g(n)} .  In order to guarantee 
the existence of a verifying chain between arbitrary x and y, we have to take 
g(n) := n - 1. In those cases we omit n - 1 and talk just about a ( f ,  H)-BLS. 

A binary linking scheme can alternatively be defined as a directed countable 
graph which is connected, contains no cycles and where all the vertices have two 
outgoing edges (links). Let us construct an infinite family of such graphs Tk in 
the following way: 

1. T1 consists of a single vertex which is labeled with the number 1. This vertex 
is both  the source and the sink of the graph T1. 

2. Let Tk be already constructed. Its sink is labeled by 2 k - 1. The graph Tk+z 
consists of two copies of Tk, where the sink of the second copy is linked to 
the source of the first copy, and an additional vertex labeled by 2 k+l - 1 
which is linked to the source of the second copy. Labels of the second copy 
are increased by 2 k - 1. The sink of Tk+l is equal to the sink of the first 
copy, the source of Tk+l is equal to the vertex labeled by 2 k+l - 1. 
Thereafter,  link all the vertices of the second copy which have less than two 
outgoing links, to the source of the first copy. Note that  there is now a double 
link from the sink of the second copy to the source of the first copy. 

i 2k§ 

2 k -I Tt+l 2 k+1-2 
i L L  

w 

The sequence (T~) defines a binary linking scheme with the vertices labeled 
by natural  numbers which contains each scheme Th as its initial segment. After 
the construction of this binary linking scheme, add links from the sources of 
any such initial segment to a special vertex labeled by 0 (Fig. 2). Here (see also 
Rem. 1), f (n )  = n - 2 h(n) + 1, where h(n) is given recursively by the equation 

~'k , if n = 2  ~ - 1  , 
h(n) 

I h ( n + l - 2  ~-x) , i f 2  ~ - 1 _ < n < 2  ~ - 1  . 

Theorem 1. Let s b) be the length of the shortest verifying chain .from b to 
a. If  k > 2 and 0 < a <_ b < 2 ~ then s b) <_ 3k - 5. (See Appendix ,4) 
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Fig. 2. The ALS structure built on.T5 with m -- 7. 

In Sect. 4 we presented an outline of a time-stamping system that fulfills our 
trust requirements. In the next we show how to make this system feasible by 
using a BLS. 

In order to issue the individual time-stamp for the n-th document, the TSS 
has to find the shortest verifying chains between ~r(n)-I and n and between 
n and ~r(n). The n-th individual time-stamp consists of the minimal amount of 
data (Sect. 4.2) necessary to verify the mutual one-way dependencies between all 
Lj which lay on these chains. It can be shown that if f satisfies the implication 

m > n =~ ( f (m)  ~ f(n) V f (m)  > n) (4) 

then (f, H) enables accumulated time-stamping (the proof has been omitted 
because of its technicality). In particular, the binary linking scheme described 
in Sect. 5 enables accumulated time-stamping. For a fixed m let k := flog 2 m], 
~0 := 0, ~z':= 2 4 - 1 (the source of Tk) and for arbitrary i > 1, 

~2#+~i-2# , i f ir  
~( i )  := t 2 " ~ i / 2  + 1 , if i = 2 j , 

where j := [log 2 iJ. The length of the n-th time-stamp in this scheme does not 
exceed 2 . 3 .  log(n) �9 X bits, where X is the output size of the hash function H. 

The maximum length of rounds grows proportionally to O(log n). However, 
the average length of rounds is constant and therefore it is practical to publish 
the time-stamps for rounds after constant units of time. This can be achieved 
easily with the following procedure. If the "deadline" for round is approaching 
and there are still q time-stamps not issued yet, assign random values to the 
remaining data items Hn. 

Remark 1. Denote by ord n the greatest power of 2 dividing n. In the ALS 
presented above, it is reasonable to label time-stamps in the lexicographical 
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order with pairs (n,p),  where 0 < p < o rdn  and n > 0. Then,  

f (0,p) , n = 2p 
f ( n ,p )  := [ ( n -  2P,ord(n  - 2P)) , otherwise 

and g(n,p) := ( n , p -  1) i f p  > 0 and g(n,O) := (n - 1 ,o rd (n  - 1)). Also, the 
formulas of ~i will simplify: in this case, ~(i) := (2k-1i, k - 1 + ordi) ,  for i > 1. 

It  is easy to show that  for each n and m the shortest verifying chain between 
n and m is uniquely defined. The data  Vmn necessary to  verify the one-way 
dependence is computed by the procedure TSData(m, n): 

p r o c  TSData(m, n) = 
Data  := hi/ 
wh i l e  n > m d_.po 

Data := append(Data, Hn) 
i__f f ( n )  • n - 1  A f (n )  > m 

t h e n  Data := append(Data, Ln-1);  n := f(n) 
else  Data := append( Data, L/(n)); n := n - 1 

fi_ 
od .  

Here, h e a d ( n ) : =  TSData(~( ,_ l ) ,n )  and tail(n) := TSData(n,~r(n)). 

Example 1. Let ~0 = 0 and ~1 = 15 (Fig. 2). In order to compute the fourth and 
the tenth time-stamps we need 

tail(10) := (H15, Lo, Hla,  Lr,  His ,  L12) , 

head(10) := (/-/10, L9, Hr,  L6) , 

tail(4) := (H15,Lo,H1a,Lz3,Hr,Lo,H6,La,Hs,L4)  , 

head(a) := (//4, La, / /3 ,  L2) . 

. . . . . . . . . . . . . . . .  

3 ~ '.. ~ _ 1 0  ~ .~ 
............... ..~ ............... ?~ ".. ~ T , ~  ........... 

'. "'.. : ~ ". I "',. I " ~  N o t  u s e d  f o r  verification 

. . . . . . . . . . . .  i "'.. . . . . . . .  ~ ". . . . . . . .  ~ "".... ...... 
0 1 2 4 5 8 9 11 12 

Fig. 3. The time-stamp of Xz0 in the proposed system. 

Let (f ,  H)  be a BLS satisfying the implication (4). Let x < y < z < w and 
C1 ,  C2 be verifying chains from z to x and w to y respectively. It  is obvious tha t  
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C1 and C2 have a common element. Thus, if m < n then the verifying chains 
tail(m) and head(n) have a common element c which implies the existence of a 
verifying chain 

( m  = n 0 , n l ,  . . .  , n i - l , n i  = c,  n i + l , . . .  , n t - l , n t  = n )  . 

This chain can be found by a simple algorithm and is of logarithmic length. Let 
r(m) denote the round into which m belongs. The proof of the last claim for the 
case r(m) = r(n) is given in Appendix A. If m and n belong to different rounds, 
the verifying is straightforward, because of the similar structure of the second 
layer of links. The verifying chain from n to m is of the form 

( m , . . .  , m t , ~ r ( ~ ) , . . .  ,~r(~)-x,n ' ,  . . .  ,n )  , 

where the number of ~j-s is logarithmic due to the fact that the time-stamps 
for rounds are linked together in a way similar to the linking of all time-stamps 
(Fig. 2). The length of the sequences (m, . . .  ,m') and (n ' , . . .  ,n) is also loga- 
rithmic (Appendix A). 

Example ~. For the chains given in Example 1, the common dement is 7 and 
the verifying chain between 4 and 10 is (4, 5, 6, 7,10). 

Coro l la ry  1. Due to the similarity between the verification and the stamping 
procedure, for an arbitrary pair of time-stamped documents the number of steps 
executed (and therefore, also the number of time-stamps examined) during a 
single run of the verification protocol is O(log n). 

6 Optimality 

Our solution meets asymptotically the feasibility requirements, but could these 
requirements be refined? Mostly not, an insight into this is given below. Namely, 
we show that for any linking scheme there does not exist a time-stamping solu- 
tion where (1) the length of the time-stamps is O(logn), (2) for any m and n 
there exists a verifying chain between m and n with the length O(log n) that is 
completely contained in the union S(m) U S(n) of the corresponding individual 
time-stamps and (3) the stamping protocol will end in a logarithmic time. 

We prove this under the assumptions (1) that an individual time-stamp is 
a subset of ]N and (2) that the size of a time-stamp is proportional to the size 
of ~S(n) + ~p-1 (Sin)) = O(~p-1 (S(n))) (holds if the transitive closure p* of p 
coincides with the natural order <, i.e, the time-stamp S(n) consists of tall(n) 
and head(n))). 

T h e o r e m  2. Let p be a binary relation on ]N satisfying p*=<. There does not 
exist a function S : ]N --+ 2 ~ such that 

1. I p-1 (S(n)) I < Cl logn for some cl, for any n. 
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2. For every m and n there exists a p-chain (m = m l , m 2 , . . .  ,ink = n) where 
m l e  S(m)  tO S(n) (that is, the number of time-stamps necessary to examine 
during the verification protocol is greater than 2). 

3. For any n, max(S(n)}  - n  <_ c2 logn ]or some constant c2. 

Proof. Assume that  there exists such S. Let n be a sufficiently large positive 
integer. For a m e IN let ~(m2) := [m,m + [c210gm~]. The intervals ~(1 + 
ic2 logn),  i E 0, . . . ,  / n-c2 l~ J do not intersect. c2 log n 

Let m < n - c2 logn - 1. In this case [m + c2 logm] < n. As the set S(m) tO 
S(n) contains a p-chain from m to n there should exist such m l e  ~(m) and 
nl  E S(n) on this chain that  ralph1. Thus, for every m < n - c210gn - 1 
the set q~(m) f3 p- l (S (n) ) )  is nonempty. Hence, the set p- l (S (n ) )  has at least 

n--c21og n--2 - -  [ c21og n J - O ( n / l o g  n) elements. A contradiction with Condition 1. [2 

The Thm. 2 can be straightforwardly generalized to claim that  the number 
of examined time-stamps must be greater than any fixed constant. 
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The reasoning about  the time-stamping procedures creates the need for a 
formal apparatus capable to prove the security of time-stamping protocols, in a 
way similar to how the BAN-style logics [BAN89] are used for reasoning about 
ordinary authentication protocols. The renewing protocols and technical speci- 
fications need to be elaborated. 
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A P r o o f  of  T h e o r e m  1 

We will prove an upper  bound for the length of the verifying chain for the linking 
scheme described in Sect. 5. Let ek = 2 k - 1, i.e. ek is the number  of the last 
vertex of Tk. To simplify the proof  we add the vertex 0 to the scheme and link 
it with all the vertices tha t  have less than  two outgoing links. These axe exactly 
the vertices ek. Let s b) denote the length of the shortest  pa th  between a and 
b. The equations s ek) ---- 1, e (ek- l , ek )  = 2 and ek - ek-1 = e~ - i  + 1 follow 
immediately from the definition. 

L e m m a  1. I f  0 < a < ek < b then s b) = s ek) -t- s b). I f  ek-1 < a < ek 
then s ek) = s ek - 1) + s - 1, ek). 

The  claims above follow immediately from the structural  propert ies of the linking 
scheme. 

L e m m a  2. I f  e~_z < a < b < ek then s b) = l (a  - e k - l , b  - ek-1) .  

Proof. This follows from the construction of T~ from the two copies of T~-I .  
Here a and b are vertices in ' the  second copy of T~- I  (or the last vertex of the 
first copy), and a - e~- i  and b - ek-1 are the same vertices in the first copy of 
Tk-1 (or the vertex 0). n 

L e m m a  3 .  / f  0 < a < ek then s a) < k. 

Proof. Induction on k. 
Base: k = 1. Then a = 0 and s a) = 0 < k. 
Step: k > 1. Observe the following cases: 

- If  0 < a < ek-1 then the induction assumption gives l(0, a) < k - 1 < k. 
- I f  e~- i  < a < ek then s = s - t -s  = 1 + s  ek-1) 

by Lemma  2. Observe the following cases: 
�9 a = ek - 1. Then s a) = 1 + s a - ek-1) = 1 + s e~ - l )  = 2 < k. 
�9 a < e k - 1 .  T h e n g ( 0 , a )  = l + s  < l + ( k - 1 )  = k by 

induction assumption. 
D 

L e m m a  4. If. 0 < a g ek then t (a ,  e~) <. 2(k - 1). 
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Proof. Induc t ion  on k. 
Base: k = 1. T h e n  a = 1 and s ek) = s = 0 = 2(k - 1). 
Step: k > 1. Observe the  following cases: 

- I f  0 < a < ek-x then  l (a,  ek) = g(a, ek_l)  + s  < 2 ( k -  2) + 2 = 
2(k - 1) by induct ion assumption.  

- I f  ek-1 < a < ek then  observe the  following cases: 
�9 a = ek. Then  l (a ,  ek) = 0 <_ 2(k - 1). 
�9 a < e~. T h e n  l (a,  ek) = s ek - 1) +s -- 1,ek) = s -- e k - t , e k - 1 )  + 

1 by the  L e m m a  2. Induc t ion  assumpt ion  now gives l (a,  ek) = s  
ek-1,  e k - t )  + 1 < 2(k - 2) + 1 < 2(k - 1). 

[3 

Proof (Theorem 1). Induc t ion  on k. 
Base: k = 3. In  this case one can directly verify tha t  s b) < 4. 
Step: k > 3. Observe the  following cases: 

- I f  0 < a < b <_ e~- i  then  the  induct ion assumpt ion  gives us s < 
3 ( k -  1)  - 5 < 3 k -  5 .  

- I f 0  < a < ek-1 < b < ek then s = s ek-1) + s  < 2 ( k -  2) + 
l ( ek -1 ,  b) by  the  L e m m a  4. The  following cases are possible: 

�9 b = ek. T h e n  g(ek- l ,b)  = 2 < k - 1. 
�9 b =  ek - 1. T h e n  l ( ek_ l ,b )  = 1 < k -  1. 
�9 b < ek - 1. Then  the  lemmas 2 and  3 give 

l ( ek -1 ,  b) = ~(0, b - ek-1) <_ k - 1. 
Thus  s b) < 2(k - 2) + k - 1 = 3k - 5. 

- I f  ek-1 < a < b < e~ then  observe the  following cases: 
�9 b = ek. Then  s b) = s ek) < 2(k - 1) < 3k - 5 by  L e m m a  4. 
�9 b < ek. Then  l (a ,  b) = ~(a - ek-1,  b - ek-1)  < 3(k - 1) + 5 < 3k - 5 by 

L e m m a  2 and  induct ion assumpt ion.  
O 

As [logb] = k iff ek-1 + 1 < b <_ ek + 1 we get k < [logb] + 1 and  thus  

~(a, b) < 3 flog b] - 2 . 


