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A b s t r a c t .  This paper addresses the problem of creating patterns that 
can be used to model the normal behavior of a given process. These 
models can be used for intrusion detection purposes. In a previous work, 
we presented a novel method to generate input data sets that enable us 
to observe the normal behavior of a process in a secure environment. 
Using this method, we propose various techniques to generate either 
fixed-length or variable-length patterns. We show the advantages and 
drawbacks of each technique, based on the results of the experiments we 
have run on our testbed. 

1 I n t r o d u c t i o n  

In [1] Forrest et al. introduced a change-detection algorithm for detecting com- 
puter  viruses tha t  is based on the way tha t  natural  immune systems distinguish 
"self" from "nonself". In [2] they reported preliminary results extending this 
approach in the intrusion-detection area by establishing such a definition of self 
for Unix processes. This technique models the way an application or service run- 
ning on a machine normally behaves by registering the sequences of system calls 
invoked. An intrusion is assumed to exercise abnormal  paths  in the executable 
code, and is detected when new sequences are observed (see also [3], [4], [5]). 

Like every behavior-based technique, an intrusion-detection system needs to 
be trained to learn what  the "normal" behavior of a process is. This is usually 
done by recording the act ivi ty of the process running in a real environment 
during a given period. This procedure has a number  of drawbacks: 

- I t  leaves open the possibility of obtaining false negatives [6] if not all pos- 
sible behaviors have been exercised during the recording period, because 
new users, new applications or configuration changes introduce new usage 
patterns. 

- It leaves open the possibility of obtaining false positives [6] if the application 
has been hacked during the recording period. 

- The observed behavior is a function of the environment in which it is run- 
ning and thus prevents the distribution of an "initialized" intrusion-detection 
system that could immediately be plugged in and activated. 
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Another approach consists of artificially creating input data  sets that  exercise 
all normal modes of operation of the process. For example, Forrest et al. [2] use a 
set of 112 messages to study the behavior of the sendmail  daemon. This method 
eliminates the risk of obtaining a false positive but  not that  of obtaining a false 
negative. Furthermore, it is an extremely complex and time-consuming task to 
come up with a good input da ta  set. 

In [7] we have shown how to use the functionality verification test (FVT) 
suites provided by application developers to observe all the specified behaviors 
of an application. Not only are we able to eliminate the risk of obtaining a false 
positive with this approach, but  we also dramatically reduce the risk of obtaining 
a false negative because, by design, our input data  set exercises all the normal 
(in the sense of having been specified by the designer of the application) modes 
of operation of the application under study. 

In this paper, we present the results of experiments we have been running 
with this technique. Besides the use of the FVT suites, our work differs from 
that  of Forrest et al. in three main ways: 

- The algorithm used to create fixed-length patterns is slightly different and 
results in shorter tables of patterns.  

- We consider in addition the opportunity of using variable-length patterns [8] 
and various ways of doing this. 

- The decision to raise an alarm is based on a new paradigm that  is simpler 
than the Hamming distance described in [2], thus allowing possible real-time 
countermeasure. 

The structure of the paper is as follows. Section 2 presents the principles of 
the intrusion-detection techniques we are working with. It explains how patterns 
are generated and used to cover sequences. Section 3 presents the experimental 
results obtained when applying a fixed-length pattern-generation algorithm. Sec- 
tion 4 does the same for a variable-length pattern-generation algorithm. These 
two sections also highlight advantages and disadvantages of each technique. Sec- 
tion 5 concludes the paper by offering a comparison of the results as well as ideas 
for future work. 

2 P r i n c i p l e s  o f  t h e  A p p r o a c h  

In our approach, UNIX processes are described by the sequence of audit events 1 
that  they generate, from start  (fork) to finish (exit).  Their  normal behavior is 
modeled by a table of pat terns which are subsequences extracted from these 
sequences. The detection process relies on the assumption that  when an attack 
exploits vulnerabilities in the code, new (i.e., not included in the model) subse- 
quences of audit events will appear. Fig. 1 describes the complete chain used to 
configure the detecting tool. 

1 Note that Forrest et al. [1], [2] use the sequences of system calls instead of audit 
events. Obtaining system calls constitutes a more intrusive technique than the one 
we present here. 



Fixed vs. Variable-Length Patterns for Suspicious Behavior Detection 3 

PROC_cre$te 

FILE_close 

FILE_close 

FILE_open 

TRAINING SYSTEM 

Translation [ [Filtering I 

v ? 
�9 . . DAABGEABCDDAEFG ...... DABGEABCDAEFG... 

Pattern 1 Exgaction 
i 
| | i 

V 
PROCcrea$e -> matched 

FILE_close -> matched 

riLE ol . . . .  : ~ ' . ~ "  ~!~ . ' . .  
FILE_open 

MODEL: Table o f  
OFF-LINE known patterns 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

ON-LINE 

INTRUSION DETECTION SYSTEM ~t 
T 

[.~ ' T;anilati'on I Filtering ] Pattern 
] ~lAwegaa~ I -- [ Matching 

ABGE �9 . .AABBGGEABCDDADECFG ...... ABGEABCDAECFG... 
ABCD 

SPASSWORDREAD 

TCPIP_eonnect 

Fig. 1. Intrusion-detection system 

2.1 Off-Line Treatment 

The upper part of Fig. 1 represents how the model of normal behavior is created 
off-line. Audit events are recorded from the ftp daemon, which has been triggered 
by an experiment process, and translated as letters for easier handling. Such 
a letter in our system actually represents the combination of the audit event 
and the name of the process generating it, both pieces of information being 
provided by the Unix C2 audit trail. This recording runs through a filtering and 
reduction process whose purpose is explained later. When the experiment has 
been completed, the entire audit information is used to generate the table of 
patterns that constitute our model of the normal behavior of the system. 

The purpose of the filtering/reduction/aggregation box is threefold (explained 
in more detail in the remainder of the section): 

filtering to eliminate irrelevant events (processes that are not related to the 
services we monitor) and to sort the remaining ones by process number; 

reduction to remove duplicate sequences due to processes generating exactly 
the same stream of audit events from start ( f o r k )  to finish ( e x i t ) ,  2 and 

aggregation to remove consecutive occurrences of the same system calls. 

2 This is not used in the on-line version, because of the memory cost and algorithmic 
complexity of keeping all known process images. 
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Sorting prevents the introduction of arbitrary context switches into the audit 
stream by the operating system. Processes are sorted so that the intrusion- 
detection process is applied to each process individually. The events inside the 
process remain in the order in which they have been written to the audit trail. 

The reduction keeps only unique process images for model extraction. We use 
test suites to record the normal behavior of the ftp daemon. These test suites 
carry many repetitive actions and therefore result in many instances of the same 
process image (see [7] for a complete explanation of this issue). We remove these 
duplicates as they are not used by the current algorithm extracting the patterns 
from the reference audit data. 

The aggregation comes from the observation that strings of N consecutive 
audit events (N > 20) are quite frequent for certain events, with N exhibiting 
small variations. A good example is the "ftp login" session, where the ftp dae- 
mon closes several file handles inherited from inetd, the number of these closes 
changing without obvious cause. Therefore, we decided to simplify the audit trail 
in order to obtain a model containing fewer and shorter patterns. We did not 
observe any difference in either the false positive or false negative rates between 
those experiments in which the aggregation was used and those in which it was 
not. There is no claim of equivalence between the reduced (simplified) audit trail 
and the original one; the new one possibly has less semantic content. This is an 
experimental choice, and we would remove the aggregation part if the true/false 
alarm performance of the intrusion-detection system were not satisfactory. This 
aggregation phase would also be skipped if the intrusion-detection technique 
requires redundancy, e.g. neural networks. 

The most obvious aggregation consists of replacing identical consecutive au- 
dit events with an extra "virtual" audit event. However, doing so enriches the 
vocabulary (the number of registered audit events) and possibly the number of 
patterns, which we want to keep small. Our solution simply aggregates these 
identical consecutive audit events. Therefore, any audit event represents "one or 
more" such events (i.e., A = A+ in regular expression formalism) at the output 
of the aggregation box. 

2.2 Rea l -T ime  Detection 

The lower part of Fig. 1 shows the real-time intrusion-detection process. Audit 
events are again generated by the ftp daemon, and go through the same sorting 
and reduction mechanism in real time. Then, we apply a pattern-matching al- 
gorithm (Section 2.3) to cover the sequences on the fly. When no known pattern 
appropriately matches the current stream of audit events, a decision has to be 
taken whether to raise an alarm (see Section 2.4). 

2.3 Pattern-Matching Algorithm 

The pattern-matching algorithm is quite critical for the performance of the 
intrusion-detection system. We wish to maximize both speed and detection ca- 
pabilities. Therefore, we require that patterns match exactly, i.e., they cannot be 
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matched as regular expressions using wildcards. We use a two-step algorithm: the 
first step looks for an exact match,  and the second step looks for the best partial  
match possible. These two steps are illustrated with the examples presented in 
Figs. 2 and 3. 

Table 

ABCD 
XYZD 
ABC 
GHI 
XYZ 
HF 

String: 

Reminder of string: 

Reminder of string: 

Reminder of string: 

ABCABCDXYZGHI 
ABCD XYZD ABC 

ABCDXYZGHI 
ABCD 

XYZGHI 
ABCD XYZD ~ Gill XYZ 

GHI 
ABCD XYZD ~ GHI 

ABC Selectable 

ABC Validated 

A B C  validated: 3 consecutive patterns yield exact match 

Fig. 2. Exact pattern-matching sequence 

Table 

ABCD 
XYZD 
ABC 
GHI 
XYZ 
HF 

String: 

Reminder of String: 

ABCABCDKMWHF 
AP,~CD XYZD ABC 

ABCDKMWHF 
ABC ~ length6 
ABCD ~ length 7 ~ SELECTED 

K = Shifted 
M ~ Shifted 
W ~- Shifted 

Uncovered sequence KMW 

Fig. 3. Approximate pattern-matching sequence 

The first step of the algorithm is illustrated in Fig. 2. A pat tern  that  matches 
the beginning of the string is selected from the pa t te rn  table. If  no pat tern  
matches the beginning of the string, then the first event is counted as uncovered 
and removed. The algorithm is subsequently applied to the remainder of the 
string. 

Once a selectable pa t te rn  has been found, the algori thm will recursively look 
for other pa t terns  tha t  exactly cover the continuation of the string up to a given 
depth D or to the end of the string, whichever comes first (D = 3 in Fig. 2). This 
means that ,  for a selectable pat tern  to be chosen, we must  find D other pat terns  
that  also completely match  the events following tha t  pa t te rn  in the sequence. If 
such a sequence of D pat terns  does not exist, step 2 of the algorithm is used. The 
rationale behind this is tha t  we want to know whether  the selected pat tern  has 
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a positive influence on the coverage of the audit events tha t  are in its vicinity. 
When such a D-pa t t e rn  sequence has been found, the algorithm pops the head 
pa t te rn  out of the sequence and goes on with the remainder of the string. 

If we cannot find three other pa t terns  tha t  match  the sequence after the 
selected pat tern,  we deselect it and t ry  the next selectable pa t te rn  in the table. 
The fact tha t  there were selectable pat terns,  but  none tha t  fulfill the depth 
requirement, triggers the second phase of the algorithm. 

The second step of the algori thm deals with failure cases and is illustrated 
in Fig. 3. The algorithm looks for the sequence of N pat terns  tha t  covers the 
largest number of audit events. This sequence is removed from the string and 
the algorithm goes back to its first par t ,  looking again for a selectable pat tern ,  
and shortening the string as long as one is not found. 

2 . 4  I n t r u s i o n  D e t e c t i o n  

For each string, the algorithm extracts  both  the number of groups of audit 
events tha t  were not covered and the length of each of these groups. The decision 
whether to raise an a larm is based on the length of the uncovered sequences. I t  is 
worth noting tha t  this is different from the measures used for the same purpose 
by Forrest et al., namely the number  and the percentage of uncovered events in 
a string [2]. 

There are three reasons for this. 

- Processes can generate a large number  of events. An at tack can be hidden 
in the midst of a set of normal  actions. Using the percentage of uncovered 
characters would fail to detect the a t tack in this case. 

- Small processes could be falsely flagged as anomalous because of a few un- 
covered events if we use the percentage of uncovered characters.  

- Long processes could be falsely flagged as anomalous because of many  iso- 
lated uncovered events if we use the amount  of uncovered characters.  

During our experiments we observed tha t  the trace of the at tacks was repre- 
sented by a number  of consecutive uncovered characters. This is consistent with 
the findings of Kosoresow and Hofmeyr  [5], who note tha t  mismatches due to 
intrusions occur in fairly distinct bursts  in the sequences of system calls they 
monitored. This means tha t  an a t tack cannot be carried out in fewer than  T con- 
secutive characters. Our experiments led us to choose the value 7 for T. In other 
words, each group of more than  six consecutive uncovered events is considered 
anomalous and flagged as an at tack.  

This amounts  to defining an intrusion as any event tha t  generates a sequence 
of at least T consecutive events not covered by the algorithm defined above. 

To validate the concepts presented here, we have developed an intrusion- 
detection tes tbed [9]. We have used it to compare various strategies to build 
the table of pat terns  used in the detector. The results of these experiments are 
reported in the next two sections. They  focus on the ]tp service, which is widely 
used, is known to contain many  vulnerabilities, and provides rich possibilities 
for user interaction. 
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3 G e n e r a t i n g  F i x e d - L e n g t h  P a t t e r n s  

3.1 Pattern Generation 

Fixed-length patterns are the most immediate approach to generate the table 
of patterns.  We have evolved four ways of obtaining these patterns. For each of 
them, we use a parameter  L, the length of the patterns.  

Technique 1 is an exhaustive generation of all possible patterns by sliding 
a window of size L across the sequence and recording each unique L-event se- 
quence. This technique is easy to implement, but  has obvious drawbacks. First, a 
large number of pat terns in the reference table will not be used by the matching 
algorithm on the reference data set. Moreover, the covering algorithm generates 
boundary mismatches when the length of the process image is not a multiple of 
L, because it uses a juxtaposing window instead of a sliding one (which would 
not make sense in this context). It is worth noting that  this is the technique used 
to run the experiments described in [2], [4], and [5]. 

To solve the first problem, technique 2 is introduced, which shifts the string 
by L events, thus creating juxtaposed patterns instead of overlapping ones. In 
other words, the events in positions 1 to L constitute the first pat tern,  events 
in the positions L + 1 to 2L consti tute the second one, and so on . . .  The table 
we obtain is thus much shorter than the table generated by technique 1, which 
makes the pattern-matching algorithm faster. Technique 2 drops the remainder 
of the sequence of events when its length is not a multiple of L, therefore the 
second problem mentioned remains. 

To solve it, we have introduced techniques 3 and 4. They are similar to tech- 
nique 2 but keep the events remaining at the end of the string as a stand-alone 
pat tern  or concatenated to the last generated pattern,  respectively. Techniques 
3 and 4 both result in 100% coverage of the test sets. As they are the ones that  
were most promising during the experiments, we focus on them in the remain- 
der of this paper. Note that  some of the patterns are smaller or larger than the 
specified size, and these can only match at the end of the process execution, as 
they necessarily contain the end-of-process event. 

3.2 Experimental Results 

We have used three test sets in our experiments. The first test is solely based 
on the FVT. The second test set includes additional information on tools that  
are used by ftp users, but are not in the testing of the ftp daemon per  se. The 
third data  set is based on the recording of several hundred real user sessions. 
The experimental results are presented for the second test set. The reference 
table generated from the first set does not contain patterns for commands like 
tar, which are used by normal users. Using the third set breaks the rule fixed in 
the introduction of the paper (no user recording for training), thus this set has 
only been used to evaluate the false negative rates obtained with our approach. 

The output  of the intrusion-detection system is shown in Fig. 4. Each line 
reports the analysis for one process related to the ftp service. 
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INumber of INumber of IPercentage INumber of IAverage INumber of ILength of 
l a u d i t  l u n c o v e r e d  I o f  covered Ipatterns Isize of Igroups leach group 
levents levents events 

569 
97 
928 
735 
6 
878 
839 
8 
963 
168 
476 
366 

99.30 188 
100.00 32 
99.68 308 
99.59 244 
100.00 2 
99.09 290 
99.52 278 
25.00 1 
99.79 320 
93.81 58 
99.79 158 
99,18 121 

Ipattern 

3 . 0 1  
3 . 0 3  
3 . 0 0  
3 . 0 0  
3 . 0 0  
3 . 0 0  
3 . 0 0  
2 . 0 0  
3 . 0 0  
3 . 0 2  
3 . 0 1  
3 . 0 0  

1 1 1 1  

111 
111 

IIiiiiii 
iiii 
6 
2 
II 
1 
IIi 

Fig. 4. Output of the intrusion-detection system 

Table 1 shows the results of the experiments to monitor our ftp server un- 
der various conditions, using the intrusion-detection system loaded with several 
reference tables. The first column identifies the experiment. The second column 
gives the number of audit events in the experiment. The third column indicates 
the two parameters corresponding to the reference table used in the intrusion- 
detection system, t denotes the generation technique (3 or 4) and s the size of the 
patterns (2, 3 and 4). The fourth column gives the overall number of uncovered 
characters. The fifth column gives the number of patterns used for the coverage. 
The sixth column gives the average size of patterns, 3 and the seventh column 
indicates the number of false alarms triggered by the intrusion-detection system. 

Table 1 shows that our intrusion-detection system has the potential to per- 
form well without generating false alarms. Indeed, for patterns of length 2, in- 
dependent of the technique used (3 or 4), the intrusion-detection system does 
not generate false alarms. For patterns of length 4, independent of the tech- 
nique used, the intrusion-detection system generates false alarms. For patterns 
of length 3, the generation of false alarms is dependent on the technique used 
for the generation. With technique 3, which introduces more patterns but also 
more freedom (some patterns can be smaller than the required length of 3), 
the intrusion-detection system does not generate false alarms, whereas it will 
generate false alarms if technique 4 is used. 

It is also worth mentioning that if we use the third test set, which is closely 
based on user-behavior observations, instead of the second one, we observe no 
false alarms for any of the combinations (pattern size, technique). However, 
using user-generated data to train the intrusion-detection system breaches the 
requirements expressed in the introduction. 

3 This value is truncated after the second decimal. 
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T a b l e  1. Expe r imen ta l  results  for normal  user sessions 

Simulat ion 
descript ion 

Anonymous  user 
sessions 

Normal  user 
sessions 

not  using 
"site exec" 

Normal  
user 

sessions 

Sequence of all 
available user 

s imulat ions 

Simulat ion of 
user ac t iv i ty  

on loaded 
ftp server 

Number  Technique N u m b e r  of 
of audit  and uncovered 
events size events  

6067 t - - 3 ,  s = 2  2 
t = 3 ,  s = 3  79 
t = 3, s -- 4 180 
t = 4 ,  s = 2  2 
t -- 4, s = 3 82 
t -- 4, s -- 4 186 

19439 t = 3 ,  s = 2  9 
t -- 3, s = 3 108 
t = 3, s = 4 257 
t = 4, s = 2 10 
t -- 4, s -- 3 116 
t -- 4, s ---- 4 264 

20135 t - - 3 ,  s - - 2  9 
t = 3, s -- 3 108 
t = 3, s = 4! 257 
t = 4, s = 21 10 
t = 4, s = 3 116 
t = 4, s = 41 264 

26094 t = 3 ,  s = 2  11 
t 3, s ---- 3 199 
t ---- 3, s = 4 444 
t ----- 4, s = 2i 12 
t ---- 4, s = 3 213 
t---- 4, s = 41 511 

26148 t----3, s = 2 1  11 
t = 3, s -= 3 185 
t ---- 3, s = 4 437 
t = 4, s ---- 2 12 
t = 4, s = 3 i 196 
t = 4, s = 4 450 

N u m b e r  of Average  Number  
pa t te rns  size of of false 
required pa t t e rns  a larms 

3028 2.00 0 
1994 3.00 0 
1477 3.99 3 
3013 2.01 0 
1983 3.02 0 
1455 4.04 3 
9705 2.00 0 
6443 3.00 0 
4802 3.99 1 
9685 2.01 0 
6416 3.01 0 
4769 4.02 1 
10052 2.00 0 
6675 3.00 0 
4978 3.99 1 
10025 2.01 0 
6643 3.01 0 
4936 4.03 1 
13029 2.00 0 
8621 3.00 0 
6431 3.99 4 
12985 2.01 0 
8586 3.01 0 
6362 4.02 4 
13053 2.00 0 
8652 3.00 0 
6440 3.99 4 
13015 2.01 0 
8611 3.01 0 
6380 4.03 4 

To  e v a l u a t e  t h e  r isk  o f  n o t  d e t e c t i n g  an  a t t a c k ,  4 T a b l e  2 shows  t h e  n u m b e r  

o f  va l id  s equences  o f  s ix  a u d i t  e v e n t s  t h a t  c a n  be  c r e a t e d  o u t  o f  t h e  t a b l e  (six 

is t h e r e  b e c a u s e  o u r  T = 7). T h i s  is t h e  m o s t  o b v i o u s  m e a s u r e ,  b u t  i t  does  n o t  

a c c o u n t  for  t h e  ful l  r isk,  as  a n  a t t a c k  c o u l d  b e  t h e  c o m b i n a t i o n  o f  l e g i t i m a t e  

s e q u e n c e s  w i t h  sho r t  i l legal  ones .  T h e  t a b l e  c l ea r ly  shows  t h a t  a s m a l l  i nc rease  

in t h e  l e n g t h  o f  t h e  p a t t e r n  d r a m a t i c a l l y  r e d u c e s  t h e  deg rees  o f  f r e e d o m  in t h e  

t a b l e ,  a n d  we c o n s i d e r  th i s  a v e r y  i m p o r t a n t  r e su l t .  Also ,  t h e  t e c h n i q u e  used  t o  

4 By  this,  we denote  the  possibil i ty of running  an a t tack  tha t  would create  a new 
sequence of audit  events wi thou t  being detected.  This  is possible if  the  new sequence 
consists of subsequences tha t  are valid, i.e. tha t  are present in the  reference table. 
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Table  2. Statistics on fixed-length tables 

Technique Size of Size of 
and size table patterns 

t--3, s=2 87 {1,2} 
it .-  3, s = 3  114 {1 ,2 ,3}  
t = 3 ,  s = 4  152 
i t = 4 , s = 2  86 {2, 3} 
t-----4, s = 3  113 {3, 4, 5} 
t----4, s----4 147 

Number oflegitimate 
combinations oflength < T(6)  

1142100 
11559 

{1, 2, 3, 4} 59O 
456456 

9905 
{4, 5, 6, 7} 143 

generate the pat terns  has a dramat ic  impact  on the number  of combinations, 
as small pa t te rns  (typically of length 1, potential ly generated by the use of 
technique 3) significantly increase the probabil i ty of covering attacks,  i.e., of not 
detecting them. 

We have also carried out a number  of at tacks against  our ftp server to validate 
our approach. Table 3 shows our experimentat ion results for nine attacks. An X 
in the column indicates tha t  the at tack has been detected. 

Table 3 reveals tha t  three at tacks pose a problem to the intrusion-detection 
system, but  for very different reasons. 

The "put rhosts" a t tack consists of put t ing a .rhosts file in the home direc- 
tory of the ftp user. This vulnerability results from a misconfiguration of the 
ftp service because this directory should obviously not be world writable. Actu- 
ally, the "put forward" and the "put rhosts" a t tacks use the same vulnerability, 
except tha t  one of them puts a .forward file, and the other one a .rhosts. The 
first one is detected because our a t tack script activates the a t tack by sending 
a mail to the ftp user, thus triggering the execution of the .forward file by the 
sendmail daemon. The  second at tack is not triggered, because our at tack script 
does not log on to the at tacked machine. Any login a t t empt  would immediately 

Table  3. Experimental results for attack detection 

Attack description [t=3, s=2[t=3, s=3[t----3, s=4]t=4, s=21t--4 , s=3[t=4, s=41 
put forward X X X X X X 

put rhost 
site copy X X X X X X 

site exec copy ftpd X X X X X X 
site exec copy ls X X X X X X 

site exec ftpbug ftpd X X X X X X 
tar exec copy ffpd X 

tar exec copy ls X X X X 
tar exec ftpbug ftpd X X X X X X 

tar exec ftpbug ls X X X X X X 
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be detected, as a shell would be spawned for the ftp user, and this behavior does 
not belong to the reference data  set. 

The two "tar exec copy" attacks use the option of GNU tar to specify a 
compression program that  will be used by tar to uncompress the data  before 
extracting it. In our case, we have developed a Trojan horse that  does no de- 
compression, but cop ies /b in / sh  t o / t m p / . s h  as a setuid executable. This at tack 
exploits the fact tha t  some ftp daemons do not release their root privileges 
quickly enough before forking other processes. Therefore the tar and the Trojan 
horse both run as root and t h e / t m p / . s h  is created suid root. Our Trojan horse 
is compiled and saved under the name of either ls or ]tpd (hence the code name 
of the attacks). The attacks are only detected by the more restrictive table of 
patterns of length 4. We observe that  the patterns modeling the normal behavior 
of an ls process in our reference table are more restrictive than those modeling 
#pd, as the masquerading of our at tack program under the process name "Is" 
is detected by (t = 4, s = 3) but  not the masquerading under the process name 
"ftpd" with the same pair (t = 4, s = 3). 

This second case also highlights one of the difficulties of this intrusion- 
detection technique: the reference data  set must be truly restrictive and ex- 
haustive, so that  the pat terns can faithfully represent the information. In our 
case, tar is not a command that  is tested by the test suites we use to generate 
the reference data  set, as it is not considered to be strictly related to ftpd. We 
have added some examples of usage of the tar command to our reference data  
set, but forking commands is a legitimate behavior of the tar command, and 
both the ftpd and ls pat terns  cover the execution of our Trojan horse. Lowering 
the threshold L would improve detection using the smaller reference tables, but  
it would also increase the false alarm rate. 

4 G e n e r a t i n g  V a r i a b l e - L e n g t h  P a t t e r n s  

4.1 Rationale for Variable-Length Patterns 

The fixed-length pat terns approach yields interesting results, but  a careful look 
at the sequence of audit events shows that  there are very long subsequences 
which repeat themselves frequently. For example, more than 50% of the process 
images we have obtained start  with the same string. This string contains 40 au- 
dit events. Therefore, having these very long sequences would bet ter  represent 
our data. This is intuitively correlated by the fact that  the ftp daemon answers 
to commands given by the user, and that  each command can probably be rep- 
resented by a (set of) long sequence(s) of audit events. Therefore, having the 
capability to extract  variable-length patterns from our da ta  makes sense [8]. 

However, we also are looking for an automated approach. Manual pat tern 
extraction might be feasible for small-scale experiments, but  is very time con- 
suming. Therefore, we have looked for a method that  will allow us to generate 
variable-length patterns.  
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4.2 D e s c r i p t i o n  o f  t h e  P a t t e r n - G e n e r a t i o n  T e c h n i q u e  

A block diagram of the variable-length pat tern generator is shown in Fig. 5. It 
consists of a suffix-tree constructor, a pat tern  pruner, and a pat tern  selector. 
The suffix-tree constructor processes the sample of user behavior as a sequence 
of symbols, i.e., a string to generate its suffix tree. The well-known suffix-tree 
structure is a dictionary of all substrings in the string [10]. An example of a 
string and its corresponding suffix tree are given in Fig. 6. 

SUFFIX TREE ] - ] PATTERN ] - I  PATTERN 
CONSTRUCTOR ] Suffix - I . ,  PR UNER I Pattern-I SELECTOR 

Tree Tree 

Fig. 5. Variable-length pattern generation 

I 
[ Reduced 

Tree 

Sample of normal behavior: ACABACBDBABD$ 

ACBDBABD$ 

~ACBDBABD$ 
~---~BDBABD$ 

.~ ^ 2 f  BD$ 
1 2 ~ C B D B A B D $  

~ ABDS 

(a) Suffix tree 

B 2 

C 2 

12 

B 2 

C 2 

12 

(b) Pattern tree (c) Reduced tree 

Fig. 6. Pattern extraction 

The suffix tree initially consists of only a root. Then all suffixes of the sample 
string are added one by one until the complete suffix tree is obtained. Note 
that  a "$", representing an end delimiter, is added to the end of the string to 
ensure that  the suffix tree contains one leaf corresponding to each suffix. Every 
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node corresponds to the substring represented by the symbols on the path from 
the root to that  node. The number next to the node represents the number of 
occurrences of the substring in the sample string. 

The pat tern  pruner prunes the suffix tree in order to generate a tree, referred 
to as a pattern tree. The pruning is done based on the pruning factor, which is 
a real number between 0 and 1. This factor is multiplied by the length of the 
sample of user behavior to obtain a lower limit on the occurrences of patterns. 
Every pat tern  with a number of occurrences less than this minimum is clipped, 
i.e., all its outgoing branches are removed. Fig. 6b shows the pat tern tree when 
the suffix tree is pruned with a pruning factor of 3/12. The number of occurrences 
of each pat tern in the sample string is indicated next to the node corresponding 
to that  pattern.  As the branching factor is increased, the suffix tree is pruned 
more and, hence, the pat tern tree contains fewer and shorter patterns. We can 
use this flexibility to t ry  different sets of pat terns and choose the one that  results 
in the most satisfactory detector performance. 

From the set of pruned patterns the selector removes those patterns that are 
not required for covering the sample of user behavior. In our example, patterns 
AB, AC, BA, BD in the pat tern tree in Fig. 6c are sufficient to cover the sample 
of user behavior; pat terns C, D are not needed. The selector identifies the needed 
patterns by processing the sample with a pat tern matcher identical to that of 
the detector. First, it loads the matcher with the set of the pruned-pattern 
tree and sets all the nodes to not marked. It then performs matching on the 
sample. For every matched-pat tern event generated by the matcher, it marks 
the corresponding pat tern  in the pruned-pat tern tree. After the entire sample 
has been processed, the marked patterns are selected as the set of patterns to 
be used by the detector. Note that  currently the matcher used here is different 
from and much simpler than the matcher of the intrusion-detection system. 

4.3 Experimental  Results  

Using the second test set, we have built three reference tables of patterns. The 
first reference table contains all the possible sequences extracted from the pattern 
tree, 5 denoted all patterns in Table 4. The second reference table contains only 
the sequences going from the root to the leaf in the pat tern tree, 6 denoted leaf 
patterns in Table 4. The last one contains only the sequences going from the 
root to the leaf in the reduced tree 7 (see Fig. 6c). The statistics for the reference 
tables are given in Table 4, according to both the kind of reference table and 
the pruning factor used in the tree generation. The information still has to be 
compared with the complete number of combinations that  we can derive from all 
the registered pairs (application, audit event) in our intrusion-detection system, 
which gives 562 �9 554 combinations s. 

s A, AB, AC, B, BA, BD, C~ D in the example in Fig. 6. 
6 AB, AC, BA, BD, C, D in the example in Fig. 6. 
7 AB, AC, BA, BD in the example in Fig. 6 
s In our experiments, we have observed 55 different pairs (audit event, process name); 

two fictitious events have been added to represent the beginning and end of a process. 
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Table  4. Statistics on variable-length tables 

Reference table pize of table 

All patterns 
Leaf patterns 

Seiected patterns 
Leaf patterns 

Selected patterns 
Leaf patterns 

87 
82 
51 
146 
74 
2i5 

Pruning factor 

0.1 
0.1 
0.1 
0.05 

Number of legitimate 
combinations of length < T(6) 

0.05 

0.02 I 
0.02 

> 24 * 22 ~ 
> 21 * 19 ~ 

> 13 * 12 ~ 

> 17 * 165 
> 12 �9 115 
> 16 * 14 ~ 

Selected patterns 80 > 12 �9 115 

These reference tables actually contain patterns of length 1 to  50. This ap- 
proach identifies the long sequences we found by browsing the data  sets. However, 
they are actually less restrictive that  the ones obtained with fixed-length pat- 
terns, owing to the presence of very small patterns.  This unexpected result is 
a consequence of the presence of numerous pat terns of length one, along with 
much longer patterns,  in the table. This is the reason we are now working to 
improve the variable-length pat tern tables by introducing a lower limit for the 
size of the patterns.  Lowering the pruning factor results in longer patterns, but  
the very small ones are still required to obtain a good match, thus the number 
of legitimate combinations is still very large. 

We have experimented with these three tables on the normal user behavior, 
and found that  they also do not generate false alarms. Concerning the attacks, 
we obtain the same results as in the previous section, i.e., the ".rhosts" and "tar 
exec copy" attacks are not detected. 

5 C o n c l u s i o n  a n d  F u t u r e  W o r k  

In this paper, we have proposed two different families of methods, fixed- vs. 
variable-length pat tern  generation, to generate tables of pat terns that  model 
the normal behavior of a process. We have also proposed a new paradigm to 
detect intrusions based on the length of uncovered sequences and relying on a 
specific pat tern-matching algorithm. 

Based on the results of the experiments run on our testbed, we have shown 
that  the appeal of the new paradigm for both  families of pat terns (fixed length 
and variable length) is that  it minimizes the false negative alarm rate. We have 
explained the limitation of the fixed-length pat tern approach, namely its in- 
ability to represent long meaningful substrings. We have defined a new family of 
methods based on a suffix-tree representation to obtain variable-length patterns. 
Preliminary results exhibit their ability to detect real intrusions, but  a detailed 
analysis indicates that  they are also more prone to issue false alarms. 

Further work will concentrate on enhancing the algorithm for variable-length 
generation of pat terns in order to reduce the risk of obtaining false positive 
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alarms while keeping the good results regarding the true positive rate. Another 
proposed enhancement is to associate frequencies with the patterns, to customize 
the intrusion-detection patterns locally by flagging the infrequent use of regis- 
tered patterns. 
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