
Fixed vs. Variable-Length Patterns for Detect ing
Suspicious Process Behavior

Hervd Debar, Marc Dacier, Mehdi Nassehi, and Andreas Wespi

IBM Research Division, Zurich Research Laboratory, CH-8803 Riischlikon,
Switzerland

{deb, dac ,mmn, anw}Ozurich, ibm. com

A b s t r a c t . This paper addresses the problem of creating patterns that
can be used to model the normal behavior of a given process. These
models can be used for intrusion detection purposes. In a previous work,
we presented a novel method to generate input data sets that enable us
to observe the normal behavior of a process in a secure environment.
Using this method, we propose various techniques to generate either
fixed-length or variable-length patterns. We show the advantages and
drawbacks of each technique, based on the results of the experiments we
have run on our testbed.

1 I n t r o d u c t i o n

In [1] Forrest et al. introduced a change-detection algorithm for detecting com-
puter viruses tha t is based on the way tha t natural immune systems distinguish
"self" from "nonself". In [2] they reported preliminary results extending this
approach in the intrusion-detection area by establishing such a definition of self
for Unix processes. This technique models the way an application or service run-
ning on a machine normally behaves by registering the sequences of system calls
invoked. An intrusion is assumed to exercise abnormal paths in the executable
code, and is detected when new sequences are observed (see also [3], [4], [5]).

Like every behavior-based technique, an intrusion-detection system needs to
be trained to learn what the "normal" behavior of a process is. This is usually
done by recording the act ivi ty of the process running in a real environment
during a given period. This procedure has a number of drawbacks:

- I t leaves open the possibility of obtaining false negatives [6] if not all pos-
sible behaviors have been exercised during the recording period, because
new users, new applications or configuration changes introduce new usage
patterns.

- It leaves open the possibility of obtaining false positives [6] if the application
has been hacked during the recording period.

- The observed behavior is a function of the environment in which it is run-
ning and thus prevents the distribution of an "initialized" intrusion-detection
system that could immediately be plugged in and activated.

2 Herv@ Debar et al.

Another approach consists of artificially creating input data sets that exercise
all normal modes of operation of the process. For example, Forrest et al. [2] use a
set of 112 messages to study the behavior of the sendmail daemon. This method
eliminates the risk of obtaining a false positive but not that of obtaining a false
negative. Furthermore, it is an extremely complex and time-consuming task to
come up with a good input da ta set.

In [7] we have shown how to use the functionality verification test (FVT)
suites provided by application developers to observe all the specified behaviors
of an application. Not only are we able to eliminate the risk of obtaining a false
positive with this approach, but we also dramatically reduce the risk of obtaining
a false negative because, by design, our input data set exercises all the normal
(in the sense of having been specified by the designer of the application) modes
of operation of the application under study.

In this paper, we present the results of experiments we have been running
with this technique. Besides the use of the FVT suites, our work differs from
that of Forrest et al. in three main ways:

- The algorithm used to create fixed-length patterns is slightly different and
results in shorter tables of patterns.

- We consider in addition the opportunity of using variable-length patterns [8]
and various ways of doing this.

- The decision to raise an alarm is based on a new paradigm that is simpler
than the Hamming distance described in [2], thus allowing possible real-time
countermeasure.

The structure of the paper is as follows. Section 2 presents the principles of
the intrusion-detection techniques we are working with. It explains how patterns
are generated and used to cover sequences. Section 3 presents the experimental
results obtained when applying a fixed-length pattern-generation algorithm. Sec-
tion 4 does the same for a variable-length pattern-generation algorithm. These
two sections also highlight advantages and disadvantages of each technique. Sec-
tion 5 concludes the paper by offering a comparison of the results as well as ideas
for future work.

2 P r i n c i p l e s o f t h e A p p r o a c h

In our approach, UNIX processes are described by the sequence of audit events 1
that they generate, from start (fork) to finish (exit). Their normal behavior is
modeled by a table of pat terns which are subsequences extracted from these
sequences. The detection process relies on the assumption that when an attack
exploits vulnerabilities in the code, new (i.e., not included in the model) subse-
quences of audit events will appear. Fig. 1 describes the complete chain used to
configure the detecting tool.

1 Note that Forrest et al. [1], [2] use the sequences of system calls instead of audit
events. Obtaining system calls constitutes a more intrusive technique than the one
we present here.

Fixed vs. Variable-Length Patterns for Suspicious Behavior Detection 3

PROC_cre$te

FILE_close

FILE_close

FILE_open

TRAINING SYSTEM

Translation [[Filtering I

v ?
�9 . . DAABGEABCDDAEFG DABGEABCDAEFG...

Pattern 1 Exgaction
i
| | i

V
PROCcrea$e -> matched

FILE_close -> matched

riLE ol : ~ ' . ~ " ~!~ . ' . .
FILE_open

MODEL: Table o f
OFF-LINE known patterns
.

ON-LINE

INTRUSION DETECTION SYSTEM ~t
T

[.~ ' T;anilati'on I Filtering] Pattern
] ~lAwegaa~ I -- [Matching

ABGE �9 . .AABBGGEABCDDADECFG ABGEABCDAECFG...
ABCD

SPASSWORDREAD

TCPIP_eonnect

Fig. 1. Intrusion-detection system

2.1 Off-Line Treatment

The upper part of Fig. 1 represents how the model of normal behavior is created
off-line. Audit events are recorded from the ftp daemon, which has been triggered
by an experiment process, and translated as letters for easier handling. Such
a letter in our system actually represents the combination of the audit event
and the name of the process generating it, both pieces of information being
provided by the Unix C2 audit trail. This recording runs through a filtering and
reduction process whose purpose is explained later. When the experiment has
been completed, the entire audit information is used to generate the table of
patterns that constitute our model of the normal behavior of the system.

The purpose of the filtering/reduction/aggregation box is threefold (explained
in more detail in the remainder of the section):

filtering to eliminate irrelevant events (processes that are not related to the
services we monitor) and to sort the remaining ones by process number;

reduction to remove duplicate sequences due to processes generating exactly
the same stream of audit events from start (f o r k) to finish (e x i t) , 2 and

aggregation to remove consecutive occurrences of the same system calls.

2 This is not used in the on-line version, because of the memory cost and algorithmic
complexity of keeping all known process images.

4 Herv@ Debar et al.

Sorting prevents the introduction of arbitrary context switches into the audit
stream by the operating system. Processes are sorted so that the intrusion-
detection process is applied to each process individually. The events inside the
process remain in the order in which they have been written to the audit trail.

The reduction keeps only unique process images for model extraction. We use
test suites to record the normal behavior of the ftp daemon. These test suites
carry many repetitive actions and therefore result in many instances of the same
process image (see [7] for a complete explanation of this issue). We remove these
duplicates as they are not used by the current algorithm extracting the patterns
from the reference audit data.

The aggregation comes from the observation that strings of N consecutive
audit events (N > 20) are quite frequent for certain events, with N exhibiting
small variations. A good example is the "ftp login" session, where the ftp dae-
mon closes several file handles inherited from inetd, the number of these closes
changing without obvious cause. Therefore, we decided to simplify the audit trail
in order to obtain a model containing fewer and shorter patterns. We did not
observe any difference in either the false positive or false negative rates between
those experiments in which the aggregation was used and those in which it was
not. There is no claim of equivalence between the reduced (simplified) audit trail
and the original one; the new one possibly has less semantic content. This is an
experimental choice, and we would remove the aggregation part if the true/false
alarm performance of the intrusion-detection system were not satisfactory. This
aggregation phase would also be skipped if the intrusion-detection technique
requires redundancy, e.g. neural networks.

The most obvious aggregation consists of replacing identical consecutive au-
dit events with an extra "virtual" audit event. However, doing so enriches the
vocabulary (the number of registered audit events) and possibly the number of
patterns, which we want to keep small. Our solution simply aggregates these
identical consecutive audit events. Therefore, any audit event represents "one or
more" such events (i.e., A = A+ in regular expression formalism) at the output
of the aggregation box.

2.2 Rea l -T ime Detection

The lower part of Fig. 1 shows the real-time intrusion-detection process. Audit
events are again generated by the ftp daemon, and go through the same sorting
and reduction mechanism in real time. Then, we apply a pattern-matching al-
gorithm (Section 2.3) to cover the sequences on the fly. When no known pattern
appropriately matches the current stream of audit events, a decision has to be
taken whether to raise an alarm (see Section 2.4).

2.3 Pattern-Matching Algorithm

The pattern-matching algorithm is quite critical for the performance of the
intrusion-detection system. We wish to maximize both speed and detection ca-
pabilities. Therefore, we require that patterns match exactly, i.e., they cannot be

Fixed vs. Variable-Length Patterns for Suspicious Behavior Detection 5

matched as regular expressions using wildcards. We use a two-step algorithm: the
first step looks for an exact match, and the second step looks for the best partial
match possible. These two steps are illustrated with the examples presented in
Figs. 2 and 3.

Table

ABCD
XYZD
ABC
GHI
XYZ
HF

String:

Reminder of string:

Reminder of string:

Reminder of string:

ABCABCDXYZGHI
ABCD XYZD ABC

ABCDXYZGHI
ABCD

XYZGHI
ABCD XYZD ~ Gill XYZ

GHI
ABCD XYZD ~ GHI

ABC Selectable

ABC Validated

A B C validated: 3 consecutive patterns yield exact match

Fig. 2. Exact pattern-matching sequence

Table

ABCD
XYZD
ABC
GHI
XYZ
HF

String:

Reminder of String:

ABCABCDKMWHF
AP,~CD XYZD ABC

ABCDKMWHF
ABC ~ length6
ABCD ~ length 7 ~ SELECTED

K = Shifted
M ~ Shifted
W ~- Shifted

Uncovered sequence KMW

Fig. 3. Approximate pattern-matching sequence

The first step of the algorithm is illustrated in Fig. 2. A pat tern that matches
the beginning of the string is selected from the pa t te rn table. If no pat tern
matches the beginning of the string, then the first event is counted as uncovered
and removed. The algorithm is subsequently applied to the remainder of the
string.

Once a selectable pa t te rn has been found, the algori thm will recursively look
for other pa t terns tha t exactly cover the continuation of the string up to a given
depth D or to the end of the string, whichever comes first (D = 3 in Fig. 2). This
means that , for a selectable pat tern to be chosen, we must find D other pat terns
that also completely match the events following tha t pa t te rn in the sequence. If
such a sequence of D pat terns does not exist, step 2 of the algorithm is used. The
rationale behind this is tha t we want to know whether the selected pat tern has

6 Herv@ Debar et al.

a positive influence on the coverage of the audit events tha t are in its vicinity.
When such a D-pa t t e rn sequence has been found, the algorithm pops the head
pa t te rn out of the sequence and goes on with the remainder of the string.

If we cannot find three other pa t terns tha t match the sequence after the
selected pat tern, we deselect it and t ry the next selectable pa t te rn in the table.
The fact tha t there were selectable pat terns, but none tha t fulfill the depth
requirement, triggers the second phase of the algorithm.

The second step of the algori thm deals with failure cases and is illustrated
in Fig. 3. The algorithm looks for the sequence of N pat terns tha t covers the
largest number of audit events. This sequence is removed from the string and
the algorithm goes back to its first par t , looking again for a selectable pat tern ,
and shortening the string as long as one is not found.

2 . 4 I n t r u s i o n D e t e c t i o n

For each string, the algorithm extracts both the number of groups of audit
events tha t were not covered and the length of each of these groups. The decision
whether to raise an a larm is based on the length of the uncovered sequences. I t is
worth noting tha t this is different from the measures used for the same purpose
by Forrest et al., namely the number and the percentage of uncovered events in
a string [2].

There are three reasons for this.

- Processes can generate a large number of events. An at tack can be hidden
in the midst of a set of normal actions. Using the percentage of uncovered
characters would fail to detect the a t tack in this case.

- Small processes could be falsely flagged as anomalous because of a few un-
covered events if we use the percentage of uncovered characters.

- Long processes could be falsely flagged as anomalous because of many iso-
lated uncovered events if we use the amount of uncovered characters.

During our experiments we observed tha t the trace of the at tacks was repre-
sented by a number of consecutive uncovered characters. This is consistent with
the findings of Kosoresow and Hofmeyr [5], who note tha t mismatches due to
intrusions occur in fairly distinct bursts in the sequences of system calls they
monitored. This means tha t an a t tack cannot be carried out in fewer than T con-
secutive characters. Our experiments led us to choose the value 7 for T. In other
words, each group of more than six consecutive uncovered events is considered
anomalous and flagged as an at tack.

This amounts to defining an intrusion as any event tha t generates a sequence
of at least T consecutive events not covered by the algorithm defined above.

To validate the concepts presented here, we have developed an intrusion-
detection tes tbed [9]. We have used it to compare various strategies to build
the table of pat terns used in the detector. The results of these experiments are
reported in the next two sections. They focus on the]tp service, which is widely
used, is known to contain many vulnerabilities, and provides rich possibilities
for user interaction.

Fixed vs. Variable-Length Patterns for Suspicious Behavior Detection 7

3 G e n e r a t i n g F i x e d - L e n g t h P a t t e r n s

3.1 Pattern Generation

Fixed-length patterns are the most immediate approach to generate the table
of patterns. We have evolved four ways of obtaining these patterns. For each of
them, we use a parameter L, the length of the patterns.

Technique 1 is an exhaustive generation of all possible patterns by sliding
a window of size L across the sequence and recording each unique L-event se-
quence. This technique is easy to implement, but has obvious drawbacks. First, a
large number of pat terns in the reference table will not be used by the matching
algorithm on the reference data set. Moreover, the covering algorithm generates
boundary mismatches when the length of the process image is not a multiple of
L, because it uses a juxtaposing window instead of a sliding one (which would
not make sense in this context). It is worth noting that this is the technique used
to run the experiments described in [2], [4], and [5].

To solve the first problem, technique 2 is introduced, which shifts the string
by L events, thus creating juxtaposed patterns instead of overlapping ones. In
other words, the events in positions 1 to L constitute the first pat tern, events
in the positions L + 1 to 2L consti tute the second one, and so on . . . The table
we obtain is thus much shorter than the table generated by technique 1, which
makes the pattern-matching algorithm faster. Technique 2 drops the remainder
of the sequence of events when its length is not a multiple of L, therefore the
second problem mentioned remains.

To solve it, we have introduced techniques 3 and 4. They are similar to tech-
nique 2 but keep the events remaining at the end of the string as a stand-alone
pat tern or concatenated to the last generated pattern, respectively. Techniques
3 and 4 both result in 100% coverage of the test sets. As they are the ones that
were most promising during the experiments, we focus on them in the remain-
der of this paper. Note that some of the patterns are smaller or larger than the
specified size, and these can only match at the end of the process execution, as
they necessarily contain the end-of-process event.

3.2 Experimental Results

We have used three test sets in our experiments. The first test is solely based
on the FVT. The second test set includes additional information on tools that
are used by ftp users, but are not in the testing of the ftp daemon per se. The
third data set is based on the recording of several hundred real user sessions.
The experimental results are presented for the second test set. The reference
table generated from the first set does not contain patterns for commands like
tar, which are used by normal users. Using the third set breaks the rule fixed in
the introduction of the paper (no user recording for training), thus this set has
only been used to evaluate the false negative rates obtained with our approach.

The output of the intrusion-detection system is shown in Fig. 4. Each line
reports the analysis for one process related to the ftp service.

8 Herv~ Debar et al.

INumber of INumber of IPercentage INumber of IAverage INumber of ILength of
l a u d i t l u n c o v e r e d I o f covered Ipatterns Isize of Igroups leach group
levents levents events

569
97
928
735
6
878
839
8
963
168
476
366

99.30 188
100.00 32
99.68 308
99.59 244
100.00 2
99.09 290
99.52 278
25.00 1
99.79 320
93.81 58
99.79 158
99,18 121

Ipattern

3 . 0 1
3 . 0 3
3 . 0 0
3 . 0 0
3 . 0 0
3 . 0 0
3 . 0 0
2 . 0 0
3 . 0 0
3 . 0 2
3 . 0 1
3 . 0 0

1 1 1 1

111
111

IIiiiiii
iiii
6
2
II
1
IIi

Fig. 4. Output of the intrusion-detection system

Table 1 shows the results of the experiments to monitor our ftp server un-
der various conditions, using the intrusion-detection system loaded with several
reference tables. The first column identifies the experiment. The second column
gives the number of audit events in the experiment. The third column indicates
the two parameters corresponding to the reference table used in the intrusion-
detection system, t denotes the generation technique (3 or 4) and s the size of the
patterns (2, 3 and 4). The fourth column gives the overall number of uncovered
characters. The fifth column gives the number of patterns used for the coverage.
The sixth column gives the average size of patterns, 3 and the seventh column
indicates the number of false alarms triggered by the intrusion-detection system.

Table 1 shows that our intrusion-detection system has the potential to per-
form well without generating false alarms. Indeed, for patterns of length 2, in-
dependent of the technique used (3 or 4), the intrusion-detection system does
not generate false alarms. For patterns of length 4, independent of the tech-
nique used, the intrusion-detection system generates false alarms. For patterns
of length 3, the generation of false alarms is dependent on the technique used
for the generation. With technique 3, which introduces more patterns but also
more freedom (some patterns can be smaller than the required length of 3),
the intrusion-detection system does not generate false alarms, whereas it will
generate false alarms if technique 4 is used.

It is also worth mentioning that if we use the third test set, which is closely
based on user-behavior observations, instead of the second one, we observe no
false alarms for any of the combinations (pattern size, technique). However,
using user-generated data to train the intrusion-detection system breaches the
requirements expressed in the introduction.

3 This value is truncated after the second decimal.

Fixed vs. Variable-Length Pa t t e rns for Suspicious Behavior De tec t ion 9

T a b l e 1. Expe r imen ta l results for normal user sessions

Simulat ion
descript ion

Anonymous user
sessions

Normal user
sessions

not using
"site exec"

Normal
user

sessions

Sequence of all
available user

s imulat ions

Simulat ion of
user ac t iv i ty

on loaded
ftp server

Number Technique N u m b e r of
of audit and uncovered
events size events

6067 t - - 3 , s = 2 2
t = 3 , s = 3 79
t = 3, s -- 4 180
t = 4 , s = 2 2
t -- 4, s = 3 82
t -- 4, s -- 4 186

19439 t = 3 , s = 2 9
t -- 3, s = 3 108
t = 3, s = 4 257
t = 4, s = 2 10
t -- 4, s -- 3 116
t -- 4, s ---- 4 264

20135 t - - 3 , s - - 2 9
t = 3, s -- 3 108
t = 3, s = 4! 257
t = 4, s = 21 10
t = 4, s = 3 116
t = 4, s = 41 264

26094 t = 3 , s = 2 11
t 3, s ---- 3 199
t ---- 3, s = 4 444
t ----- 4, s = 2i 12
t ---- 4, s = 3 213
t---- 4, s = 41 511

26148 t----3, s = 2 1 11
t = 3, s -= 3 185
t ---- 3, s = 4 437
t = 4, s ---- 2 12
t = 4, s = 3 i 196
t = 4, s = 4 450

N u m b e r of Average Number
pa t te rns size of of false
required pa t t e rns a larms

3028 2.00 0
1994 3.00 0
1477 3.99 3
3013 2.01 0
1983 3.02 0
1455 4.04 3
9705 2.00 0
6443 3.00 0
4802 3.99 1
9685 2.01 0
6416 3.01 0
4769 4.02 1
10052 2.00 0
6675 3.00 0
4978 3.99 1
10025 2.01 0
6643 3.01 0
4936 4.03 1
13029 2.00 0
8621 3.00 0
6431 3.99 4
12985 2.01 0
8586 3.01 0
6362 4.02 4
13053 2.00 0
8652 3.00 0
6440 3.99 4
13015 2.01 0
8611 3.01 0
6380 4.03 4

To e v a l u a t e t h e r isk o f n o t d e t e c t i n g an a t t a c k , 4 T a b l e 2 shows t h e n u m b e r

o f va l id s equences o f s ix a u d i t e v e n t s t h a t c a n be c r e a t e d o u t o f t h e t a b l e (six

is t h e r e b e c a u s e o u r T = 7). T h i s is t h e m o s t o b v i o u s m e a s u r e , b u t i t does n o t

a c c o u n t for t h e ful l r isk, as a n a t t a c k c o u l d b e t h e c o m b i n a t i o n o f l e g i t i m a t e

s e q u e n c e s w i t h sho r t i l legal ones . T h e t a b l e c l ea r ly shows t h a t a s m a l l i nc rease

in t h e l e n g t h o f t h e p a t t e r n d r a m a t i c a l l y r e d u c e s t h e deg rees o f f r e e d o m in t h e

t a b l e , a n d we c o n s i d e r th i s a v e r y i m p o r t a n t r e su l t . Also , t h e t e c h n i q u e used t o

4 By this, we denote the possibil i ty of running an a t tack tha t would create a new
sequence of audit events wi thou t being detected. This is possible if the new sequence
consists of subsequences tha t are valid, i.e. tha t are present in the reference table.

10 Hervd Debar et al.

Table 2. Statistics on fixed-length tables

Technique Size of Size of
and size table patterns

t--3, s=2 87 {1,2}
it .- 3, s = 3 114 {1 ,2 ,3}
t = 3 , s = 4 152
i t = 4 , s = 2 86 {2, 3}
t-----4, s = 3 113 {3, 4, 5}
t----4, s----4 147

Number oflegitimate
combinations oflength < T(6)

1142100
11559

{1, 2, 3, 4} 59O
456456

9905
{4, 5, 6, 7} 143

generate the pat terns has a dramat ic impact on the number of combinations,
as small pa t te rns (typically of length 1, potential ly generated by the use of
technique 3) significantly increase the probabil i ty of covering attacks, i.e., of not
detecting them.

We have also carried out a number of at tacks against our ftp server to validate
our approach. Table 3 shows our experimentat ion results for nine attacks. An X
in the column indicates tha t the at tack has been detected.

Table 3 reveals tha t three at tacks pose a problem to the intrusion-detection
system, but for very different reasons.

The "put rhosts" a t tack consists of put t ing a .rhosts file in the home direc-
tory of the ftp user. This vulnerability results from a misconfiguration of the
ftp service because this directory should obviously not be world writable. Actu-
ally, the "put forward" and the "put rhosts" a t tacks use the same vulnerability,
except tha t one of them puts a .forward file, and the other one a .rhosts. The
first one is detected because our a t tack script activates the a t tack by sending
a mail to the ftp user, thus triggering the execution of the .forward file by the
sendmail daemon. The second at tack is not triggered, because our at tack script
does not log on to the at tacked machine. Any login a t t empt would immediately

Table 3. Experimental results for attack detection

Attack description [t=3, s=2[t=3, s=3[t----3, s=4]t=4, s=21t--4 , s=3[t=4, s=41
put forward X X X X X X

put rhost
site copy X X X X X X

site exec copy ftpd X X X X X X
site exec copy ls X X X X X X

site exec ftpbug ftpd X X X X X X
tar exec copy ffpd X

tar exec copy ls X X X X
tar exec ftpbug ftpd X X X X X X

tar exec ftpbug ls X X X X X X

Fixed vs. Variable-Length Patterns for Suspicious Behavior Detection 11

be detected, as a shell would be spawned for the ftp user, and this behavior does
not belong to the reference data set.

The two "tar exec copy" attacks use the option of GNU tar to specify a
compression program that will be used by tar to uncompress the data before
extracting it. In our case, we have developed a Trojan horse that does no de-
compression, but cop ies /b in / sh t o / t m p / . s h as a setuid executable. This at tack
exploits the fact tha t some ftp daemons do not release their root privileges
quickly enough before forking other processes. Therefore the tar and the Trojan
horse both run as root and t h e / t m p / . s h is created suid root. Our Trojan horse
is compiled and saved under the name of either ls or]tpd (hence the code name
of the attacks). The attacks are only detected by the more restrictive table of
patterns of length 4. We observe that the patterns modeling the normal behavior
of an ls process in our reference table are more restrictive than those modeling
#pd, as the masquerading of our at tack program under the process name "Is"
is detected by (t = 4, s = 3) but not the masquerading under the process name
"ftpd" with the same pair (t = 4, s = 3).

This second case also highlights one of the difficulties of this intrusion-
detection technique: the reference data set must be truly restrictive and ex-
haustive, so that the pat terns can faithfully represent the information. In our
case, tar is not a command that is tested by the test suites we use to generate
the reference data set, as it is not considered to be strictly related to ftpd. We
have added some examples of usage of the tar command to our reference data
set, but forking commands is a legitimate behavior of the tar command, and
both the ftpd and ls pat terns cover the execution of our Trojan horse. Lowering
the threshold L would improve detection using the smaller reference tables, but
it would also increase the false alarm rate.

4 G e n e r a t i n g V a r i a b l e - L e n g t h P a t t e r n s

4.1 Rationale for Variable-Length Patterns

The fixed-length pat terns approach yields interesting results, but a careful look
at the sequence of audit events shows that there are very long subsequences
which repeat themselves frequently. For example, more than 50% of the process
images we have obtained start with the same string. This string contains 40 au-
dit events. Therefore, having these very long sequences would bet ter represent
our data. This is intuitively correlated by the fact that the ftp daemon answers
to commands given by the user, and that each command can probably be rep-
resented by a (set of) long sequence(s) of audit events. Therefore, having the
capability to extract variable-length patterns from our da ta makes sense [8].

However, we also are looking for an automated approach. Manual pat tern
extraction might be feasible for small-scale experiments, but is very time con-
suming. Therefore, we have looked for a method that will allow us to generate
variable-length patterns.

12 Herv6 Debar et al.

4.2 D e s c r i p t i o n o f t h e P a t t e r n - G e n e r a t i o n T e c h n i q u e

A block diagram of the variable-length pat tern generator is shown in Fig. 5. It
consists of a suffix-tree constructor, a pat tern pruner, and a pat tern selector.
The suffix-tree constructor processes the sample of user behavior as a sequence
of symbols, i.e., a string to generate its suffix tree. The well-known suffix-tree
structure is a dictionary of all substrings in the string [10]. An example of a
string and its corresponding suffix tree are given in Fig. 6.

SUFFIX TREE] -] PATTERN] - I PATTERN
CONSTRUCTOR] Suffix - I . , PR UNER I Pattern-I SELECTOR

Tree Tree

Fig. 5. Variable-length pattern generation

I
[Reduced

Tree

Sample of normal behavior: ACABACBDBABD$

ACBDBABD$

~ACBDBABD$
~---~BDBABD$

.~ ^ 2 f BD$
1 2 ~ C B D B A B D $

~ ABDS

(a) Suffix tree

B 2

C 2

12

B 2

C 2

12

(b) Pattern tree (c) Reduced tree

Fig. 6. Pattern extraction

The suffix tree initially consists of only a root. Then all suffixes of the sample
string are added one by one until the complete suffix tree is obtained. Note
that a "$", representing an end delimiter, is added to the end of the string to
ensure that the suffix tree contains one leaf corresponding to each suffix. Every

Fixed vs. Variable-Length Patterns for Suspicious Behavior Detection 13

node corresponds to the substring represented by the symbols on the path from
the root to that node. The number next to the node represents the number of
occurrences of the substring in the sample string.

The pat tern pruner prunes the suffix tree in order to generate a tree, referred
to as a pattern tree. The pruning is done based on the pruning factor, which is
a real number between 0 and 1. This factor is multiplied by the length of the
sample of user behavior to obtain a lower limit on the occurrences of patterns.
Every pat tern with a number of occurrences less than this minimum is clipped,
i.e., all its outgoing branches are removed. Fig. 6b shows the pat tern tree when
the suffix tree is pruned with a pruning factor of 3/12. The number of occurrences
of each pat tern in the sample string is indicated next to the node corresponding
to that pattern. As the branching factor is increased, the suffix tree is pruned
more and, hence, the pat tern tree contains fewer and shorter patterns. We can
use this flexibility to t ry different sets of pat terns and choose the one that results
in the most satisfactory detector performance.

From the set of pruned patterns the selector removes those patterns that are
not required for covering the sample of user behavior. In our example, patterns
AB, AC, BA, BD in the pat tern tree in Fig. 6c are sufficient to cover the sample
of user behavior; pat terns C, D are not needed. The selector identifies the needed
patterns by processing the sample with a pat tern matcher identical to that of
the detector. First, it loads the matcher with the set of the pruned-pattern
tree and sets all the nodes to not marked. It then performs matching on the
sample. For every matched-pat tern event generated by the matcher, it marks
the corresponding pat tern in the pruned-pat tern tree. After the entire sample
has been processed, the marked patterns are selected as the set of patterns to
be used by the detector. Note that currently the matcher used here is different
from and much simpler than the matcher of the intrusion-detection system.

4.3 Experimental Results

Using the second test set, we have built three reference tables of patterns. The
first reference table contains all the possible sequences extracted from the pattern
tree, 5 denoted all patterns in Table 4. The second reference table contains only
the sequences going from the root to the leaf in the pat tern tree, 6 denoted leaf
patterns in Table 4. The last one contains only the sequences going from the
root to the leaf in the reduced tree 7 (see Fig. 6c). The statistics for the reference
tables are given in Table 4, according to both the kind of reference table and
the pruning factor used in the tree generation. The information still has to be
compared with the complete number of combinations that we can derive from all
the registered pairs (application, audit event) in our intrusion-detection system,
which gives 562 �9 554 combinations s.

s A, AB, AC, B, BA, BD, C~ D in the example in Fig. 6.
6 AB, AC, BA, BD, C, D in the example in Fig. 6.
7 AB, AC, BA, BD in the example in Fig. 6
s In our experiments, we have observed 55 different pairs (audit event, process name);

two fictitious events have been added to represent the beginning and end of a process.

14 Herr@ Debar et al.

Table 4. Statistics on variable-length tables

Reference table pize of table

All patterns
Leaf patterns

Seiected patterns
Leaf patterns

Selected patterns
Leaf patterns

87
82
51
146
74
2i5

Pruning factor

0.1
0.1
0.1
0.05

Number of legitimate
combinations of length < T(6)

0.05

0.02 I
0.02

> 24 * 22 ~
> 21 * 19 ~

> 13 * 12 ~

> 17 * 165
> 12 �9 115
> 16 * 14 ~

Selected patterns 80 > 12 �9 115

These reference tables actually contain patterns of length 1 to 50. This ap-
proach identifies the long sequences we found by browsing the data sets. However,
they are actually less restrictive that the ones obtained with fixed-length pat-
terns, owing to the presence of very small patterns. This unexpected result is
a consequence of the presence of numerous pat terns of length one, along with
much longer patterns, in the table. This is the reason we are now working to
improve the variable-length pat tern tables by introducing a lower limit for the
size of the patterns. Lowering the pruning factor results in longer patterns, but
the very small ones are still required to obtain a good match, thus the number
of legitimate combinations is still very large.

We have experimented with these three tables on the normal user behavior,
and found that they also do not generate false alarms. Concerning the attacks,
we obtain the same results as in the previous section, i.e., the ".rhosts" and "tar
exec copy" attacks are not detected.

5 C o n c l u s i o n a n d F u t u r e W o r k

In this paper, we have proposed two different families of methods, fixed- vs.
variable-length pat tern generation, to generate tables of pat terns that model
the normal behavior of a process. We have also proposed a new paradigm to
detect intrusions based on the length of uncovered sequences and relying on a
specific pat tern-matching algorithm.

Based on the results of the experiments run on our testbed, we have shown
that the appeal of the new paradigm for both families of pat terns (fixed length
and variable length) is that it minimizes the false negative alarm rate. We have
explained the limitation of the fixed-length pat tern approach, namely its in-
ability to represent long meaningful substrings. We have defined a new family of
methods based on a suffix-tree representation to obtain variable-length patterns.
Preliminary results exhibit their ability to detect real intrusions, but a detailed
analysis indicates that they are also more prone to issue false alarms.

Further work will concentrate on enhancing the algorithm for variable-length
generation of pat terns in order to reduce the risk of obtaining false positive

Fixed vs. Variable-Length Patterns for Suspicious Behavior Detection 15

alarms while keeping the good results regarding the true positive rate. Another
proposed enhancement is to associate frequencies with the patterns, to customize
the intrusion-detection patterns locally by flagging the infrequent use of regis-
tered patterns.

References

1. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-Nonself Discrimination.
In: Proceedings of the 1994 IEEE Symposium on Research in SeCurity and Privacy.
IEEE Computer Society Press, Los Alamitos, CA (1994) 202-212.

2. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longsta.ff, T.A.: A Sense of Self for Unix
Processes. In: Proceedings of the 1996 IEEE Symposium on Research in Security
and Privacy. IEEE Computer Society Press, Los Alamitos, CA (1996) 120-128.

3. D'haeseleer, P., Forrest, S., Helman, P.: An Immunological Approach to Change
Detection: Algorithms, Analysis, and Implications. In: Proceedings of the 1996
IEEE Symposium on Research in Security and Privacy. IEEE Computer Society
Press, Los Alamitos, CA (1996) 110-119.

4. Forrest, S., Hofmeyr, S.A., Somayaji. A.: Computer Immunology. Commun. ACM
40 (1997) 88-96.

5. Kosoresow, A.P., Hofmeyr. S.A.: Intrusion Detection via System Call Traces. IEEE
Software 14(5) (1997) 35-42.

6. Esmalli, M., Safavi-Naini, R., Pieprzyk, J.: Computer Intrusion Detection: A Com-
parative Survey. Technical Report 95-07, Center for Computer Security Research,
University of Wollongong, Wollongong, NSW 2522, Australia (May 1995).

7. Debar, H., Dacier, M., Wespi, A.: Reference Audit Information Generation for
Intrusion Detection Systems. In: Posch, R., Papp, G. (eds).: Information Systems
Security, Proceedings of the 14th International Information Security Conference
(IFIP SEC'98), Vienna, Austria, and Budapest, Hungary, Aug. 31-Sept. 4, 1998
(in press).

8. Teng, H.S., Chen, K., Lu, S. C-Y: Adaptive Real-Time Anomaly Detection Using
Inductively Generated Sequential Patterns. In: Proceedings of the IEEE Sympo-
sium on Research in Security and Privacy. IEEE Computer Society Press, Los
Alamitos, CA (1990) 278-284.

9. Debar, H., Dacier, M., Wespi, A., Lampart. S.: A Workbench for Intrusion De-
tection Systems. IBM Research Report RZ 2998, IBM Research Division, Zurich
Research Laboratory, 8803 Rfischlikon, Switzerland (1998).
Stephen. G.A.: String Searching Algorithms. World Scientific, Singapore (1994). 10.

