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Abstract. Basic Match Schedules are important for constructing sports timeta- 
bles. Firstly these schedules guarantee the fairness of the sports competitions 
and secondly they reduce the complexity of the problem. This paper presents an 
approach to the problem of finding Basic Match Schedules for sports competi- 
tions. The approach is clarified by applying it to the Dutch volleyball competi- 
tion. By using graph representation and theory this approach has the potential 
to classify sports competitions and to build libraries with Basic Match Sched- 
ules for each class of sports competitions. As an example we present an over- 
view of some Basic Match Schedules for the volleyball competition. 

1 Introduction 

Constructing sports timetables used to be a task for volunteers. These volunteers used 
their own approaches and had to face just a few constraints. This situation is changing. 
Sport leagues are organized more professionally and more commercial interests are 
involved. For this reason, sport leagues are demanding structural methods to construct 
their timetables. 

Constructing sports timetables is a complex task. Constraints are often closely re- 
lated to each other. Above all, many potential timetables have to be checked in most 
cases. By using computers this can be performed more accurately. Some examples of 
computerized timetabling can be found in [ 1 ] or [ 10]. 

To handle the complexity it is common practice to decompose the construction of 
sports timetables. This construction is usually decomposed in two phase's [5]. In the 
first phase a Basic Match Schedule (BMS) is constructed. A BMS determines, for 
each competition round, the matches and groups the teams have to play in and thus 
gives the technical outline of the specified sports competition. In the second phase 
individual teams are assigned to the matches and groups of  the constructed BMS. In 
this phase constraints connected to the individual teams are taken into account. Each 
phase needs a specific approach. 
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In this paper we will focus on the construction of  Basic Match Schedules for the 
Dutch volleyball league. In Section 2 we present the characteristics of  the Dutch vol- 
leyball competition. Section 3 presents the general approach used to fred Basic Match 
Schedules for the volleyball competition. The execution of  this approach is presented 
in Section 4. Section 5 concludes the paper and indicates how the approach can be 
used for the classification of  all sports competitions. 

2 The Dutch Volleyball Competition as Example 

A volleyball competition consists of  a number of sport teams competing with each 
other. The volleyball competition is subjected to competition rules and external 
wishes. The competition rules guarantee the fairness of  the competition. The external 
wishes guarantee more or less the practicability of the competition and are focused on 
specific teams. 

The following rules and wishes apply for the Dutch volleyball competition [11]: 

Competition rules 
1. Each team plays against two opponents in one group in each round. 
2. The group sizes are fixed and are the same in each round. 
3. The competition consists of  two halves. In each half the teams play once against 

each other. 
4. The second competition half is a copy of  the first competition half. 

The group structure is based on the fact that in a round a group of teams meets in a 
specific sport venue to play their matches. 

Possible external wishes 
1. Two teams do not want to play against each other in a specific round. 
2. A specific team wants to play in a specific round close to home. 

The number of external wishes tends to increase every year. The wishes expressed 
above are examples of the vast amount of possible external wishes. 

In the following Sections we show how to construct a Basic Match Schedule for the 
described volleyball competition. 

3 Construction of Basic Match Schedules 

First we present a definition for a Basic Match Schedule. 

Definition 3.1 
A Basic Match Schedule (BMS) determines for each competition round the matches 
and groups the teams have to play in. A Basic Match Schedule is denoted as a four 
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dimensional matrix W, where W, ykt defines the opponent k for team i in roundj  played 
in group l. 

Table 3.1. Example of BMS for round 1 and group 1 

4 teams, 1 round and 1 group (W/lkl) 
Team Opponent 1 t~- l }  
1 2 
2 1 
3 4 
4 3 

Opponent 2 Ik=-2) 
3 

2 

Starting from the Dutch volleyball competition description, we use a three-step ap- 
proach to reach a Basic Match Schedule. This approach is depicted in Figure 3.1. 

Start Result 1 Result 2 Final Result 

#teams+ S t q ~ l  Craph + S t e p 2  

I competition rules + "7 colouring 
....... extoaaal wishes rcxluireanea~ r 

colotred ]Step3 [ Basic 
Match 

graph l "-1 Schedule 

Figure 3.1: Three-step approach to the construction of Basic Match Schedule. 

This approach starts with an instance of  one half of  the volleyball competition as de- 
freed in Section 2. The second half is copied from the second half as stated in Compe- 
tition Rule 4. For the Basic Match Schedules the external wishes are ignored. Only the 
competition rules are taken into account. 

Step 1: Represent the competition in graph 
In Step 1 the teams and matches are represented in a graph. Each team is represented 
in a graph by a vertex. Each match between two teams can be represented by an edge 
between these vertices. The advantage of  this graph is the compact representation of 
teams and matches. Graph models are already used for other timetabling problems. 
For an example, see [8] or [9]. 

Step 2: Represent the rounds in a graph 
By colouring the edges of  the graph constructed in Step 1 the rounds for the matches 
can be indicated. A specific round is represented by one colour. We can assign each 
edge to one of  these colours. This colour indicates the round of the match related to 
the edge. Depending on the characteristics of  a sport competition (e.g. group sizes) 
certain graph theoretic properties will hold for the graph colouring. These properties 
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Can be used to prove that a BMS can be constructed or can help to construct a BMS. 

Step 3: coloured graph to BMS 
The resulting total colouring of  Step 2 represents a BMS. 

This approach is clarified by applying it to the volleyball competition. 

4 Results for Volleyball  

4.1 Odd number of teams 

Step 1 
If  we have a volleyball competition with an odd number 2m+l of  teams (where m is 
an integer), the resulting graph will be a complete graph with 2m+l nodes denoted as 
K2m§ The completeness of the graph results from Competition Rule 3: Each team is 
connected only once with all other teams. Figure 4.1 shows the resulting graph for a 
volleyball competition with 7 teams. 

Figure 4.1. complete graph for 7 teams 

Step 2 
The edges of  the complete graph resulting from Step 1 must be coloured with m col- 
ours, each colour representing one round. Competition Rules 1 and 2 do not allow just 
any colouring. A graph induced by one colour must be spanning and 2-regular. This 
means that all vertices must be connected with two other vertices by two edges of that 
specific colour. A graph with such properties is an example of  a 2-factor. In general a 
2-factor of a graph is defined as a 2-regular spanning subgraph. Each group o fk  teams 
must be represented in the 2-factor by a set of  cycles spanning k vertices. Note that for 
k < 6 this set of  cycles is always reduced to one single cycle. The results in this paper 
are based on single cycles for all k. 
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We show that only for a competition with an odd number of  teams it is possible to 
fred such a colouring. 

Theorem 4.1 
IfKn can be coloured resulting in edge-disjunct isomorphic 2-factors, then n is odd. 

hoof 
Let Fk be a 2-factor for K,. Then the number of  edges in Fk is n. The total number of  
edges in K, is n(n-1)/2, so (n-l)/2 edge-disjunct 2-factors can be coloured. This 
proves that n must be odd. 

In Figure 4.2 the fat lines indicate one round in the graph of Figure 4.1. One group of 
four teams and one group of  three teams are represented. 

Figure 4.2. Round with group sizes 4 and 3. 

We formulate the problem of  constructing a BMS for sport competitions with an odd 
number of  teams as the graph theoretic Oberwolfach problem. 

Defin#ion 4.1 
The Oberwolfach problem is defined as f'mding for a K2m+l a splitting of  the edges in 
m coloured edge-disjunct isomorphic 2-factors Fk. Each Fk consists of  vertex disjunct 
cycles Ckl, C~ .... C~ where kl + k2 +. .  + ks = 2m + 1, kl to ks are the group sizes. The 
problem is denoted as OP(kl,..ks). 

The number of  rounds is equal to m. The number of  teams in group i is equal to k, 
(i=l,..,s). For some m, a construction of  these 2-factors is known [2]; for some m it is 
known that no construction exists. As an example we will shbw an unpublished con- 
struction of  2-factors for 0P(4,4, 5) in a structural way. 

We use lemmas from [4]. These lemmas show how permutations of  vertices can be 
used to fred a union of disjunctive cycles for classes of  complete graphs. 
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Notat ions:  
i: Integer 

: Permutation i o f  vertices 
= (1,2,3,4)(5) means vertex 1 is permuted to vertex 2, vertex 2 is permuted to ver- 

tex 3, vertex 3 is permuted to vertex 4, vertex 4 is permuted to vertex 1 and vertex 
5 is permuted to vertex 5. 

C,: Cycle of  i vertices 
K,: Complete graph on i vertices 
K,.j: Complete bipartite graph with two independent sets o f  i vertices and j vertices: 

All possible edges between the sets o f  vertices are present, within the sets o f  ver- 
tices no edges are present. 

L e m m a  4.1. For all m " 

m-1 

KRm+l = Uo'~ (C2m+ l ) 
h=O 

with C2m+1 = (1;2; 2m; 3; 2m-l ;  4; 2m-1;5; ... ;m+3; m; m+2; m+l ;  2m+l )  
o-~ = (1,2,. . ,2m)(2m+l) 

In Figure 4.3 and Figure 4.4 results o f  Lemma 4.1 are depicted for m = 2, Cs = 
(1 ;2;4;3;5) and o-~ = (1,2,3,4)(5). 

Figure 4.3. a~ ~ (C5) = C5 Figure 4.4. al 1 (C5) 
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Lemma 4.2. For all m,n : 

n-1 
1 n K..,~ (Km,,~U...U~:,.,) 

y=O 

With o'2 = (1,m+l,2m+l,.. ,(n -1)m+l)(2,m+2,..,(n-1)m+l)..(m,2m,..,nm)(nm+l)..(2nm) 

' A' B' and Km,m :={{a'b}la~ , b e  } 
with A' := {(i- 1)m+ 1,..,im}, B' := {nm+x~c,A'} 

Lemma 4.3. For all m,n : 

2n-2 

Km(2n-1)+l = U k(K UKm,ml I I  I l K  n-1 "~ o -3 .__  m+l v., . .  ,,., m.mJ 
k=0 

With K,,+I := {1,2n,2(2n-1)+l,3(2n-1)+l,..,(m-1)(2n-1)+l, m(2n-1)+l)}, 
For Kin,,,', {e'l,e'2,..,e'2,,,} is the set of vertices, 
where e' 2k-1 := (k-1)(2n-1)+i+l, 
e'2k: = k(2n-1)-i+l, 
and {{e'v, e'a,}lv+~t-l(mod 2)} is the set of edges 
o-~ = (1,2,. .,2n-1)( 2n,. .,2( 2n-1) ). ..( ( m-1)( 2n-1) + 1,..,m( 2n-1) )( m( 2n-1)+ l ). 

With the lemma's it can be verified that 

~:~, = U o-~((U o-i(co) u (U o-~(~.~ u K~.~))) 
j=0 1=0 k=0 

with 1':2,2 isomorphic to C4 
From this it follows that K13 is the union of  the following cycles: 

(I;4;7;10;13) (3;5;9;11) (6;2;12;8) ( = F 3  
(4;10;1;7;13) (6;5;12;11) (3;2;9;8) (= F2) 
(2;5;8;11;13) (1;6;7;12) (4;3;10;9) (= F3) 
(5;11;2;8;13) (4;6;10;12) (1;3;7;9) (= F4) 
(3;6;9;12;13) (2;4;8;10) (5;1;11;7) (=Fs) 
(6;12;3;9;13) (5;4;11;10) (2;1;8;7) ( = F  e) 
Each row represents one 2-factor, so KI~ is the union of six 2-factors. 

In Table 4.1 all known constructions are listed for K, (n < 16), with n odd. 
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Table 4.1. Overview of constructions for the Oberwolfach problem 

Number of 
teams 

7 

11 

13 

15 

Group sizes 

3,4 
3,3,3 
4,5 

3,3,5 
5,6 

3,4,4 
6,7 
5,8 
4,9 

3,10 
4,4,5 
3,5,5 
3,4,6 
3,3,7 

3,3,3,4 
all combina- 

tions 

Construction possible? 

~es 
yes 
no 

not known 
~/es 
yes 
~r 
~/es 
yes 

not known 
~es 

not known 
not known 

yes 
not known 

yes 

Reference 

[4] 
[3]/[4] 

[41 

[4] 
L 4] 
[41 
[4] 
[4] 

This paper 

[4] 

[4] 

Step 3 
As stated in Step 2 each coloured edge in the graph represents a match in a round and 
the extra graph properties guarantee the group sizes. This means that each construc- 
tion for the Oberwolfach problem can be translated to a BMS for a specific volleyball 
competition. 
As an example, Table 4.2 and Table 4.3 present two groups in the first round for 
OP(4,4,5), resulting from the 2-factors presented in Step 2. 

Table 4.2. Wak~ , BMS for round 1 and group 1 

Team Opponent 1 Opponent 2 
1 4 13 
4 1 7 
13 10 1 
7 10 4 
10 7 13 

Table 4.3. W~lk 2 , BMS for round 1 and group 2 

Team Opponent 1 Opponent 2 
2 6 12 
6 2 8 
12 8 2 
8 12 6 
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4.2 Even number of  teams 

Step 1 
I f  we have a volleyball competition with an even number of  teams, the resulting graph 
will be a complete graph with 2m nodes denoted as K2m. 

Step 2 
Following from the results of  Step 2, Paragraph 4.2 there is no colouring possible 
obeying all competition rules. To fmd a BMS for this specific competition with an 
even number of  teams we have to define slightly different competition rules. The 
rounds are divided into normal rounds and one intermediate round. In a normal round 
each team plays two matches against different opponents within a group. In the inter- 
mediate round each team plays only one match. After all normal rounds and the inter- 
mediate round each pair of  teams has encountered each other once. 

We will formulate the problem of constructing such a BMS as the problem to fred 
for a K2m a splitting of the edges in (2m-2)/2 coloured isomorphic edge-disjunct 2- 
factors Fk and a perfect matching. Each Fk consists of  vertex disjunct cycles Ckl, Ck2 .... 
C,~ where kl + k2 + .. + ks = 2m. The problem is denoted as KP(ki, k2,..,k~). 2m is equal 
to the number of  teams, k, (i=l,..s) are equal to the number of  teams in group 1'. The 
perfect matching corresponds to the intermediate round. 

It can be proved for a K2m that if  (n-2)/2 isomorphic edge-disjunct 2-factors exist, a 
perfect matching is left over. In Table 4.4 all known constructions are listed for K, (n 
< 16), with n even. 

Step 3 
Step 3 can be performed in the same way as Step 3 for an odd number of  teams. 

Table 4.4. Overview of constructions for the KP problem 

Number of teams Group sizes Construction possible? Reference 
6 3,3 no [3] 
8 4,4 yes [7] 

3,5 unknown 
10 5,5 unknown 

3,4,3 yes [7] 
12 6,6 unknown 

5,7 unknown 
4,8 unknown 
3,9 unknown 

4,4,4 yes [7] 
3,4,5 unknown 
3,3,6 unknown 

3,3,3,3 no [3] 
14 all combina- unknown 

tions 
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5 Discussion and Conclusion 

The presented three-step approach makes it possible to fred Basic Match Schedules 
for the defined class of volleyball competition problems. These Basic Match Sched- 
ules are used successfully by the organizers of  the Dutch volleyball competition. In 
our opinion, this approach is applicable to many sports timetabling problems. 

In many sports competitions home and away patterns for the matches must be met 
and multiple matches between two teams have to be scheduled. In these cases, a di- 
rected graph model or a multi graph model can be explored as in Step 1. In Step 2 the 
graph properties have to be def'med. In our case of the volleyball competition, the 2- 
factor properties are used. Comparable results are expected for football competitions 
[5]. In this way, sports competitions can be divided into classes each with its own 
graph properties and results. Using these classes in libraries will allow quick con- 
struction of  Basic Match Schedules for new competitions. This will give timetable 
constructors more time to invest in the second phase of constructing sports timetables: 
Assigning individual teams to the Basic Match Schedules subjected to external wishes 
[6]. 

Future research will focus on the unknown constructions and on the analysis of  
other sports competitions. 
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