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Abstract

This paper considers ways in which a per-
son can cue and constrain an artificial agent’s
attention to salient features. In one exper-
iment, a person uses gestures to direct an
otherwise autonomous robot hand through a
known task. Each gesture instantiates the key
spatial and intentional features for the task at
that moment in time. In a second experiment,
which is work in progress, a person will use
speech and gesture to assist an “intelligent
room” in learning to recognize the objects in
its environment. In this case, the robot (the
room) will take both direction and correction
signals from the person and use them to tune
its feature saliency map and limit its search
space.

1 Introduction

The workshop precis asks, how can robotic technol-
ogy assist people? This paper considers an opposing
question, how can people assist robots? The topics are
complementary in a least one way: both benefit by re-
ducing the human-computer interface to its essentials.

A person rarely wants explicit control over all mo-
tor actions of the assistive agent, be it a wheelchair
or a manipulator. Indeed the person may be unable
to finely control the agent, regardless of volition. In-
stead, the person should have strategic control while
the agent governs its own tight-looped servo control.

Similarly, the person who assists an artificial agent
naturally limits supervision in both throughput and
bandwidth. No person is going to provide feedback on
each of 10,000 simulated trials, as is often required by
current machine learning techniques such as genetic
algorithms and reinforcement learning. Instead, one
must ask the person to provide a few key directives
that are otherwise beyond the cognitive capabilities of
the agent. Thus the overriding goal is to distill human
communication to the essential, or salient, features re-
quired by the agent.

*The work on teleassistance was conducted at the Uni-
versity of Rochester and supported by NSF and the Human
Science Frontiers Program. Research in the MIT Intelhgent
Room is supported by DARPA.
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Determining saliency is a significant problem in Al
To us, what’s so striking about a visual scene or a
physical force is, to an artificial agent, often indistin-
guishable from the rest of the sensorium. The difficulty
is compounded by context dependency: features that
predominate in one setting are often irrelevant to an-
other. The agent therefore could benefit greatly from
on-line human cues.

This paper considers ways in which a person can cue
and constrain an artificial agent’s attention to salient
features. In one experiment, a person uses gestures to
direct an otherwise autonomous robot hand through a
known task. Each gesture instantiates the key spatial
and intentional features for the task at that moment
in time. In a second experiment, which is work in
progress, a person will use speech and gesture to assist
an “intelligent room” in learning to recognize the ob-
jects in its environment. In this case, the robot (the
room) will take both direction and correction signals
from the person and use them to tune its saliency map
and limit its search space.

The work proposed here limits consideration to fea-
tures that are rather low-level: color, shape, direction,
etc. These features are variables in cognition at the
embodiment level. The research may have application
to areas such as prosthetics, but it is worth noting that
assistive technology certainly seeks higher-level control
as well.

2 Feature extraction in
sequential cognitive
operations

Embodiment

To describe phenomena that occur at different time
scales, computational models of the brain necessarily
must incorporate different levels of abstraction. We
have argued that at time scales of approximately one-
third of a second, orienting movements of the body
play a crucial role in cognition and form a useful com-
putational level [Ballard, Hayhoe, Pook & Rao, 1996].
This level is more abstract than that used to capture
neural phenomena yet is framed at a level of abstrac-
tion below that traditionally used to study high-level
cognitive processes such as reading. We term this level



the embodiment level. At the embodiment level, the
constraints of the physical system determine the nature
of cognitive operations. In humans, we find evidence
that the natural sequentiality of body movements can
be matched to the natural computational economies
of sequential decision systems, at time scales of about
one-third second [Kowler & Anton, 1987] , [Ballard
et al., 1992]. This is accomplished through a system
of implicit reference termed deictic, whereby pointing
movements are used to bind objects in the world to
cognitive programs.

Deictic reference in humans

Ballard, Hayhoe, and Pelz propose that only those fea-
tures that are key to the particular cognitive operation
are extracted at each deictic binding. They test eye
movements in a series of block copying experiments.
The subjects are asked to assemble a set of colored
blocks to match a pre-assembled configuration. Most
subjects look twice at each block to be copied, once
before selecting a new block and again before placing
the new block in the proper configuration. They posit
that the subject perceives the color of the block on the
first saccade and the location on the second, rather
than extract both features simultaneously. The eye
movement is a deictic pointer that binds a cognitive
behavior, such as color detection, to a specific target.

Eye fixation is a common deictic device to bind per-
ceptual and motor actions to a specific area or object.
Similarly, body position creates a reference for motor
actions [Pelz et al., 1994]. Additionally, bi-manual an-
imals often use use one hand as a vise and the other
for dexterous manipulation [Guiard, 1987]. The vise
hand may mark a reference frame allowing dexterous
motions to be made relative to that frame.

Deictic reference in robots

In robotics, deictic variables can define relative co-
ordinate frames for successive motor behaviors [Agre
& Chapman 1987]). Such variables can avoid world-
centered geometry that varies with robot movement.
To open a door, for instance, looking at the door-
knob defines a relative servo target. [Crisman and
Clearly, 1994] demonstrate the computational advan-
tage of target-centered reference frames for mobile
robot navigation. Hand and body position also provide
a relative reference frame. Since morphology deter-
mines much of how hands are used, the domain knowl-
edge inherent in the shape and frame position can be
exploited. The features salient to the task (direction,
force) can be extracted and interpreted within the con-
straints of the reference frame.

3 Example 1: Deictic gestures
for robot control

Understanding the deictic references used to bind cog-
nitive programs gives us a starting model for hu-
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man/robot interaction. In this model, which we call
teleassistance [Pook and Ballard, 1994] the human pro-
vides the deictic references via hand gestures and an
otherwise autonomous robot carries out the motor pro-
grams. A gesture selects the next motor program to
perform and tunes it with hand-centered markers. This
illustrates a way of decoupling the human’s link be-
tween motor program and reflexes. Here the output
of the human operator is a deictic code for a motor
program that a robot then carries out. This allows the
study of the use and necessary properties of the deictic
code for situated, autonomous robot action.

The dual-control strategy of teleassistance combines
teleoperation and autonomous servo control to their
advantage. The use of a simple sign language helps
to alleviate many problems inherent to literal mas-
ter/slave teleoperation. Conversely, the integration
of global operator guidance and hand-centered coor-
dinate frames permits the servo routines to position
the robot in relative coordinates and perceive features
in the feedback within a constrained context, signifi-
cantly simplifying the computation and reducing the
need for detailed task models.

In these experiments the human operator wears a
data glove (an EXOS hand master) to communicate
the gestures, such as pointing to objects and adopting
a grasp preshape. Each sign indicates intention: e.g.,
reaching or grasping; and, where applicable, a spatial
context: e.g., the pointing axis or preshape frame. The
robot, a Utah/MIT hand on a Puma arm, acts under
local servo control within the proscribed contexts.

Opening a door

The gestural language is very simple. To assist a robot
to open a door requires only three signs: point, pre-
shape, and halt. Pointing to the door handle prompts
the robot to reach toward it and provides the axis along
which to reach. A finite state machine (FSM) for the
task specifies the flow of control (Figure 1). This em-
beds gesture recognition and motor response within the
overall task context.

Pointing and preshaping the hand create hand-
centered spatial frames. Pointing defines a relative
axis for subsequent motion. In the case of preshaping,
the relative frame attaches within the opposition space
[Arbib et al., 1985] of the robot fingers. For example, a
wrap grasp defines a coordinate system relative to the
palm. With adequate dexterity and compliance, sim-
ply flexing the robot fingers toward the origin of the
frame coupled with a force control loop suffices to form
a stable grasp. Since the motor action is bound to the
local context, the same grasping action can be applied
to different objects — a spatula, a mug, a doorknob ~
by changing the preshape.

The two salient features for each motor program in
this task are direction, specified by the hand signs, and
force, specified as a significant change in tension in any
of the finger joints. Force is perceived identically but



FSM for "Open a Door"

preshape . (GRASP
preshape
move along copy shape
hand X &orientation
contact move along
hand Z
contact \l, halt
. flex
Key: fingers
contact | halt
rotate about
. hand Z
gleg/rc,gc contact‘L halt
swing
set[vo open
routines \L
release
EXIT

Figure 1: A finite state machine (FSM) for opening
a door. The operator’s hand sign causes a transition
to the appropriate state and, from there, to the cor-
responding servo routines. The state determines the
motor program to execute. The deictic hand signs,
point and preshape, provide a spatial coordinate frame.
The routines servo on qualitative changes in joint posi-
tion error that signify a force contact. Each contact is
interpreted within the current context, e.g., bumping
the door or reaching the knob’s mechanical stop. No
special force model is needed. The operator can also
push the flow of control through the servo routines by
signaling the halt hand sign.
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Figure 2: Plots of the time that the human operator
(dark bars) and the autonomous robot routines (grey
bars) actively control the robot during each phase of
the task, under the three control strategies. The tele-
operator (top) must supervise 100% of the task; un-
der autonomous control (middle), the robot is fully in
charge but with limited strategic abilities; in teleassis-
tance (bottom) the operator supervises the robot only
25% of the time for this task. Once the hand is tele-
assisted to a position near the door handle, the robot
completes the task autonomously.



interpreted differently according to the motor program.
While reaching, force suggests that the door has been
reached, while turning a force is interpreted as contact
with the mechanical stop, i.e., the knob is fully turned.
The bound context permits the program to constrain
perception to the salient feature and to interpret it in
a dynamic way. No special model of the physics of the
interaction is needed.

Results

Figure 2 compares robot control by deictic gestures to
two other robot control strategies. The first is teleop-
eration, in which the human operator directly controls
all robot motion in a closed, real-time servo loop. The
second strategy is fully autonomous robots.

Teleoperation has improved error-handling func-
tions, as supplied by the human operator. However it
has three glaring disadvantages. First, it requires 100%
monitoring, since the operator is part of the low-level
feedback loops. Second, control is much slower ow-
ing to the delays introduced by putting a human in
the loop. Third, the robot is vulnerable to inaccurate
responses by the human, which are numerous under
significant communication latencies.

The autonomy strategy is faster than teleassistance,
but suffers by having little error-tolerance. Current
real-time robots cannot readily accommodate even
simple changes in their environment. If the door han-
dle is different the door-opening experiment fails.

In contrast, teleassistance, which models a layered
control structure that uses autonomous routines di-
rected by deictic gestures, is significantly faster than
teleoperation, only requires a fraction of the total task
time for executive control by the human operator, and
can better accommodate natural variations in tasks
than can the autonomous routines alone.

4 Example 2: Human cues for
object recognition

In teleassistance, economical human gestures bind the
robot to a local context. Within that momentary bind-
ing, the robot can readily extract and servo on the key
features needed to perform the task. All other features
in the sensorium can be disregarded or relegated to
lower-level controllers (e.g., a damped oscillator). But
how does the robot know which features are salient?
In the example above, the selection of features is hard-
coded in the motor program. This next, proposed ex-
periment looks at how a person could cue the robot to
the features that are salient to the current context.
This experiment is work in progress. The intent
is to consider linguistic and gestural phenomena in
human-computer interaction for the task of visual ob-
Ject recognition. The goal is to discern cues from
natural human input that advantageously constrain
computation as the computer learns to identify, la-
bel, and later recognize and locate objects in a room.

The method will exploit spoken phrases by associat-
ing syntactic and semantic features with visual fea-
tures of the object and its surroundings; it will con-
strain the visual attention to the area pointed to; and it
will extract additional delimiting features from iconic
gestures. The project addresses issues in linguistics,
human-computer interaction, machine learning, com-
puter vision, and gesture understanding.

The platform is the MIT AI Lab Intelligent Room
(for details see [Torrance 1995] or our web site at
http://ai.mit.edu/projects/hci). The room is an or-
dinary conference room equipped with multiple cam-
eras, microphones, various displays, a speech synthe-
sizer, and nine dedicated workstations. The room is
able to be aware of people, by means of visual tracking
and rudimentary gesture recognition, and to be com-
manded through speech, keyboard, pointing, or mouse.

Background

To recognize an object, computer vision algorithms
first analyze features in an image or set of camera
views. Which features are salient depends in part
on the object. The perception of rhythmic motion,
for instance, doesn’t help one identify a static object.
Saliency also depends on the immediate context. For
example, color perception is useful when searching for
a particular black chair among a roomful of red ones;
it is not helpful when all the chairs are black.

Human supervision

Research in computer vision has been successful in de-
signing algorithms that recognize particular features,
such as color or edges. Success is bounded, however,
by an inability to dynamically select which features are
relevant given the target object and context. One can
explore this boundary by including human supervisory
input during the recognition process. A person can pri-
oritize the feature search by means of natural speech
and gesture. Consider a sample scenario. A person
points and asks the room “What is that?” The room
agent scans the scene in the indicated direction and
looks for a predefined set of features. If the computer
is unable to detect an object or selects the wrong one,
the person can correct the search strategy by highlight-
ing the salient features verbally, for example by saying
“no, it’s black”.

The interaction establishes constraints on the com-
putational process in several ways. By pointing, the
person constrains the search area; the speech syntax
delimits an initial feature ordering; and the semantic
content highlights key features and provides an error
signal on the correctness of the match. Within the
momentary constraint system defined by the interac-
tion, the appropriate feature detection algorithms can
be applied selectively for the task of object recognition.

We will use this system to extend information query
to include a 3D interface. Previously, query systems
relied on keyboard input solely. More recently, there



has been work in integrating 2D spatial data in the
query, such as by selecting coordinates on a map with
a mouse or pointer. In this proposal, one can extend
the interface to include queries about physical objects
in a room. For example one might point to a VCR and
ask what it is and how to operate it.

Sample Object Recognition Scenario

1. LEARKNING
Person
Speech: "That is a VCR"
Gesture: Pointing
Computation
Speech analysis:
Analyze syntactic structure
Search for known object "VCR"
Store discourse context
Gesture analysis:
Circumscribe visual attention to the
direction pointed to
Visual processing:
Initialize visual feature map with
known or discerned parameters
Visual search within attention cone
Computer Output
Speech: Affirm or request clarification
Gesture: Highlight candidate object if
found

2. CORRECTION
Person
Speech: "No, it’s black" (or "bigger",
"to the left', etc.)
Gesture: Pointing or Iconic (e.g.,
describes object shape or size)
Computation
Speech analysis:
Analyze syntactic structure
Refer to discourse context
Gesture analysis:
Adjust attention to new direction
Recognize iconic gesture and extract
relevant spatial parameters
Visual processing:
Tune visual feature map with new
parameters
Repeat visual search
Computer Output
Speech: Affirm or request clarification
Gesture: Highlight candidate object

3. LEARNED
Person
Speech: "Right"
Computation
Extract other camera views
Store salient features
Label room contents database
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Computer Output
Spoken: affirm

4. RECALL
Person
Speech: "What is that?" "Where is the
VCR?"
Gesture: Pointing
Computation
Search labeled database for feature map
Visual search
Select instance nearest to the person
Computer Output
Spoken: affirm or request help
Gesture: Highlight candidate object

5. INFORMATION QUERY

Person
Speech: "How does this work?"
Gesture: Pointing

Computation
Match recognized image against database
template.

Computer Output
Visual and verbal instructions on use.

5 Conclusion

There is obvious application for human supervision
in assistive technology. Less obviously, it allows re-
searchers to consider the integration of existing tech-
nologies in more interesting and complex domains than
would be permitted if the computer had to operate au-
tonomously. For example, one can study the influence
of spoken cues on computer vision without a work-
ing model of the cognitive structure that prompts the
speech. What visual, oral, and gestural features are
important when? What are the essential cues needed
by reactive artificial agents? These questions go to-
ward designing communication interfaces for both the
disabled and the able-bodied.
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