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Abstract. Both normal and abnormal right ventricular (RV) wall mo- 
tion is not well understood. In this paper, we use data from tagged MRI 
images to perform the first 3D motion study of the entire right ven- 
tricle to date. Our technique is an adaptation of a physics-based de- 
formable modeling methodology that was successfully used on the left 
ventricle(LV). As opposed to the previous approach, currently we use 
segmented contours to generate the geometry, 1D tags for our input 
data (due to the thinner RV), and localized degrees of freedom (DOFs) 
with finite elements. Although we build a biventricular model, our results 
focus on method validation and visualizing clinically useful parameters 
that describe RV wall motion. 

1 I n t r o d u c t i o n  
Abnormal motion of the RV serves as an indicator of several types of heart  
disease, such as RV ischemia and hypertrophy [3]. However, there is no in-depth 
knowledge of the RV motion and its correlation to the various diseases. One 
reason that  researchers do not agree about the exact pumping mechanism of 
the normal RV may be regional variations in contraction patterns occuring at 
different phases of systole. Since studies have found that RV contraction varies 
with increases in pressure and volume, and ischemia [3], a method for accurately 
assessing RV wall motion can both answer questions into its normal function 
and can be used as an indicator of various diseases. 

The RV receives blood from the right atrium and pumps it into the pul- 
monary artery. It appears crescent-like in a cross-sectional view and, unlike the 
LV, is difficult to define with any parameterized 3D shape. The RV shares a 
septum with the LV, while its outer free wall is in mechanical contact with the 
pericardium and the lungs. The RV cavity can be conceptually separated into an 
inflow tract,  a highly-trabeculated apical portion, and a relatively smooth out- 
flow tract  [6] (Fig. 1). The 3ram-thick free wall is thin relative to the 7ram-thick 
LV free wall. This relative thinness and complex geometry make it difficult to 
capture RV wall motion using regular imaging modalities. 

This paper presents a new methodology for modeling and analyzing the RV 
shape and motion from MRI-tagged data. We make significant modifications to 
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Fig. 1. Schematic of right ventricular compartments 

the physics-based deformable modeling framework of [8, 12], which was applied 
to MRI tag intersections for LV wall motion reconstruction. At the currently 
available image resolution, a small number of tag point intersections fall within 
the normally thin-walled RV. In order to capture the full 3D motion, the new 
method uses different constraints to incorporate input data consisting of the 
entire lengths of 1D tags extracted from multi-view MRI-SPAMM images. Also, 
due to the complex shape of the RV, we cannot construct our initial model by 
fitting a deformable geometric primitive to the initial contour data. Instead, we 
build a deformable model of the biventricular geometry directly from the initial 
contours. Although this model includes both the right and left ventricles, we 
focus on the analysis of the RV in this paper. 

The initial geometric model is a volumetric finite element model (FEM) mesh 
that we fit to subsequent contour and tag data. Due to the complex RV geometry 
and motion, the analysis consists of using the maximum possible DOFs. Instead 
of lumping them into parameter functions as in [12], we use stiffness from finite 
elements to smooth the sparse input data which result from imaging the thin 
RV wall. However, in order to make our analysis clinically useful we convert the 
model's DOFs into equivalent lumped parameters such as scaling and twisting. 

In addition to the quantitative analysis, we use computer graphics techniques 
to visualize the reconstructed RV shape and motion by color mapping the distri- 
bution of derived parameters onto our model. Our preliminary results quantify 
previously documented knowledge of the RV motion and provide a more detailed 
motion analysis of the RV compared to previous methods. In addition, having a 
biventricular model opens the way for the quantitative study of inter-ventricular 
dependence and relative motion. 

2 R e l a t e d  W o r k  
Right ventricular wall motion has been studied invasively by implanting markers 
into small portions of the RV wall and using an imaging modality to track the 
motion of the markers [16, 4,18, 14]. While results from these techniques showed 
regional variations in contraction, questions remain about whether the invasive 
nature of these techniques affect contraction patterns [4]. Although, the MRI 
tagging method has provided a non-invasive method for studying heart wall 
motion, most of these studies have centered on the LV. Since the two-dimensional 
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(2D) images do not capture important through-plane motion, data from multiple 
views must be integrated by fitting a 3D model to the data [12, 19, 9]. To the 
best of our knowledge, the only work that has used entire tag lines (as opposed 
to tag intersections) is that of O'Dell,et al. [11]. These researchers developed 
a displacement field fitting technique which was used to fit an ellipsoidal finite 
element model to LV data. 

Up to now the only MRI tagging study of the RV free wall was performed by 
Young, et al. [20], who fit a surface model to intersections of mid-wall contours 
with the tags. In the past, RV geometry has been reconstructed from both CT 
and MR images as these technologies developed [10]. Integrated models for the 
RV-LV geometry have also been developed using tools from constructive solid 
geometry [13]. In addition, the right ventricutar free wall was modeled as a thin 
shell by fitting biquadratic surface patches [15]. 

3 Image Acquisition and Data Extraction 

Fig. 2. Mid-wall short-axis 1D tagged MR images at (a) beginning systole (b) mid- 
systole (c) end~systole. 

In order to capture the motion in the ventricular walls using MRI images, we 
use a 1D SPAMM (SPAtial Modulation of Magnetization) tagging technique [2]. 
This non-invasive technique produces a family of parallel tagging planes by using 
a sequence of non-selective radio frequency excitation separated by intervals of 
magnetic field gradient in the direction perpendicular to these planes prior to 
imaging. The intersection of these tagging planes with the imaging plane pro- 
duces dark stripes (Fig. 2) which represent actual tissue. Therefore, the initially 
straight lines deform as the heart contracts. Due to through-plane motion, the 
portion of the tag plane seen in an initial image may move out of the imaging 
plane and be replaced by the intersection of a different portion of the same tag 
plane with the imaging plane. Thus, the stripes only provide information about 
motion in the direction perpendicular to the initial tag plane and we need 3 
different views to capture the full 3D motion, e.g., 2 short axis views (one with 
horizontal and one with vertical stripes), and a long-axis view (Fig. 3). The fig- 
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ure depicts how each tag plane/image plane combination provides information 
about motion in mutually perpendicular directions. 
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Fig. 3. 1st row: Image and tag (dark) planes. 2nd row: 2D image planes with example 
of tag motion from initial (dark lines) to final (dashed lines) time. Highlighted arrows 
indicate for which direction we get motion information. 

We extract tags and contours from the images using SPAMMVU, a program 
developed in the Department of Radiology at our institution [1]. Tags from 
multiple time phases (between end-diastole and end-systole) were tracked by 
adapting the deformable mesh scheme of [21] for 1D stripes. The extracted stripes 
are approximated as a series of points by sampling the tag lines at 2ram intervals. 

4 B i v e n t r i c u l a r  D e f o r m a b l e  M o d e l  
4.1 Mode l  G e o m e t r y  
Although the RV cannot be defined by any simple parameterized geometric 
primitive, an accurate geometric model is important for a model-based fitting 
technique. Since the septum plays a role in the function of both ventricles, our 
approach is to create a biventricular geometric model. Due to the complex geome- 
tries involved, we build a discretized mesh of volumetric finite elements directly 
from contours extracted from end-diastolic images [5]. The short-axis contours 
were used to generate the finite element mesh, with the insertion points of the 
RV free wall into the septum as guide points. Points sampled for the contours 
then became the nodes of the finite elements. This geometric model could also be 
used for volume measurement, and, given cardiac material properties, for stress 
analysis. 

Our deformable model fitting technique results in the displacement of over 
500 nodes through time. In order to make these results clinically meaningful 
we convert nodal displacements into scaling and twisting parameters. Since it 
would be less relevant to describe the twisting of the RV with respect to the 
long axis of the LV (or vice versa), we define a local coordinate system for 



181 

Fig. 4. Initial finite element mesh. (a) Anterior view of with sections cut away to show 
local coordinate systems. Note that the RV apex is above that of the LV apex. (b) Cross 
sectional view of a layer elements which connects contours from two image planes 

each ventricle. The axes of the coordinate systems are the eigenvectors of the 
matr ix of central moments [8], with the eigenvector corresponding to the smallest 
eigenvalue is the one with the most inertia being labeled the z-axis (see Fig. 4). 
The transformation of position x with respect to the global, non-inertial frame 
to the local position s, is 

x = c + R s  (1) 

where c is the origin of the local frame and R is the rotation matr ix which takes 
a point from the global to the local coordinate system. The RV free wall is in 
the RV coordinate system, while the LV free wall and septum are both in the LV 
coordinate system. Some of the finite elements connect nodes across the model 
so that  two systems remain connected. The finite element mesh, with a shaded 
RV and LV endocardium, is also shown in Fig. 4. 

4 . 2  M o d e l  D y n a m i c s  

Our basic approach is to fit the model to the data  with physics-based deforma- 
tions as in [12]. Unlike the previous work, our model deforms with different kinds 
of DOFs, i.e., the position, q~, of each node i of the finite element mesh. We use 
a non-inertial model and integrate the following equation of motion to solve for 
qi: 

r = fi,intcrnal + fi,c=ternat (2) 

where fi,inte~nat is the finite element stiffness force, and fi,~=te~,~at is the force 
derived from the image data. The forces are only used to deform our model 
and are not meant to replicate the actual forces in the heart wall muscle. The 
large number of DOFs requires we have internal stiffness forces in order to main- 
tain continuity in the motion. As mentioned earlier, we later lump those DOFs 
to parameters which are more recognizable to physicians. In the following, we 
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describe the calculation of the internal force and two types of external images 
forces, which we call contour and SPAMM forces. 

Ex te rna l  Forces F rom Con tour  Da ta  We use the extracted contours to 
maintain the shape of the deformable model. These contour forces fi,c, are cal- 
culated in the same way as done by [12] and applied to the appropriate node(s). 
In order to distribute these forces as uniformly as possible, the contours were 
first sampled at 5ram intervals. 

Ex te rna l  Forces f rom S P A M M  da ta  In order to capture within-wall motion, 
we apply 'SPAMM forces' to our model that will mimic the motion of the tag 
stripes. We can accomplish this because we have a time correspondence between 
stripes and the finite elements allow us to register the initial stripes locations to 
the model. We register each point on the stripe to the non-deforming, stationary 
local coordinate system of the appropriate finite element. The transformation 
from the local position, (e,n, s), to the global position of a point, (x, y, z), is 
written in terms of the finite element shape functions: 

n n ~. 
x = ~ Nj(e,n,s)xj,  y = ~ Nj(e,n,s)yj, z = Z Nj(e,n,s)zj 

j = l  j = l  j = l  
(3) 

where xj, yj, zj is the position of the jth node in the element numbering system. 
The shape functions, Nj, can be seen as weighting the global coordinate of 
a node according to where a point lies in the (e, n, s) system. In this paper, 
we use six-noded wedge and eight-noded parallelepiped elements, whose linear 
shape functions are given in [22]. Since we only know the positions of the nodes 
(xj,yj,zj) and the position of a tag point on the stripe (x,y, z), we solve the 
set of three equations (Eq. 3) for the local coordinates (e, n, s) using Newton- 
Raphson. Since each finite element is defined to be a 2 by 2 cube centered at the 
origin of its local coordinate system, the point falls within a particular element 
if: - 1  < =  e,n,s < =  1. 

f f ~ ~  normal 

time I time 2 

i/ 
eO -21 

Fig. 5. Application of SPAMM forces 
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For each material point from an extracted tag, we define the spring-like 
SPAMM force, fs,  to be a scalar multiple of the distance vector, e : fs  -- ae,  
where a is the strength, e is a vector in the direction of the tag plane normal 
which extends from a material point to its corresponding tag stripe at the next 
time phase (see Fig. 5). After time 0, the material point will move out of the 
plane due to forces applied on other points in other directions. For these cases, 
i.e. time 1, the projected point (P) of the material point (M(1)) onto the original 
image plane, rather than the material point itself, is used to calculate e. 

The SPAMM force, fs,  is applied within the element and must be distributed 
to the nodes of that  element. The force on each node is weighted by the shape 
functions: 

f j , s  = N j f s  (4) 
where the subscript j refers to the node number within an element. This is the 
manner in which concentrated loads are distributed to the nodes in finite element 
theory, so that  the collection of material points registered to the model have a 
'line of forces' applied to them. If the same node receives forces from different 
material points, the final force is the average of all f j , s .  

The total  external force on each global node, i, is the sum of the contour and 
the SPAMM forces, i.e., fi,ezternat = fi,c + f i ,s .  

I n t e r n a l  fo rces  due to  stiffness In our formulation, we model stiffness as an 
internal force, f i , i n t e r n a l .  We use stiffness to impose a continuity and smoothing 
constraint on our many DOFs, and not to model the actual cardiac material 
properties (a topic of future research). As a result, we consider each element 
to consist of an isotropic, linear, incompressible material. The stiffness force, 
f i , i n t e r n a l ,  on a node from a particular element can be computed from 

fi,internat = K d  (5) 

where d are the nodal displacements. The stiffness matrix, K,  incorporates the 
geometry and material properties of the element and is computed from 

where D is the stress-strain matrix and B is the strain-displacement matrix, 
whose formulations are given in [22]. 

4.3 M o d e l  Parameters:  Twis t ing  
We convert the reconstructed displacement results into a twisting parameter,  
0, of a point ( s ~ , S y , S z )  about the z-axis of the local coordinate system. The 
equations which define twisting are s~ = s x  cos 0 - s y  sin 0 and su = s x  sin 0 + 
s y  cos 0, where an uppercase subscript denotes the point at  its initial position. 
Since simply subtracting the angles will give erroneous results when a point 
moves across the 0 = 0 line, we solve the two equations for sin ~ and cos 0, and 
solve for 0: 

0 = arctan SXSy - 8 y S x  (7) 
8y8y ~- 8X8x 
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5 R e s u l t s  

5.1 V a l i d a t i o n  
In order to validate the fitting method, we built a computational phantom in the 
shape of a thick-walled, annular cylinder. We deform the model using equations 
in cylindrical coordinates [19, 7]: 

z = A z  + r  (8) 

e = O + - + 7 ( Z  - + (9) 

(10) 

where (R, O, Z) = initial position, (r, 0, z) = deformed position, Ri  = inter- 
nal radius, and Zmin ~- minimum height. Twisting within the cylinder is the 
superposition of a minimum twist (Omin), twisting between short-axis layers 
(controlled by ~2), and twisting between the inner and outer walls (controlled by 
7)- Axial deformation is varied in the axial and radial directions with the use 
of the )~ and r parameters, respectively. Finally, an incompressibility constraint 
leads to radial deformation being a function of the initial radius. 

We generate parallel tag planes with a 7ram separation with tag points sam- 
pled every 2ram along a stripe. Simulated short-axis image plane (5 total) were 
separated at 7.2ram intervals, and simulated rotating long-axis image planes (as 
in our actual imaging protocol) were separated at 20 degree intervals. As done 
in [19] , we use Eq. (8 -10 ) to solve for unknown r, 0, Z tag and contour po- 
sitions from known R, O, z for the short axis, and to solve for unknown r, O, z 
tag and contour positions from known R, 0, Z for the long axis. Geometric and 
deformation parameters are shown in Table 1. 

Phan tom Parameters  
Geometric  m m  Deformation 

Ri 23 A 0.82 "~ 0 .1~  
Rou~r 30 r 0.1 Omi,~ 6 ~ 
Zmi,~ 10 ~ 0.79~ ri 16mm 

Height 45 

Table 1. Geometric and deformation parameters of phantom. 

We use the same element and fitting technique as the real data  between 
initial and deformed times. Our fitting criterion, the tag error, is the magnitude 
of the vector e, which was used to calculate the SPAMM forces. Fitting can be 
controlled manually or automatically by increasing the SPAMM strength and 
boundary strength as the model deforms in order to overcome the stiffness of 
the elements. All RMS tag errors were reduced to < 0.2ram while the average 
errors in nodal positions were all reduced to less than 5%. Results are shown in 
Fig. 6. The color map, seen here and in other figures as grey-scale without any 
loss of information, is that  of the twisting parameter. 
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Fig. 6. Validation results: fitting method was applied to a computational, cylindrical 
phantom. (a) Initial configuration and (b) deformed shape with a color plot of twisting 
parameter on inner and outer walls. 

5.2 R e c o n s t r u c t e d  Normal  RV Wall M o t i o n  

We applied our method to a set of 3 orthogonal 1D tagged MRI images of normal 
ventricles. The tag errors during the model fitting stages are shown in Table 2. 
Although we capture the motion of the LV in addition to the RV, we concentrate 
on results for RV deformation which concur with previous studies and show 
the possibility of providing more detail. For example, one group of researchers 
measured systolic long axis displacement of tag points in MRI images [17]. Unlike 
their reporting of average values in certain regions, we can display the spatial 
and temporal distribution with our model. These researchers reported that the 
maximum motion (about 25ram) occured in the basal region of the RV free wall. 
The color map in Fig. 7 is a plot of absolute axial displacement along the LV 
long-axis which was prescribed during imaging). This figure shows maximum 
displacement of about 19mm at the RV base and in the RV outflow tract. 

Similar to observations by [3], we found significant displacement of the free 
wall towards the septum and septal wall thickening which contributed to a 
smaller RV cavity. In a cross-sectional view, the most significant contraction 
is that of the posterior basal portion towards the outflow portion. Fig. 7 also 
shows the paths of cardiac material points located at the centers of the elements. 
Note that these points are different from those used during model fitting. It is 
apparent that the initial displacement of these points is greater than their final 
displacement. 

We also attempted to plot twisting on the RV wall. The apparently large 
concentration of twisting in the free wall shown in Fig. 8 results from a large 
forward displacement in a portion of the wall that is near the model axes rather 
than an actual twist. Thus, global twisting may not be a helpful parameter to 
use for the RV because of its non-circular cross-section. However, differences in 
twisting (i.e., between walls or between levels) may be good indicators of regional 
deformation. 
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Fig. 7. Color plot of axial displacement on RV as it deforms through 4 time intervals. 
The paths of RV mid-wall points are shown from time 1 (white) to time 5 (red) 

It is too early to conduct a more thorough comparison of our results with 
those found in literature. At this point we demonstrate the capability of the 
fitting technique to capture major trends in the deformation of the normal RV 
and identify areas needing improvement. We plan to validate the model with 
data from several patients and to identify which parameters derived from the 
reconstruction are clinically useful. 

6 C o n c l u s i o n  

We have developed a novel approach which fits a geometrically complex biven- 
tricular model to data from 1D tagged MR] images. In this paper, we validated 
the fitting technique on a computational phantom with predefined geometry and 
deformations. The results presented here show possibly useful clinical informa- 
tion about RV contraction. Through this work, we learned that the complicated 
RV wall motion may be best described with regional deformation parameters, 
i.e., strains. An in-depth study of these deformations should lead to greater 
knowledge of normal and abnormal heart wall motion. Our preliminary results 
of reconstructed normal RV wall motion demonstrate the plausibility of using 
this method in a clinical setting. 
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RMS Errors (ram) During Model Fitting 
View and tag orientation Time 1-2 Time 2-3 Time 3-4 Time 4-5 

SA-Vertical 0.235 0.270 0.393 0.364 
SA-Horizontal 0.244 0.274 0.361 0.351 
LA-Horizontal 0.269 0.278 0.335 0.281 

Table  2. Error between model material points and SPAMM stripes during model 
fitting for each time interval (SA = Short - axis, LA = Long - axis) 

Fig. 8. Color plot of twisting parameter on RV free wall 
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