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Abstract .  For the measure of brain activation in functional MRI many 
methods compute a heuristically chosen metric. The statistic of the un- 
derlying metric which is implicitly derived from the original assump- 
tion about the noise in the data, provides only an indirect way to the 
statistical inference of brain activation. An alternative procedure is pro- 
posed by presenting a binary hypothesis-testing approach. This approach 
treats the problem of detecting brain activation by directly deriving a 
test statistic based on the probabilistic model of the noise in the data. 
Thereby, deterministic and parameterized models for the hemodynamic 
response can be considered. Results show that time series models can be 
detected even if they are characterized by unknown parameters, associ- 
ated with the unclear nature of the mechanisms that mediate between 
neuronal stimulation and hemodynamic brain response. The likelihood 
ratio tests proposed in this paper are very efficient and robust in mak- 
ing a statistical inference about detected regions of brain activation. To 
validate the applicability of the approach a simulation environment for 
functional MRI is used. This environment also serves as a testbed for 
comparative study and systematic tests. 

1 I n t r o d u c t i o n  

The human brain has a highly complex functional organization. Functional MRI 
techniques are specialized to code information about neurophysiological mecha- 
nisms of the brain in the image contrast. The analysis of functional MRI data  
aims at providing detailed maps depicting neuronal brain activation due to a 
specific sensory stimulation, so called activation maps. 

Most analysis methods compute a metric upon which brain activation in 
functional MRI data is detected. This metric arises from a heuristically posed 
question, like 'how well does a model correlate with the time series data?', or 
'what is the amount of signal power in the time series at the stimulation #e-  
quency?" Answers to these questions indirectly lead to the conclusion about 
brain activation being present or not. In fact, a direct solution to the problem 
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posed in functional MRI is the answer to the basic question 'is brain activation 
present or not?'. We present a binary hypothesis-testing approach to answer this 
question. For this, we make the assumption that  each time series measurement 
represents either the hemodynamic response signal buried in noise or just pure 
noise. This binary hypothesis can be denoted as 

H1 : Measurement ~ Signal+Noise 
H0 : Measurement ~ Noise 

The signal may be a deterministic and parameterized model for the hemody- 
namic response, while the noise is characterized by a probabilistic model. 

Validation of functional MRI results can be performed by comparison with 
findings using different modalities such as PET,  MEG or EEG on the same 
person. Until now the exact nature of the transient behavior between onset 
of sensory stimulation, neuronal activation and hemodynamic response of the 
brain, remains unclear. This implies that  validation can never become complete, 
since any underlying model or assumption in the analysis does not accurately 
represent the physical nature of functional MRI experiments. We present an en- 
vironment where the hemodynamic response and the experimental parameters of 
a functional MRI experiment can be simulated in a realistic manner. Artificially 
produced data  sets are necessary to evaluate the reliability of analysis methods 
that  are applied on real data with similar experimental conditions. 

2 M e t h o d s  

2.1 Binary Hypothesis  Testing 

Having made an observation (time series) with functional MRI, one is faced with 
the necessity of making a binary decision between the two hypotheses/ /1 (signal 
present) and Ho (signal not present). Once a rule is selected to decide which of 
the two hypotheses is true for the present observation, the procedure is referred 
to as binary hypothesis testing. We present the Neyman-Pearson test as a binary 
hypothesis-testing approach. 

The Likelihood Ratio and the Neyman-Pearson Test. Interpreting the 
hypotheses H1 and H0 as a known source output  (signal or '0') which has gone 
through some probabilistic transition mechanism (addition of noise), the mea- 
surement can be described by a random variable X .  Then the likelihood ratio 
A(x)  provides the test 

PX[HI(X) H1 > :l(=)=pxt.o(=) < ~ (1) 
H0 

to decide which of the two hypotheses is true for a particular observation x 
([13]). The likelihood ratio is the ratio of the probability density functions of the 
measurement X ,  assuming that  H1 or H0 is true, respectively. For the likelihood 
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ratio tests in this paper we determine the threshold ~/using the Neyman-Pearson 
criterion. According to this criterion the false alarm probability P]  (deciding for 
H1 when H0 is true) is constrained to a specified value (~, while the detection 
probability Pd (deciding for H1 when H1 is true) is maximized for this constraint. 
Under the assumption of Gaussian white noise it is shown by Van Trees [13] that  
the threshold ~/is then determined by solving the equation 

Pf = P[A(x)  > ~lH0] = PAiHo (A)dA = a (2) 

where PAiu  o (/~) denotes the probability density function of the likelihood ratio 
under H0. Note that  for a likelihood ratio test based on the Neyman-Pearson 
criterion (Neyman-Pearson test), the false alarm probability P f  and therefore the 
statistical inference is completely specified by the constraint a for Pf .  Therefore, 
whenever a Neyman-Pearson test can be designed, the user himself can determine 
the statistical inference to result from the binary decision problem. 
D e t e c t i o n  o f  K n o w n  T i m e  Ser ies  Signals .  A time series can be viewed as 
a series or collection of samples or observations taken from a continuous time 
signal. Having made an observation of a time series, we can make the following 
binary hypothesis: 

H1 : Y~ = si+ ni, i = 1 , . . - , N  
H0 : Yi = ni, i = 1 , . - . , N  (3) 

Under / /1  we assume that  the Yi of the observed time series consist of samples 
si of a known signal which is corrupted with additive Gaussian white noise. The 
noise samples ni are assumed to be members of a Gaussian white noise process 

2 They are statistically independent. The samples with zero mean and variance an. 
si can be thought of representing the model time series of the hemodynamic 
brain response. Ho makes the assumption that  the Yi of the observed times 
series consist of pure noise samples of the same type. N indicates the number 
of samples in the observed time series. The assumption of Gaussian white noise 
allows to formulate the likelihood ratio test 

H~ 
> E y i s i  < 7 (4) 

i Ho 

By using equation (2) for the determination of the threshold ~/according to the 
the Neyman-Pearson criterion we obtain 

~/ ~ 2 . e r f - l ( 1  2~) (5) "~ : (7 n 2 8 i 

where a is the constraint for the false alarm probability Pf and erf -1 denotes 
the inverse of the error function. Using the threshold 7 determined by (5) in the 
likelihood ratio test (4) results in a false alarm probability Pf = (~. Therefore, 
the statistical inference made from the test can be determined by the choice of 
O~. 
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T h e  G e n e r a l i z e d  L i k e l i h o o d  R a t i o  Test  for U n k n o w n  P a r a m e t e r s .  If a 
hypothesis in a binary decision problem depends on an unknown parameter ,  the 
likelihood ratio test  (1) is not directly applicable. This is due to the fact that  
the probabil i ty density function for that  hypothesis, denoted as the likelihood 
function, also depends on the unknown parameter .  Therefore, an est imate of the 
parameter  is obtained under the assumption tha t  the hypothesis which depends 
on this parameter  is true. This estimate is then used in the formulation of a 
likelihood ratio test  as if it was the correct value of the unknown parameter .  
A likelihood ratio test which is constructed with maximum likelihood estimates 
([3, 13]) of some unknown parameters  is called a generalized likelihood ratio test. 
Maximum likelihood estimates are obtained by minimizing the likelihood func- 
tion using s tandard techniques of calculus. 

D e t e c t i o n  o f  a C o s i n e  W a v e f o r m  w i t h  U n k n o w n  P h a s e .  In functional 
MRI observations of brain physiology are repeated many  times in a single experi- 
ment. Since in these cycles the subject is switching from one condition to another,  
a periodic response in the tittle series of activated brain areas is expected. For 
this reason, in many  functional MRI evaluation procedures a sinusoidal form of 
the hemodynamic response is proposed ([7, 81). However, the phase of such sinu- 
soidals which is associated with the delay of the hemodynamic response function 
is arbitrari ly chosen or empirically assumed ([1, 10]). Therefore, we present a de- 
tection procedure for a cosine waveform time series with unknown phase. For 
this, we make the binary hypothesis 

H1 : Y / :  c o s ( w t i  + r  -b ni,  i = 1 , . . . ,  N 
Ho : Yi = ni,  i = 1 , . . . , N  (6) 

Under H1 the Y/ of the observed t ime series are assumed to be samples of a 
cosine function with known frequency w at t ime instants Q. However the phase 
r is not known. Suppose that  w = 2k~/p ,  where k is an integer number  ~ 0 
and p is an integer number  > 0. Further, assume tha t  N > p and that  N is a 
multiple of p. If  we denote tha t  ti = i, then we have the conditions 

( } )  z N 2 = 5 -  N cos - - 2  ~r i + o  = 0  and coQ (7) 
i=1 i=1 

for any possible value of r This means that  the cosine function in (6) is sampled 
over an integer number  of periods, and with the same number  of samples per 
period. The observation under Hi  is assumed to be corrupted with Gaussian 

z Under Ho only pure noise of the same white noise of zero mean and variance a n . 
type is assumed. 

After determining a max imum likelihood est imate for the unknown phase 
r considering the conditions in (7) we can formulate the generalized likelihood 
ratio test 

2 > ( E y i c ~  + ( E y i s i n ~ t ~ )  2 H1 < (s) 
i i Ho 
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The determination of the threshold "7 is again based on the Neyman-Pearson 
criterion. Using equation (2) we obtain 

N 2 7 = -~a ,~K2(a)  (9) 

where a is the constraint for false alarm probability Pf  a n d / ( 2 ( ' )  denotes the 
x2-distribution with 2 degrees of freedom. Using the threshold 7 determined 
by (9) in the likelihood ratio test (8) results in a false alarm probability P / =  a. 
Therefore, the statistical inference made from the test can be determined by the 
choice of a. 

2.2 Verification of  the Gaussian Noise  Mode l  

The development of the likelihood ratio tests (8) and (4) was based on a Gaussian 
assumption about noise. Application of these tests on real da ta  is legitimate 
only after verification of the Gaussian white noise model in real data. We have 
performed this verification empirically and with the help of the x2-distribution 
and the statistical X2-test. We have made use of a dummy data  set acquired 
from a volunteer. The data  set consists of 512 functional images with an image 
resolution of 128 • 128 pixels, acquired with EPI  on a Bruker TOMIKON $200. 
Only pixels within brain tissue were incorporated in the verification process. The 
volunteer was not exposed to any specific sensory stimulation. 

E q u a l  V a r i a n c e  ove r  Space and T i m e .  A histogram of all pixel values within 
brain tissue in the time series of the dummy data  set is shown in figure la.  We 
see that  this histogram is well approximated by a Gaussian distribution function 
with variance equal to the variance estimate over all pixels under investigation. 
The variance estimate has been obtained using the standard estimation calculus 
for the variance over all pixels, after subtracting the mean from each time series. 
This estimate, denoted as the overall variance, is assumed to be the true noise 
variance. Figure lb  shows a histogram of the normalized variance estimate from 
the time series within brain tissue (solid line). The computed histogram is well 
approximated by the theoretically expected x2-distribution (dotted line). The 
plot in figure lb  therefore supports our assumption that  the measured overall 
variance is well the true noise variance, and that  it is the same at any pixel 
location. To corroborate our assumption about equal variance over space we 
have performed the statistical x2-test for any two pairs of time series, to test if 
they are drawn from different distributions ([12], p. 489). 95% of the significance 
levels obtained from the x2-test were > 0.1. Therefore we can say that  there are 
very insignificant differences in the distribution of practically any two time series 
in the dummy data  set. This in turn is an indication that  our assumption about 
the variance being the same in any time series, i.e. equal over space, holds. 

To verify that  the variance in the time series of the dummy data  set is equal 
over time, we have observed the distribution of the normalized variance estimate 
in time series within a sliding time window. In the data set with 512 time samples, 
we have chosen a window width of 128 time instants. The computed mean and 
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Fig. 1. Verification of the Gaussian white noise model in functional MRI data. (a), 
(b) Equal variance over space. (c), (d) Equal variance over time. (e) An example for 
independent time series samples. (f) An enlargement from the plot in (e). 

standard deviation of the normalized variance estimate for any time section are 
shown in figure lc  and ld  (solid line), together with the mean and standard 
deviation of the theoretically expected x2-distribution (dotted line). We observe 
that the mean and the variance remain well the same over time. On the basis of 
the results in figure lc and ld  it seems justifiable to conclude that  the assumption 
of the equal variance over time is satisfied. 

G a u s s l a n  D i s t r i b u t i o n  o f  t h e  T i m e  Ser ies  S a m p l e s .  The assumption we 
make, is that  the time series data  are drawn from a Gaussian distribution with 
zero mean and variance equal to the measured overall variance. Note that  the 
mean of the assumed Gaussian distribution is zero, because the mean of each 
time series has been subtracted. To verify our assumption we have performed 
the statistical x2-test for the distribution of the samples of each time series and 
the assumed Gaussian distribution ([12], p. 488). 95% of the significance levels 
obtained from the x2-test were > 0.1. Therefore, we can say that  there are very 
insignificant differences in the true distribution of the data  and the Gaussian 
distribution. This in turn is an indication that  our assumption about the time 
series data  being Gaussian distributed holds. 

I n d e p e n d e n t  T i m e  Ser ies  S a m p l e s .  The assumption of the noise being white 
requires the verification that the samples in the time series are independent. For 
this verification we have made use of the Box-Pierce test for white noise ([6, 8]). 
The Box-Pierce test statistic calculates the sum of squared autocorrelation co- 
efficients at lags k = 1..K. An example of autocorrelation coefficients calculated 
from a time series of the dummy data  set are plotted in figure le,f. Under the 
null hypothesis that  the time series in question is serially independent, or white 
noise, the Box-Pierce statistic is assumed to be x2-distributed with K degrees 
of freedom. Therefore, we can again use a X 2-test for significant dependencies in 
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Fig. 2. Functional imaging simulation environment. 

the time series samples. 90Vo of the significance levels obtained from the x2-test 
were > 0.1. This means that  there are very insignificant dependencies in the 
time series samples. From this test result we can deduce that our assumption of 
the noise being independent holds. 

2.3 S i m u l a t i o n  o f  f u n c t i o n a l  M R I  D a t a  

To fulfill the requirements for simulation a software environment for the gen- 
eration of artificial functional images, as shown in figure 2, was designed and 
implemented using AVS as a development tool ([14, 9]. In the implementation 
the user determines different physiological and experimental parameters of a 
functional MRI measurement. This mainly consists of the outlining of brain ac- 
tivation regions on a reference image and of the assignment of a hemodynamic 
response to any of these regions. Further parameters, such as image resolution, 
number of images and the noise level in the images, can be determined. The 
software also supports the simulation of motion artifacts. For this, interpolation 
procedures for the spatial transformation of images are provided. In functional 
MRI the amplitude of the hemodynamic response may vary from experiment 
to experiment ([11, 2, 4]). Taking into account a constant noise level in the im- 
ages, analysis methods for functional MRI data  may therefore take advantage 
of high response amplitudes or may suffer from weak responses. For this reason, 
we have considered important  to investigate the influence of the signal-to-noise 
ratio on the performance of methods applied to functional MRI data by the use 
of the simulation environment. For this investigation, the signal-to-noise ratio 
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SNR - ~ in artificial functional data  sets was defined as the ratio of the am- 
O" n 

plitude A of the activation function and the s tandard deviation an of the noise 
in the functional images. 

3 R e s u l t s  

3.1 C o m p a r i s o n  o f  A n a l y s i s  M e t h o d s  u s i n g  S i m u l a t e d  D a t a  

The performance of five different methods for hmctional  MRI  analysis with re- 
spect to the signal-to-noise ratio was investigated using simulated test data. 
These methods were: 

- The averaged difference. This simple method averages the images taken un- 
der rest and stimulation conditions and calculates a difference image between 
these two averages. 

- The correlation method [1]. This method calculates the linear correlation 
coefficient between each t ime series and a reference pat tern.  

- The Fourier method [5]. In the Fourier t ransform of the time series, the 
ampli tude at the stimulation frequency is used as an index to responsiveness 
to the stimulation. 

- Principle component  analysis (PCA). This method identifies activated brain 
regions in the eigenimages obtained by singular value decomposition of the 
data. 

- The likelihood ratio test (8) proposed herein. 

In simulated functional images the ampli tude A of a cosine waveform with 
phase r = 7r/2 used as an activation function was varied from a value of 40 
to 1000 in 25 equidistant steps, and from a value of 1000 to 5000 in another 
20 equidistant steps. Using a noise s tandard deviation a .  of 1000, totally 45 
image data  sets were produced. Each data  set contained 64 images of 128 • 128 
pixels. The five different methods were used to produce activation maps from 
the generated image data  sets with SNR increasing from 0.04 to 5. Statistical 
inference was automatically provided by the simulation environment by count- 
ing pixels inside and outside the simulated activation regions. For each method 
the false alarm probabili ty PI was constrained to a specified value while the 
detection probabil i ty Pd was evaluated for each SNR level. The plot in figure 3a 
shows the values of Pa for constrained Pf = 0.05. According to figure 3, the 
performance depending on the SNR shows more or less the same progression for 
different analysis methods. For SNR < 0.2 all the methods failed almost com- 
pletely in detecting areas of activation, whereas for SNR > 3 all methods almost 
perfectly succeeded in the detection task, when the false alarm probabil i ty was 
constrained to 0.05. The correlation method is observed to be superior to the 
others. However, the improvement with respect to the other methods is not re- 
markable.  The detection performance of the likelihood ratio test (8), the only 
method assuming the phase of the cosine waveform as unknown, is comparable 
to the other methods and justifies its application on real functional MRI  data. 
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Fig. 3. Performance of different methods on simulated functional MRI data depending 
on the SNR. Detection probability Pd for constrained false alarm probability Pf -- 0.05. 

3.2 D e t e c t i o n  a n d  In ference  of  B r a i n  A c t i v a t i o n  b y  L i k e l i h o o d  
R a t i o  Te s t s  

A functional image data  set consisting of 64 images (128x128 pixels) was acquired 
from a volunteer with a Bruker TOMIKON $200 scanner (University Children's 
Hospital, Zurich) using a gradient echo imaging sequence. Goggles with a flicker 
display identical to those used in electrophysiological examinations were used 
to visually stimulate the volunteer. During the stimulation state the volunteer 
was exposed to flickering red light at 8 Hertz. This flickering light was switched 
off in the rest state. Both states had a duration of 30 seconds. The experiment 
started with one cycle of rest and activation state without data  acquisition so 
that  the volunteer became accustomed to the stimulation. Then 8 images under 
the rest state were acquired followed by 8 images acquired under stimulation 
conditions. This stimulus alternation was totally repeated for four cycles. We 
have chosen a cosine waveform with phase r = 7r/2 as a reference pat tern for the 
hemodynamic response. Figures 4a-c show the results obtained by the correlation 
method and the two likelihood ratio tests at a significance level of 0.05. In the 
activation map in figure 4a, obtained by the correlation method, the result is 
not satisfactory because of many spurious pixels and regions all over the map. 
The map in figure 4b, obtained by the likelihood ratio test (4) gives a good 
visual impression about the extents of the activated brain areas. The spurious 
pixels in the background are reduced to a much greater degree than the result 
obtained by the correlation method. At the same time, there is no loss of pixels 
or regions within the head. In the activation map from figure 4c, obtained by 
the likelihood ratio test (8), almost no spurious pixels appear in the background. 
Although the phase of the cosine waveform was assumed to be unknown, the test 
still has succeeded to detect pixels forming activation regions similar to those in 
the map from figure 4b. Figures 4d-f show the results obtained by the correlation 
method and the two likelihood ratio tests at a significance level of 0.005. The 
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activation map obtained with the correlation method still shows some residual 
spurious pixels in the background. The maps obtained with the likelihood ratio 
tests show practically no pixels in the background. Although the detected regions 
look quite similar, in detail we observe slight differences. A visual inspection of 
the detected time series can empirically give an impression about the fidelity of 
the results. Therefore we have plotted some time series which were detected by 
the three methods within brain tissue in figures 4g-j. These time series were all 
selected from within the detected activation regions in the occipital lobe. The 
plot in figure 4g shows a time series which was detected by all three methods. 
The plots in figure 4h and 4j show time series detected only by one of the two 
likelihood ratio tests (4) and (8). In figure 4g we see that  the time series signal 
nicely follows the switching from the rest state to the activation state (indicated 
by the grey bars). This effect is visually not so impressive in figure 4h, but 
still observable. Figure 4j shows a time series which seems to be related to the 
stimulus in an opposite way. In fact a difference in phase of 180 ~ with respect to 
the time series in figure 4k,1 may be suspected. It is up to a neurophysiologist 
to relate time series as shown in figure 4j to a hemodynamic response evoked by 
neuronal activation due to the visual stimulus. 

4 C o n c l u s i o n  

We have applied the likelihood ratio tests (4) and (8) also on data  sets with a 
large number of images comprising visual stimulation. Thereby, we have obtained 
similar results as those presented in figure 4. Differences in location between de- 
tected pixels were only encountered in small detail. The example demonstrated is 
therefore representative for the results we obtained from all analyzed data  sets. 
This may lead to the conclusion that  activation signals evoked by a neuronal 
stimulus show no phase shift between onset of stimulation and hemodynamic 
response. From the time series example in figure 4j however, we see that  the 
likelihood ratio test (8) has detected a signal which obviously represents a phase 
shift of 180 ~ between stimulation onset and response. Although this effect was 
detected only at a few pixel positions, it shows that  detection procedures like 
the test (8) may contribute to the elaboration of unclear behavior of hemody- 
namic effects. We conclude that  the likelihood ratio tests perform well on real 
data. Providing coequal results as other methods their power lies in allowing 
for the assumption of unknown parameters.  The derivation of the likelihood ra- 
tio statistic (and the subsequent test procedures) is based on the probabilistic 
model of the noise in the data  and therefore provides a direct approach to the 
detection problem. Other methods are based on the probabilistic consideration 
about a chosen metric (averaged difference, correlation, etc.) and therefore ad- 
dress the detection problem indirectly. Consequently, in a signal detection task 
based on hypothesis testing with the likelihood ratio, the statistical inference is 
made about the assumed signal model, and not about a metric computed from 
the model. The design of a likelihood ratio test based on the Neyman-Pearson 
criterion does not require any knowledge about a priori probabilities or costs 
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Fig. 4. Comparison between the activation map obtained by the correlation method 
and likelihood ratio tests (4) and (8), assuming a cosine waveform as a reference pattern. 
(a)-(c) Activation maps at a significance level of 0.05. (d)-(f) Activation maps at a 
significance level of 0.005. (g) Time series detected by all three methods, (h) only by 
the test (4), (j) only by the test (8). 

and is therefore well suited for the detection of brain activation in functional 
MRI. Further, the statistical inference is completely determined by the design 
(i.e., the constraint for the false alarm probability). This allows a user who is 
not familiar with thresholds to decide himself about the inference made from 
test results by supplying a probability value. Taking a look at figure 4, the like- 
lihood ratio tests are superior and more robust in making a statistical inference 
about detected regions compared with the correlation method [1]. The thresh- 
olds in our likelihood ratio tests all depend on the variance of the noise in the 
data. We have verified that  the Gaussian white noise holds well in functional 
MRI data. We can therefore assume the value of the true noise variance from an 
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estimate over a huge amount of pixels (~ 4 �9 106) within brain tissue, and use 
this estimate for the determination of the threshold in the likelihood ratio tests. 
Therefore, statistical inference is made by accounting for the noise variance for 
time series within brain tissue. The correlation method relates the threshold for 
the calculated correlation coefficients to a Gaussian distribution with zero mean 
and variance 1 /N ,  N denoting the number of samples in the time series, which 
is an approximation to the true distribution of correlation coefficients. Conse- 
quently, the threshold for the correlation method does not account for the true 
noise variance. By comparing figure 4a and 4b it is seen that  this can lead to an 
incorrect inference of the results. 
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