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Abstract .  We present a completely automatic method to build average 
anatomical models of the human brain using a set of MR images. The 
models computed present two important characteristics: an average in- 
tensity and an average shape. We provide results showing convergence 
toward the barycenter of the image set used for the computation of the 
model. 

1 I n t r o d u c t i o n  

Someone suffering from a neurological disorder such as epilepsy or schizophrenia 
will usually undergo a series of tests to assess the anatomy and the functional 
activity of his or her brain. The results of these tests are then analyzed to 
identify if abnormal variations are present, providing valuable information for 
future medical treatment.  

An important  tool used to diagnose abnormal anatomical variations are medi- 
cal atlases. Traditional ones [14, 12] are presented in textbooks, but  computerized 
atlases comprising information in a more practical and quantitative manner are 
becoming available [10]. They also usually include information obtained from a 
set of subjects [8] instead of a single individual, making them more representative 
of a population and enabling the calculation of normal variations [17]. 

The following work aims to develop and validate the concepts introduced in 
a previous paper [9] to build an average model of the human brain using a set of 
magnetic resonance (MR) images obtained from normal subjects. We intend to 
fabricate an image with two important  characteristics: average tissue intensity 
and average tissue shape up to an affine transformation. 

As depicted in Fig. 1, our method can be summarized in the following manner. 
Affine registration between all the images of the set and a reference image cor- 
rects for differences due to translations, rotations, scalings and shearings. These 
are morphometrical variations that  are not of concern for our study. Elastic reg- 
istration is then used to evaluate residual variations due to pure morphological 
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Fig. 1. Average model construction method. 

differences and produce images having the same shape as the reference. The 
images and the residual deformations are averaged and the average deformation 
applied to the average image to produce the model. It presents an average in- 
tensity and an average shape modulo an affine transformation corresponding to 
the affine characteristics of the reference image. 

The main contribution of this paper is the description of a fully automatic 
technique to obtain an average intensity image combined with an average shape 
image, producing the average model M. 

The most similar work regarding average intensity atlases is that of [3] who 
created from nine MR scans a two-dimensional image representing the average 
intensity of the mid-sagittal plane. Thirteen manually identified landmarks in the 
mid-sagittal plane of each scan where matched with a reference image using the 
thin-plate spline interpolant [2]. The nine resampled images where then averaged 
to result into a morphometric average atlas. Our method differs mainly by two 
aspects. First, as suggested by [3], we make full use of the three-dimensionality 
of the scans to compute a three-dimensional average image. Second, our registra- 
tion method is automatic and computes a dense deformation field instead of an 
interpolated function based on thirteen landmarks. This deformation identifies 
for each voxel of the reference the corresponding positions in the other scans. 
Within this process, every voxel of the reference can be though of as a landmark 
automatically determined in the other scans. 

The work of [8], where three hundred and five (305) three-dimensional MR 
scans were registered using translations, rotations and scalings, and averaged to 
build a statistical neuroanatomical model, also relates to our work. We follow the 
same idea but proceed further by using a less constrained type of deformation. 

As will be shown, compared to these previous efforts, our method provides 
clearer images with higher contrasts and more sharp definitions of tissue bound- 
aries. 

The average shape concept is most similar to the work of [13], [4] and [11] who 
compute average shapes modulo similarity or affine transformations. We have not 
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tried to strictly follow the theory developed in their works. Our intention was 
to conform to the idea of making abstraction of differences between images due 
to first order transformations, and analyze residual variations. Our main contri- 
bution resides in the characteristics used to build the average shape, that  is the 
image intensities instead of landmarks or crestlines. Again, this enables the com- 
putation of dense deformations fields representing variations everywhere is the 
MR scan, as opposed to interpolating transformations found using landmarks, 
lines or surfaces. We believe this technique may find less accurate matches in the 
close surroundings of the landmarks, but provides better overall registration. 

The remaining sections of this paper are organized in the following manner. 
First, we detail the method used to construct the average model. We then present 
results showing the convergence of the method towards an average intensity and 
an average shape, and show the effect of the choice of reference image. We 
conclude by a discussion on future research tracks. 

2 M e t h o d o l o g y  

2.1 Registration 

The work that  follows assumes each point in one image has a corresponding 
equivalent in the others. It also assumes available a matching method able to 
find these correspondences and capable of providing a vector field representing 
those relationships. In theory, neither of these conditions is realized. That  is, at 
a microscopic scale, there is not a one to one relationship between the brain cells 
of two individuals, and assuming there was, to this day, no algorithm is able to 
find it. In practice however, deforming one brain so its shape matches the one 
of another is conceivable and many algorithms realizing this process have been 
developed [2, 1, 6, 7, 16]. 

The procedure used in the following work is the demons method [15] which is 
a fully automated intensity-based registration method. It provides results qual- 
itatively similar to [1] and [6] but with an implementation one or two orders of 
magnitude faster. From a practical point of view, it is worth mentioning that  
although the algorithm matches intensities and that  a global intensity correction 
is made over the whole image, the transformed image of/1 is not an exact dupli- 
cate of I2. This is due to the smoothness constraint applied to the displacement 
field which establishes a compromise between intensity resemblance and uniform 
local deformations. 

2.2 Average Model Construction 

The average model construction (See Fig. 2) needs as input a reference image 
IR and a set of N images I 1 , . . . ,  IN representing the group of subjects under 
consideration. The method can be divided in six steps as follows: 

1. The first step regards the evaluation of shape differences between the refer- 
ence and each image of the set. Elastic registration between IR and I~ pro- 
vides vector fields Di giving for each voxel XR of IR the analogous anatomical 
location xi in I~. 
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Fig. 2. Average model construction. First step (dotted arrows): the D~ are obtained. 
Second step: /i are resampled into I~. Third step: 7 is computed. Fourth step (dashed 
arrows): Di are decomposed in A~ and Ri. Fifth step: R is computed. Sixth step (full 
line): Combination of average intensity and shape to obtain the average model M. 

2. These correspondences found, the second step resamples the I~ using trilin- 
ear interpolation to provide I t presenting the same shape as IR with the 
intensities of I~. 

3. In the third step, the I~ are averaged pixelwise, producing a mean intensity 
image T with the shape of IR. 

4. The fourth step concerns the decomposition of Di into affine (Ai) and resid- 
ual (R~) components. Since we want correspondences between anatomical 
points of t h e / i  and IR that  have the form x~ = Di(xR) = Ai(Ri(xR)), we 
compute the Ai by minimizing the distance ~ I Ix - A~ l(Di(x))ll 2, where 
the summation is performed on the voxels positions in IR corresponding 
to cerebral tissues 1. The residual components are obtained by computing 
R~(x) = A;X(D(x)). 

5. The fifth step aims to produce the deformation presenting the shape varia- 
tions between IR and the average shape of the set elements after correction 
of affine differences. Since the residual deformations R~ are all defined in 
the same anatomical space, that  of IR, calculating their vectorwise average 
-R(x) = 1/N ~-~N R~(x) will provide the desired deformation. 

6. The sixth and final step consists of applying this average residual deformation 
to the average intensity image to obtain an average intensity and average 
shape image representing the anatomical average model M. 

Considering numerical errors due the fact that  automatic registration meth- 
ods usually perform better  when images are closer to each other, all these steps 
may be repeated by replacing IR with M, thus constructing a model with a ref- 
erence image closer to the barycenter of our set. Intuitively, this should reduce 
the mean registration error and provide a new model M'  closer to the theoretical 
solution. 
1 These positions are obtained using an automatic method for brain segmentation 

similar to that of [5]. From hereon, all summations over x are assumed to be on the 
voxel positions obtained using this algorithm. 
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3 R e s u l t s  

The method is tested by computing four models using two reference images IR1 
and IR2 (See Figs. 5(a) and 5(b)) and two image sets $1 and $2, each composed 
of five images (See Table 1). 

Model  Reference 
Mll Ial 
M21 IR2 
M12 I_~ 1 
M22 IR~ 

Image Set 
$1 
$1 
$2 
$2 

Table 1. References and image sets used to build the different models. 

The 3D MR protocol provides corona] images obtained using a 1.5 Tesla 
SIGNA (General Electric, Milwaukee, U.S.A.) whole body MR imaging sys- 
tem. One hundred and twenty four (124) coronal Tl-weighted images were 
obtained using a spoiled gradient echo (SPGR) pulse sequence (TE=9 sec- 
onds, TR=34 seconds, flip angle=45~ Two NEX acquisitions took 27 min- 
utes and 52 seconds. The Field of View (FOV) of the images was 20 cm and 
each image refers to a contiguous section of tissue of 1.6 mm thickness. The 
256 x 256 x 124 voxels of size 0.78mm x 0.78mm x 1.6ram were trilinearly inter- 
polated to 200 x 200 x 198 to give cubic voxels of lmm side. 

We analyze our results with regards to two factors. First, the iteration pro- 
cess is investigated to see if convergence is achieved, and if so how fast is the 
convergence rate. Second, we study the effect of changing the reference image. If 
the model is a veritable average of the image set, changing the reference should 
produce an identical model up to an affine transformation defined by the affine 
difference between references. 

In our evaluation procedure, three metrics are used. The first determines 
the average distance from an image I to the elements of a set S~, AD(I, Sj) = 
V/-~ ~ x  ~ ~ N 1  I[ x -- Ri(x)[[ 2, where Ri is the residual deformation from i to 
the ith element of Sj, n is the number of voxels characterizing cerebral tissues 
and N represents the number of elements in Sj. The second is the root mean 
square (RMS) norm which supplies information regarding the shape variation 

by a deformation field D, RMSn(D) = ~/-~ ~=  [Ix expressed D(z)ll 2. The 
third provides a measure of brightness disparity between two images Ii and Is. 
It is the RMS difference of the images intensities at corresponding locations, 
RMSd(/~, Ij) = 1 "' 

3.1 Effect  o f  I t era t ing  

To evaluate the effect of iterating, we construct the four models repeating the 
process five times and using the result of the previous iteration as the reference 
image. We will designate the model Mjk computed at the ith iteration by M (i) j k "  

~/r(~ will be identified to the average intensity image having For convenience, "~jk 
the shape of Ij. 
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Four measures were computed: 

A D t M  (i) Sk) The average distance from the reference of the current iteration 
to all the elements of the set. 

R M S n ( R ~ )  The shape variation expressed by the residual deformation field 

R(~) M (0 is used as the reference. jk when jk 

R M S n ( D ~ )  The shape difference between models computed at successive it- 
D(~) is the deformation obtained by registering ""jk "~jk �9 erations. ~ jk  a/r(~) with nz(~+l) 

RMSd(M3(~) ' (i+1) M)k ) The brightness disparity between models obtained at 
successive iterations. 

Fig. 3. Evolution of the model (circles) toward the center of the image set (squares). 

If the models computed tend towards the barycenter of the image set, the first 
measure should diminish. This process is depicted in Fig. 3(a): as the model 
evolves towards the center (dotted line), the average distance to the image set 
elements decreases. The second and third measures, representing the shape evo- 
lution of the model (See Fig. 3(b)), should tend towards zero. Finally, the fourth 
value should also decrease to zero since it represents the brightness differences 
between successive models. 

The results of these calculations on the four models are presented in Fig. 4. 
Note that  the iterations range up to 4 and not 5 since we compare models 
computed at iterations i and i + 1. We remind the reader that  "models" n/r(~ " " j k  , 

that  is models before the first iteration, characterize only average intensities and 
not average shapes. 

From Fig. 4(a), we know the average distance from the references to the 
image set elements is close to 4.0mm and reduces to about 2.5mm when the 
model gets to the center of the image set, that  is when the average shape is 
obtained. Compared to these values, the variation between successive models 
(See Figs. 4(b) and 4(c)), which is about 0.5mm, seems minor. Figure 4(d) 
presents numbers showing the brightness difference between successive models 
diminishes rapidly, increasing our belief that  models do not evolve significantly 
after the first iteration. 
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(c) Shape difference between models 
computed at successive iterations. 

(d) Brightness disparity between mo- 
dels computed at successive itera- 
tions. Values are multiplied by 1000. 

Fig.  4. Impact of the iteration process when computing the models. Note that the 
iterations range up to 4 and not 5 since we compare models computed at iterations i 
and i + 1. We remind the reader that "models" M (~ that is models before the first jk , 
iteration, characterize only average intensities and not average shapes. 



638 

3.2 Effect  of  t he  Re fe r ence  

If the models computed are equal up to an anne  transformation, changing the 
reference image should produce a model identical to the previous one after re- 
moving their anne  differences. To verify this characteristic, we performed an 
affine registration between models built using the same image set. M ~  ) is regis- 
tered with M ~  ) to provide the image M'~i) 1 (See Fig. 5(d)) and M~; ) with M~; ) 
to result in M I ~ .  

Fig. 5. Reference images and models computed using the same image set. Figures 5(a) 
and 5(b) present coronal slices from the two reference images IR1 and IR2 respectively. 
Figures 5(c) and 5(d) are slices of the models computed using these references. These 
two slices are taken at the same anatomical location in each model and can therefore 
be compared directly. The reader should observe the ventricular shape bias introduced 
using IR2 is minimal if not null. If familiar with the work of Bookstein (1991) and 
Evans et al. (1993), he or she will also appreciate the high contrast and visual quality 
of the images produced. 

Two measure were used: 

R M S n ( D ~  i)) The shape variation from M ~  ) to ,,,]l//'(i)lk. D~ i) is the deformation 
obtained by registering the two images. 

R M S d ( M ~  ), ~/r'(i)~ The brightness disparity between the two models. " ~  2 k l  

Results are show in Figs. 6(a) and 6(b) respectively. We notice that  shape vari- 
ation between the models reduces from 3.0mm to 1.0mm. This last value is 
close to the difference between successive models which we know from Figs. 4(b) 
and 4(c) to be approximately 0.5mm. The brightness disparity also diminishes 
rapidly and does not change drastically after the first iterations. 

4 D i s c u s s i o n  

Figure 4 presents numbers showing that  our method constructs average models 
well representing the average intensity and shape of our image sets. In particular, 
Fig. 4(a) shows that  the average distance from one image to the set elements 
is about 4.0mm. This distance reduces and stays at approximately 2.5mm after 
the first iteration. Figures 4(b) and 4(c) illustrate a minor shape evolution of 
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Fig. 6. Influence of the reference on the model computed. 

the models at each iteration, we believe due to numerical errors. Furthermore, 
Fig. 4(d) allows us to claim the visual aspect of the models changes only mini- 
mally. This leads us to the conclusion that models constructed are different, but 
equivalent from a practical point of view. Their intensity difference is practically 
null, and their shapes, although different, all have the same average distance to 
the other elements of the set. Hence, we believe one iterations is sufficient to 
build representative average models. 

Concerning the invariance of the models to the reference images used in the 
method, Fig. 6 shows that the models built using different references seem to 
converge towards the same solution. Their shape difference presented in Fig. 6(a) 
of about 1.0mm is low compared to the average distance of 2.5ram between 
the models and the set elements, and just over the distance of 0.Smm between 
successive average models. Figure 6(b) also presents a low disparity between the 
different models intensities. 

5 Conclusion 

We have presented a completely automatic method to build average anatomical 
models of the human brain using a set of MR images. To this end, brain shape 
variations between subjects were identified. Differences due to linear transfor- 
mations were excluded, resulting in the quantification of pure morphological 
differences. The result is an average intensity and average shape image represen- 
tative of the characteristics of the image set elements used for the construction. 
The coupling of such a high quality model with statistical information regarding 
normal deformations, such as the work of [17], could enrich the significance of 
statistical tests by adding intensity information, useful for example in detecting 
gliosis in T2 MR images, and would supply an important tool in the analysis of 
normal anatomy. 
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