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Abst rac t .  Surgical navigation systems are used intraoperatively to help 
the surgeon to ascertain her or his position and to guide tools within 
the patient frame with respect to registered structures of interest in the 
preoperative images. However, these systems are subject to inaccuracy 
caused by intraoperative brain movement (brain shift) since they assume 
that the intracranial structures are rigid. Experiments show brain shifts 
of up to several millimeters, making it the cause of the dominant error 
in those systems. We propose a method for reducing this error based on 
a dynamic brain model. The initial model state is obtained from pre- 
operative data. The brain tissue is modeled as a homogeneous linear 
visco-elastic material, although the model allows for setting the tissue 
properties locally. Gravity draws the brain downwards which in turn in- 
teracts with the skull and other surrounding structures. The simulation 
results are presented both for a 2D model (the mid-sagittal slice) and 
a 3D model. The results show the time evolution of the brain deforma- 
tion. The complete 3D validation of the simulated brain deformation is 
a rather complicated task and is currently in progress within our labo- 
ratory, but a procedure is proposed for updating the model in time by 
one or more of several intraoperative measurements. 

1 I n t r o d u c t i o n  

The use of surgical navigation systems is a standard way to assist the neurosur- 
geon in navigating within the intraoperative environment, allowing her or him to 
"see" through the body and relate the position of the surgical instruments to the 
features in preoperative images. It is important that  these systems be as precise 
as possible. Ideally, they should provide a 3D display of the neuroanatomical 
structures of interest and include visualization of surgical instruments within 
the same frame. Furthermore, if 3D acquisition systems were fast enough, brain 
shift would not cause an error. Thus, the ideal goal would be to sense 3D in- 
traoperative volumetric information in real time. Since the brain deforms rather 
slowly even a slower acquisition rate would be acceptable. However, hardware 
for obtaining true 3D data is limited probably to MR or CT and is typically 
bulky and expensive, restricting surgical access and therefore is not currently 
widely used in the OR 1. 

1 There exists a system using intraoperative MRI (see [5] and [6]) but it does not 
provide a complete 3D dataset of the head at a fast enough rate, but rather single 
slices at lower fields. 
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Alternatively, one may improve the hardware of the current systems or de- 
velop new ones that  would be fast and practical enough to work as described 
above. Another way is to obtain the 3D data preoperatively and then to regis- 
ter it to estimates of portions of 3D structure via video or other intraoperative 
sensors. Most of current systems use the latter approach (see [12], [13] and [14]). 
However, they assume that  the brain and other intracranial structures are rigid 
and fixed relative to the skull. The brain or its structures of interest are reg- 
istered to the image of the patient at the beginning of the surgery. While this 
can be done with a precision within 1 mm at the initial moment (see [13]), 
since the brain deforms in time, the accuracy of the system deteriorates. The 
median brain shift of points on the brain surface was estimated to range from 
0.3 mm to 7.4 mm (see [1]). It  is clear that  the system based on the rigid brain 
assumption cannot achieve a precision better  than a few millimeters at the outer 
structures. Since the deeper brain structures deform less than the outer ones the 
error is the largest at the cortical surface. The brain deforms even more after 
interventions, e.g. post-resections. Furthermore, the average brain shift for cases 
in which hematoma or tumors were removed was reported to be 9.5 mm and 7.9 
ram, respectively (see [2]). In such cases the error is even larger. 

For the above reasons we propose a method that  treats the brain as a dynamic 
deformable structure. The model initialization is based on preoperative data. 
The model deforms in time and will ultimately be guided by intraoperative 
information. Then the structures of interest can be displayed using the current 
model state rather than the rigid brain model obtained preoperatively. By doing 
this one reduces the error due to brain shift. Eventually the system will receive 
data  about brain deformation intraoperatively using it to update the model. 
Possible sources of the deformation data are sets of points on the open brain 
surface obtained by stereo video imaging and 2D slices normal to the brain 
surface acquired by intraoperative ultrasound. 

As we move in these directions, we note relevant work in soft tissue modeling 
related to recovering image-derived information, including: an a t tempt  to intra- 
operatively reduce the brain shift error (see [2]), a paper on brain tissue modeling 
(see [9]), a computationally efficient tissue modeling for knee surgery (see [10]) 
and cardiac motion modeling (see [7] and [8]). It is also worth mentioning an 
algorithm for 3D finite element mesh generation (see [15]). 

2 M o d e l  

2.1 Brain Tissue Model ing  

The  fact tha t  the brain shift is a relatively small deformation facilitates the brain 
tissue modeling. A linear stress-strain relation is a good approximation for small 
tissue displacements. The model consists of a set of discrete interconnected nodes 
each representing a small part  of the brain tissue. Nodes have masses depending 
on the size of the volume they represent and on the local tissue density. Each 
connection is modeled as a parallel connection of a linear spring and dashpot, 
known as the Kelvin solid model (see [3]). Like for the nodes, the connection 
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parameters can depend on their position in the brain. The Kelvin solid model 
is a model for a visco-elastic material subject to slow and small deformations, 
which is exactly the case with brain shift. It is also a rather simple approach, 
which is a desirable property since the model deformation should be computed 
in real time, i.e. faster or at least at the speed of the brain deformation, since it 
must be displayed during the surgery. The constitutive relation for the Kelvin 
solid model is 

a = q0c + qle, (1) 
where a is stress and e strain, while q0 and ql are local parameters. 

If two nodes are at positions r l  and r2, have velocities Vl and v2, and are 
connected in the above fashion, then the force acting on the first node is 

f ~ n , ~ e r ( r x , r 2 , v l , v 2 )  = [ k s ( t i t 2  - r i l l -  r ,2 )  - kd(V2 - v l ) n 2 x ]  n 2 1 ,  ( 2 )  

where ks is the stiffness coefficient, kd is the damping coefficient and r12 is the 
rest length of the spring connecting the two nodes. In a general case they can 
vary from connection to connection depending on the local material properties. 
n21 is the unit vector from r l  to r2. Note that  the same force acts on the other 
node but in the opposite direction. 

While a continuum mechanics approach, implemented using finite elements, 
such as the one employed by our group for cardiac motion modeling (see [7] 
and [8]), bet ter  physically models the tissue, the discrete modeling approach, 
in addition to having reasonable results, is computationally faster. This is very 
important  for our application, since the ultimate goal is to run the simulation 
in real t ime or close to real time. 

2 .2  M o d e l i n g  t h e  B r a i n  - Skul l  I n t e r a c t i o n  

If a point mass is far enough away from a rigid body there is no interaction be- 
tween them. When the point mass is closer than a "critical distance" to the rigid 
body there is an interaction, and the closer they are the greater the interaction, 
becoming very large if the point mass is very close to the body. Furthermore, 
this interaction is in the direction of the surface normal of the body. Based on 
the above intuitive reasoning, the following model of the interaction between a 
point mass and rigid body is proposed 

Yo~ter (~)  = 0 , r > r0 ' 

where f is the force vector, r is the minimal distance between the rigid body 
and point mass, r0 is the "critical distance", C is a proportionality constant and 
n is the body surface normal. This force acts on both the rigid body and point 
mass but  in the opposite directions. 

If a brain model node comes closer than r0 to the skull it interacts with 
the skull in the above way. In small deformation situations, such as the brain 
shift case, only the outer brain surface nodes will interact with the skull, which 
reduces the simulation time. Since the skull is assumed to be fixed, the skull - 
brain interaction in the simulation is applied only to the brain nodes. 
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2.3 T h e  M o d e l  E q u a t i o n s  

Newton's Second Law for node j gives 

n J  

i----1 

(4) 

where m j is the node's mass, a j is its acceleration, fo~te~ j is its interaction 
with the skull defined by (3), fi,~ner3d is the interaction between nodes j and 

J defined by (2) and g is the gravity acceleration, while J J s j } is the 8 1 ' 8 2 ' ' "  ' n3  8 i 

set of the neighboring nodes of the node j .  Equation (4) represents a system of 
second order nonlinear ordinary differential equations. 

One can define the state variables to be x2 j -1  = rJ and x2d = v j for j = 
1 , . . . ,  N,  where N is the number of the brain model nodes. Obviously, x2j-1 = 
x2j. The expression for 5~2j follows directly from (4). It depends only on state 
variables but not on their time derivatives. Now it is clear that  (4) can be 
rewritten in the compact state-space form 

2 = f ( x ) ,  (5) 

where 2d is the vector of the state variables. It is assumed that  the brain starts 
deforming from a rest position, i.e. vJ( t  = 0) = 0 for all j .  The initial node 
positions rJ (t = 0) were obtained from the preoperative images, as discussed in 
the next section. 

The system defined by (5) is suitable for numerical integration (see [4]). 
In this case the fourth order Runge-Kutta method with adaptive stepsize was 
employed. 

3 R e s u l t s  

3.1 2D R e s u l t s  

The mid-sagittal slice of a MRI data set is chosen for testing the 2D model. We 
developed a tool in MATLAB for preprocessing the slice and setting the initial 
model state. A part  of the skull is artificially erased to simulate the craniotomy. 
The tool allows one to set the tissue properties, which affect the node masses 
and connection parameters, to define the initial node positions as well as the 
orientation of the head. It also offers an initial level of automation. Figure 1 
shows the head in a certain orientation and the corresponding 2D mesh. 

As the model deforms in time, the nodes change positions and the image 
of the brain deforms. Since the deformation is rather small one can assume 
that  the interior of each triangle in the model deforms in an affine manner, 
as dictated by the following equations. Let i i (x i i ( x l , y l )  , (x~,yi2) and ~ 3,Y3J be the 

c c X c c node coordinates of a triangle in the initial state and (xl,  Yl), (x~, y~) and ( 3, Y3) 
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Fig. 1. The initial node positions as well as the connection properties are set by a 
special purpose tool developed in MATLAB. 

their corresponding coordinates in the current state. One can define local triangle 
coordinates c~ and ~ through the following equation 

rx l 

where 0 < c~ < 1, 0 <_ fl < 1 - ~ and (x i, yi) is a point inside or at the boundary 
of the initial triangle. The affine transformation is defined by 

yc (7) 

where (x c, yC) is the point in the current triangle corresponding to (x i, yi). One 
can eliminate a and/3 from (6) and (7) obtaining the direct affine transformation 
between the two triangles. The transformation is invertable as long as both trian- 
gles have non-zero areas. This is true since the deformation is small and triangles 
do not change shape significantly, preserving non-zero areas. Equations (6) and 
(7) are used to calculate the image deformation knowing the node positions in 
time. 

Although the tissue properties could be set locally, at this point the brain is 
assumed to be homogeneous. A time sequence of a deforming brain is shown in 
Fig. 2. Figures 3 and 4 show the difference in the brain deformation if the tissue 
is made stiffer 2, but  still homogeneous. The final (rest) state is the state after 
which there is no noticeable change in the model. For a 2D brain model with 176 
brain nodes, 57 skull (rigid) nodes and 469 connections it takes approximately 
ten minutes to simulate the brain deformation to the rest state on a Hewlett 
Packard 9000 (Cl l0)  machine. However, the code was not optimized for an 

The "stiffer" case has 10 times greater the stiffness coefficient (k~ in (2)) than the 
"softer case". 
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efficient computation. The primary goal was to test the model but certainly 
there are many ways to go about reducing the simulation time. More simulation 
results can be found at h t tp : / /pantheon.yale .edu/~os28/ .  

Fig. 2. A time sequence showing the brain model deformation. From left to right are 
the initial state, two middle states and the final (rest) state after equal intervals. As 
the brain settles down due to gravity, there are not only posterior movements, but also 
slight extensions in superior and inferior directions. 

Fig. 3. Deformation comparison of the models with different tissue properties. (a) 
initial state, (b) final (rest) state for a "softer" case, (c) final (rest) state for a "stiffer" 
case. Note the difference in the curvature of the brain boundary at the position of the 
skull opening for the two cases. The largest deformation is at the anterior part of the 
brain. 

3.2 3D R e s u l t s  

The initial state geometry of the 3D model is based on a MRI dataset of a 
patient 's head. The aforementioned tool allows one to create an artificial cran- 
iotomy, set tissue properties and the model orientation and automatically set the 
model connections and initial node positions. The equations driving the model 
are completely analogous to the ones in the 2D case, the only difference being 
the number of nodes and connections. Figure 5 represents a time sequence of 
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Fig. 4. Deformation comparison of the models with different tissue properties (another 
angle). (a) Initial state, (b) final (rest) state for a "softer" case, (c) final (rest) state 
for a "stiffer" case. Note the deformation at the top of the superior part of the brain. 

states of the model in a certain orientation. The sequence shows how the brain 
settles down, supported by the skull and other surrounding structures. Figure 6 
shows a t ime sequence of states for the model in another orientation. 

The 3D model has 1093 nodes and 4855 connections. I t  takes approximately 
four hours for the simulation to reach the final state. At the other hand a real 
brain typically deforms for 30 minutes, which is about  8 times smaller than  the 
simulation time. However, we believe tha t  computat ional  t ime can be reduced to 
or close to 30 minutes for the following reasons. We employed the fourth order 
Runge-Kut ta  method for numerical integration which is not the fastest method 
(see [4]). Also, we imposed rather  strict conditions on the precision (required 
for the adaptive stepsize control part) .  By relaxing them one can increase the 
computat ional  efficiency. Moreover, one can optimize the da ta  organization for 
the specific application further reducing the simulation time. Finally, the com- 
putat ional  t ime can be reduced by using a faster computer.  

Fig. 5. A time sequence of model states equidistant in time. The left image represents 
the initial state while the right one shows the final (rest) model state. The brain slightly 
settles down due to gravity. One can notice through the artificially made craniotomy 
the increase in the gap between the skull and the brain over time (the black gap under 
the arrow). For larger images refer to http://pantheon.yale.edu/Nos28/. 
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Fig. 6. Another time sequence of model states equidistant in time. The left image 
represents the initial state while the right one shows the final (rest) model state. Note 
how the brain settles down (the increase in the top black gap under the arrow). As 
opposed to Fig. 5 in this case the gap between the brain and the skull at the craniotomy 
decreases over time. 

4 D i s c u s s i o n  

The two main problems with this modeling are how to reliably estimate the 
model parameters and how to validate the model deformation. Research is be- 
ing conducted in our laboratory addressing both problems. Since the physical 
brain tissue properties in humans and animals are very similar one can perform 
tissue property measurements on an animal brain. Those results can be used to 
initialize the model parameters. However, brain tissue properties might change 
during the surgery due to reducing intracranial pressure, by controlling C02 
concentration in the blood and reducing the water content of the brain by ad- 
ministering an osmotically active drug. Cerebrospinal fluid also leaks from the 
subarachnoid space at a variable rate. We are working on including these effects 
both directly in the model as well as through intraoperative information tha t  
will guide the model. Currently our model incorporates the visco-elastic brain 
tissue properties, initially set homogeneously within the brain, and the effect of 
gravity. In addition, our current research includes cerebrospinal fluid modeling 
motivated by interaction between fluid particles given by Lennard-Jones model 
(see [11], Chapter 15). Since the grey and white mat ter  do not have the same 
visco-elastic properties the geometry of the sulci affects the brain deformation. 
This is also a problem we are working on. 

We believe that  our model, with appropriately set tissue parameters and 
intraoperatively guided, can significantly reduce the error introduced by the 
brain shift, making the surgical navigation system more precise and reliable. 
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