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Abs t r ac t .  From a set of temporally separated scannings of the same 
anatomical structure we wish to identify and analyze the growth in terms 
of a metamorphosis. That is, we study the temporal change of shape 
which may provide an understanding of the biological processes which 
govern the growth process. We subdivide the growth analysis into growth 
simulation, growth modelling, and finally the growth analysis. In this 
paper, we present results of growth simulation of the mandible from 3 
scannings of the same patient in the age of 9 months, 21 months, and 
7 years. We also present the first growth models and growth analyzes. 
The ultimative goal is to predict/simulate human growth which would 
be extremely useful in many surgical procedures. 

1 I n t r o d u c t i o n  

This paper  presents a non-linear growth model which to a very good approxima- 
tion interpolates the growth as seen on the human mandible (the lower jaw). The 
results comply with the existing 2D theory on mandibular  growth [1]. These ex- 
periments use a unique 4D data  set containing three Computerized Tomography 
(CT) scans I of the same patient with Apert  syndrom, but with normal  mandibu-  
lar development, taken at three ages (9 months,  21 months,  and 7 years old). 
In many  situations, surgeons need information about  the growth of the jaws, 
particularly when performing pediatric cranio-facial surgery. After surgery, the 
bones continue to grow, and therefore in order to optimize the intervention, 
there is a need to predict /s imulate growth. Also for basic understanding and 
teaching, we have a need for these models. We subdivide the growth study into 
growth simulation, growth modelling, and finally the growth analysis. Growth 
simulation is the da ta  driven analysis, where we try to fit an (almost) arbi t rary 
model to the data. In growth modelling, we have a model and wish to evaluate 
if the da ta  fits the model. When we are doing growth analysis, the process is 
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1 The scans were performed for diagnostic and treament planning purposes. 
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reversed, and we try to extract information from the models, such as active ar- 
eas, spatial correlations, predicted changes, etc. In contrast to normal biological 
tissue growth, bone grows only on the surface. The interior is rigid and does 
not change shape [1]. The growth of a bone can be subdivided into deposition 
(adding bone) and resorption (removal of bone). Because the deposition and re- 
sorption happen all over the surface of the bone at different speeds, this results 
in non-linear growth [1]. For the mandible the condyles are the most active areas, 
and are therefore important  to be followed over time. Homologous 2 points fol- 
lowed over time, define a spatio-temporal vector field (the growth vector field or 
just vector field or flow field). The goal of growth simulation is the identification 
of the spatio-temporal vector field. Many different vector fields will satisfy the 
constraints given by the data and the definitions of homologous points. Thus a 
growth model (or interpolation model) must be used for the determination of a 
unique vector field. 

Fig. 1. Flow chart of the algorithms involved in the growth analysis. 

We distinguish between models having the same number of degrees of free- 
dom as the data  and over-constrained models. We will use the first in the process 
of growth simulations, while over-constrained models are used for growth mod- 
elling. The simulation is a mere data  interpolation, whereas the modelling will 
test whether data  comply to a given model. In Figure 1 the information flow is 
shown. 

Finally, in the growth analysis, we will extract information from the simulated 
or modelled vector field in order to identify local biological processes and/or  
physical conditions that  govern the remodelling of the bone. I n  this paper, we 
estimate the resorption and deposition on the surface of the mandibular  bone. 

In earlier work on simulating the growth of the mandibular bone [2] the 
interpolation has been performed directly on the surface position. But the time 
steps are large, and a direct surface position interpolation as carried out in 

2 Homologous = having the same relative position, value, or structure. 
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that  work will not preserve the overall shape. Thus, intermediate steps will not 
necessarily look like mandibles. See figure 2. 

t-----~ - - - -  ~ ' -=  1 t=O - t----'---- 1 

Fig. 2. Surface interpolation illustration to the left is a linear interpolation in position 
of closest point. The top at t = 0 will disappear and at the same t ime a new top 
will appear. To the right is a linear interpolation of shape feature positions such as 
maximal ly  curved points on the surface. Here, the top moves to the right over time. 

In Section 2, we will give one definition of homologous points in terms of 
the extremal mesh [15] (which are lines) and the different types of ridge lines. 
These homologous equivalent lines are matched, as described in Section 3. Since 
this yields a very sparse vector field the interpolation becomes crucial and is 
described in Section 4. In Section 5, we describe existing 2D models of the growth 
of the mandible, and use these models for a 3D growth modelling. In Section 6, 
we extract properties of the modelled flow fields such as the local amount of 
resorption and deposition. Section 7 discusses our results and describes future 
work. 

2 L o c a l  S h a p e  F e a t u r e s  

The growth vector field links homologous points, or points of equivalent  mor -  
phology. In this section, we define equivalence classes of points on a surface. 
The local shape of a surface is totally characterized by the principal curvatures 
kl, k2 (kl > k2) and their derivatives in the coordinate system defined by the 
principal directions (tl, t2) [6]. Since the bone topology is not changing in our 

Fig. 3. The crest lines on the three smoothed mandibles at 9 months  (left), 21 months  
(middle), and 7 years old (right). The surfaces are translucent. 

studies, we may model the growth process by a 3D diffeomorphism (a one-to-one 
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differential mapping). This corresponds to D'Arcy Thompson classical methods 
of transformations [5]. The principal curvatures and directions will in general 
change when exposed to this non-linear diffeomorphism, and cannot directly be 
used for registration. However, certain shape singularities are stable in the sense 
that they cannot be removed by an infinitesimal perturbation [3]. Here, we give 
a list of some stable shape features. 

Shape feature Definition Dimensionality 
Umbilie point 
Critical curvedness [11] 
Extremal points 
Parabolic line 
Ridge line (or extremal mesh) 
Crest line 
Sub-parabolic line [3] 

kl = k2 0 
Ot,C=OAOt2C=O, deftC=k~+k~ 0 

Oq kl = 0 A Ot2k2 = 0 0 
kl ' -OVk2=O 1 

Oq kl = 0 V Ot2k2 = 0 1 
Or,k1 = OAOtpkt < O, deft Ik~l > Ik21 1 

Ot2kl = 0 V Or,k2 = 0 1 

Shape features with dimension > 2 will not be discussed in this paper. 
The ridge lines (or extremal mesh) can be partitioned into four types corre- 

sponding to respectively maximum or minimum in kl and k2. We use the maxima 
in (the absolute value of) both kl and k2. 

The above mentioned shape features are all structurally stable, but even 
though they can not be removed by infinitesimal perturbations, they will in 
general change topology under finite perturbations. 

We work with the extraction and matching of ridge lines in a scale-space set- 
ting [10] (see the following section). Also the scale-space evolution of ridge lines 
is not totally understod even though some aspects are covered in the literature 
[4, 7, 8]. Thus, theoretical issues are still to be clarified. However, by making a 
matching which only accepts good matches (see the following section), we obtain 
satisfying results. The crest lines of the mandibles can be seen in Figure 3. 

3 Feature Matching 

As features we will only consider the lines with maximally kl (crest-lines) and 
maximally k2 (here, called k2-max lines) in the extremal mesh. The overall frarae- 
work follows the ideas of [14]. First we extract the crest lines and k2-max lines 
for each dataset at scale 3.0 (matching scale) and 1.0 (localization scale). The 
crest lines at scale 3.0 are registered pairwise (here, it means only the temporally 
neighboring datavolumes), and initial vector fields are calculated. The k2-rnax 
lines are then deformed according the initial vector fields and registered. From 
the two sets of matches (one from the crest-lines, the other from the k2-max 
lines) final vector fields are calculated. This procedure is repeated for scale 1.0, 
but the lines are initially deformed according to the the final vector fields for 
scale 3.0. 

The steps in the registration are always the same. First moment-registration, 
then two first order polynomial deformations, followed by two second order poly- 
nomial deformations. Lastly a totally non-rigid deformation is applied (all points 
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on the lines move freely). For all the registration methods (including the non- 
rigid) they must  satisfy the restriction that  the deformation must  be a 3D dif- 
feomorphism. See Figure 6 for an example of matches between two set of crest 
lines at scale 3.0. 

4 F l o w  I n t e r p o l a t i o n  

The matching provides us with a very sparse set of vectors. This vector field must  
be interpolated such as to yield a differentiable spatially dense field of spatio- 
temporal  deformation vectors: A diffeomorphism (that its, spatial the Jacobian 
is nowhere vanishing). 

We wish the interpolation to satisfy the following constraints: (i) approxima- 
tion, (ii) regularity, (iii) shadowing, (iv) max imum principle. (i) The interpolated 
vector field must  approximate  the da ta  values well since localization of the fea- 
tures are assumed relatively precise. (ii) In regions of missing features a smooth 
solution must  be created. We do assume a regular growth. (iii) The da ta  must  be 
able of shadowing each other. Tha t  is, in a given direction only the nearest da ta  
must  be weighted. In this way, we avoid that  features from the "other side" of a 
thin structure influence the local solution. (iv) The solution must  not extend the 
solution to values larger than the largest da ta  value or smaller than the smallest 
da ta  value. We assume that  the ridge lines also correspond to lines of extreme 
growth. 

We address this as a statistical inference problem. Assume tha t  the covariance 
function C(x, x ~) is known. The covariance function expresses the covariance of 
the vector field values in two points x and xq Typically, the closer the points are, 
the more correlated their data  values are assumed to be. An interesting aspect 
is that  if this covariance defines a distribution of functions, and if C(x, x') = 
exp(-(Ix - x'l/A)~),  some well-known function classes appear  with probabil i ty 
1, for different choices of c~: a = 0 yields white noise, a E]0; 2[ yields fractional 
Brownian motions with c~ = 1 as the classical Brownian motion [12], while a = 2 
(the Gaussian) yields C ~ functions. Given the covariance function C(x, x') and 
an expression of the belief in da ta  as the assumed variance of da ta  values r 2 , we 
can make a max imum  likelihood estimation of f(x) as [16] 

w(x,:~)Q-lg(x) f(x) = (1) w(x,x)Q-11 
where w(x, x) is a vector containing wi = C(x, xi), and Q is a matr ix  containing 
Qi j  = C(xl, x2)+ r2(~ij. The intuitive interpretation of the introduction of Q-1 
is that ,  prior to the regularizations based on the covariance function, an inverse 
filtering is performed to make the samples uncorrelated. In terms of scale-space, 
we might say that  we have da ta  given at some scale )~. To interpolate, we first 
perform a deblurring to scale zero, then interpolate and then blur back to the 
current scale. 

This method satisfies all criteria when c~ = 1 and r = 0 [13]. ~ can be 
chosen freely, so as to adjust the smoothness of the interpolated vector field. In 
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Figure 4, the deformation of the mandible is shown as it is transported along 
the deformation vector field. 

F i g .  4. Result of deformations on the 7 years mandible using a second order polynomial 
model (see section 5). The top left and right images are the deformation at 9 months .and 
21 months, respectively. The bottom right image is the original 7 years old mandible. 

5 G r o w t h  M o d e l l i n g  

We have the general model g(O(x, y, z), t), g : 7r 3 ~-~ Tr 3 (for fixed t), and the 3D 
volumes vi(x, y, z), where O(x, y, z) is the parameters for g, and (x, y, z) defines 
a point in ~3.  t is the time. i = {1 , . . . ,  n}. n is the total number of volumes. 
ti is the time at the ith scan. We need to pick a reference volume, let's say Vn. 
All deformations will then be applied to this set, i.e. a simulated volume at t ime 
t is given by ~(g(O(x, y, z), t) ,  vn(x, y, z)) or On(x, y, z,t) for short. We want; to 
solve the problem 

0 = a r g  min ~-~ {~n(x , y , z , t i ) - v i ( x , y , z , t i ) }  2 (2) 
0 ~ I. ,y, 

Note, when having g(O(x, y, z), t), the actual deformation on the volume vn from 
time tn to t, can always be made by a linear deformation (we just pick the straight 
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Fig. 5. Left: Mandibular tracing at three age stages (this is not the same patient as 
for the CT scans) superimposed in a reference line in the corpus with reference to 
natural structures. Middle: Curve for yearly rate of condylar growth. Both plots are 
data from the same patient with a normal mandibular growth. Right: Mandibular growth 
tracing superimposed by means of metallic implants, illustrating the yearly growth and 
remodelling of the mandible and the eruption if the teeth, as seen in profile view. From 
[1]. 

line between two homologous points in 9 , ( x ,  y, z , t )  and v~(x, y, z)). In general, 
this leads to a non-linear optimization problem, but if we pick models, linear in 
the parameters,  regression analysis [9] can be used. Linear models 

g(0(x,  y, z), t) = 0(x, y, z ) ,  t (3) 

have been used in previous work [2]. This model has the drawback tha t  a point, 
p, can only grow in the direction of the vector O(p). From Figure 5, it is obvious 
that  the growth of the mandible is not linear. The simplest non-linear model is 
a polynomial  model (with k <_ 2) 

g ( O ( x , y , z ) , t )  : tkOk + . . . - t - t 2 0 2  q-t01 q- 00, 0 = [Ok--"02 01 00] (4) 

As seen from Figure 5, the growth speed is not constant, but this can be handled 
by the model by re-parametrizing the t ime variable, t. 

Because we only have three scans of the same patient, we can not go above the 
second order model 3 (k=2). A second order polynomial  model is est imated using 
the matches between scan one and two, and scan two and three. Interpolation 
of the volumes is carried out by deforming the last scan (see Figure 4). Because 
the calculation of the deformation field from one scan to the next scan is not 
perfect, we have some model errors (even though the model itself doesn ' t  have 
any error) which are seen in Figure 7. Other possible models include logarithmic 
spirals and power functions, known from the theory of growth [5] or spatially 
constrained models. 

3 This leads to a model error equal zero, because the number of parameters equals the 
number of volumes. 
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6 G r o w t h  A n a l y s i s  

The growth modelling is on its own also a growth analysis since residuals to 
an over-constrained model may be used for validating the model. The growth 
simulations, as we obtain it in Figure 4, can be used for a local characterization 
of the growth. The model errors at 9 months are shown in Figure 7. Using 
anatomical structures which are also spatially stable, a rigid registration of the 
different time instances of the bone can be obtained. In the mandible, the 'nerve 
canal is known to be spatially stable, and can serve as an anchor for a rigid 
registration. In this coordinate system, the spatio-temporal growth simulation 
vector field can be used directly for estimation of the amount  of surface resorption 
and deposition. In Figure 8 we show the surface remodelling in terms of a color 
coding of the mandible as respectively the remodelling (the local velocity vector 
projected to the surface normal) and the speed of the homologous points. The 
remodelling is consistent with earlier 2D studies on larger statistical material 
[1]. Especially we see the expected large movement of the condyle. 

7 S u m m a r y  

We have simulated the growth of the mandible from 3 CT scans of the same 
patient at ages 9 months, 21 months, and 7 years. The intermediate interpolated 
time instances also exhibit shapes that clearly are "mandible shaped". This is 
due to the strategy of interpolating in shape feature position instead of a sin:tple 
surface position interpolation [2]. The major errors in the simulations are found 
in the region where teeth are appearing. In principle, they should a priori have 
been removed from the mandible surfaces, as they are not part of the mandible 
but separate objects, and the shape change can not be contributed to a surface 
remodelling. The shape modelling in this paper has used simple second order 
polynomial temporal  models. They exhibit some inexpedient features inherent 
for polynomial approximations. An example is a tendency to a contraction of 
the two condyles towards each other if a time extrapolation is at tempted.  Since 
the ultimate goal of a growth analysis and modelling is a prediction of the 
shape of the craniofacial complex. Future work will be devoted to examination 
of superior temporal models and validation on more datasets. Extension of the 
feature matching from ridge lines to iso-surfaces, as mentioned in Figure 7, may 
reduce errors. Also development of a skeletal growth atlas, which contains growth 
models for all bones would be interesting. 
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C o m m e n t s  o n  co lo r  i m a g e s .  Fig .  6: The final matches (lines in black) be- 
tween two sets of crest lines. The crest lines on the 21 months and 7 years 
mandible are red and green, respectively. It is seen that  the condyles on the two 
mandibles are matched together. For visual clarity only every eighth match is 
shown. Fig .  7: The plots in the middle and right shows the frequency and accu- 
mulated distribution of the distance errors (the distance errors are measured as 
the minimal distances from the deformed surface to the original surface) between 
the 9 months old mandible and the 7 years old mandible deformed to 9 months. 
The mean error is 0.57ram, and 95% of the errors are less than 1.46mm. The 
maximal  error is 2.79mm. This should be compared to the size of the 7 years old 
mandible whice is approximately (X, Y, Z) = (80mm, 100rnm, 40ram). The left 
surface is colored red when the error > 1.46ram, else white. When the surface 
changes a lot the matching algorithm does not match with lines in the "holes" 
of the surface, but are more likely to match with a line on the "top", therefor we 
see the errors located at places with a lot of changes in the shape. If  we applied a 
surface to surface registration afterwards, the errors would be minimal.  Fig .  8: 
First row: The 7 years mandible colored with the local velocity vector projected 
to the surface normal  (left) and the length of the velocity vector (right). The 
next row shows X (first two images), Y (next two images), and Z (last two im- 
ages) components  of the velocity vector (projection and length, respectively). 
Read text in "Growth Analysis" for further explanation. 
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Fig. 6. See "Comments on color images". 

Fig. 7. See "Comments on color images". 

Fig. 8. See "Comments on color images". 


