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Abstract. We have implemented automatic 3D thin-plate spline warping as a 
geometric interpolant to map one dataset volume onto another. Homologous 
control points in one space are iteratively moved by an optimizer to maximize 
the global mutual information between the two data volumes. Given two 
different poses between highly deformed objects we desire to compute the 
relative geometric deformation using a minimal set of control points as 
determined by number and placement. The general solution to this problem is 
not known. In this paper we assess retrospective control point selection for the 
case of significant patient motion during MRI breast imaging. 

1 Introduction 

Optimization of mutual information (MI) to drive the automatic affine registration 
of multimodality data volume sets has been actively pursued for the last 3-4 years 
[1-6]. Over the last 2 year period we have demonstrated that MI can be used to drive 
automatic thin-plate spline (TPS) warping as well [7-10]. The process is implemented 
by allowing an optimizer, the Nelder-Mead simplex algorithm in this case, to drive the 
positions of homologous control points in the homologous data set, i.e. the data 
volume to be mapped onto the reference volume, subject to maximizing the resultant 
MI between the reference volume and the transformed homologous volume. 

For cases where the bending energy of the TPS warping is small [11], nearly any 
evenly distributed, volumetric placement of a few control points, e.g. more than four 
and fewer than 10, in the reference volume is sufficient to compute a good 
registration. In our typical implementation only the first 3 homologous control point 
pairs must be initially placed in the homologous volume. Then the 6 degree of 
freedom (DOF) rigid body registration is computed by the optimizer's movement of 
the 3 control points in homologous space to maximize MI. Next, using the optimized 
rigid body model, the first 4 control points in the reference space are mapped into the 
homologous space, and then the 12 DOF, full affine registration is subsequently 
computed, again by optimizing MI through iterative movement of the 4 control points 
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in homologous space. Finally the optimized warping solution is initiated by using the 
previously optimized full affine solution to map all of the reference control points into 
the homologous volume. 

However, in cases involving significant deformation between initial poses of the 
data sets, our typical implementation described above may fail. For these problematic 
circumstances we desire to know the minimal number of homologous control point 
pairs and the range of their initial placement to subsequently converge to a good 
geometric model of the warping between the two poses. The remainder of this paper 
examines criteria for the retrospective evaluation of control point pairs in the situation 
where the DOF of the warping is initially overdetermined, i.e. more than the 
necessary number of homologous control point pairs are initially chosen to determine 
the warp. The physical data set and registered results appear in the latter part of this 
paper. 

2 Methods 

Although the algorithm, mutual information for multimodality image fusion 
(MIAMI Fuse), was developed for multimodality registration, in this case it has been 
applied to two MRI breast volumes acquired before and after significant patient 
movement. A case for the use of a multimodality registration algorithm can be made 
by noting that tissue intensities can vary dramatically depending on changes in tissue 
positioning with respect to breast coil location, i.e. Bl-field inhomogeneitities. 
Repositioning of the breast occurs with patient movements during a single exam, or 
more obviously when exams are repeated at 6-12 week intervals. Volume imaging 
data were acquired in coronal planes over both breasts of the patient lying prone over 
breast coil wells inside the 1.5T magnet. Voxel dimensions were 1.18 x 1.18 x 5.5 
mm 3. Since only the patient's left breast was significantly deformed, 18 nearly 
homologous control points in the left breast were identified manually in both the pre 
and post movement data volume. Using these points as the initial starting vector for 
automatic registration via TPS warping resulted in an initial MI of 1.01 bits, where the 
entropy in the reference data set was 4.576 bits. The optimization algorithm was 
repeatedly run from start to finish 8 times using random control point placements up 
to 3 mm city block metric from the manually chosen starting vector. Each 
optimization "run" consists of many repeated optimization cycles. Each cycle 
consists of a single decent to the cost function, i.e. -MI, minimum, where the 
minimum was detected when the optimizer called for all control points to move less 
than 0.5 mm in any coordinate axis direction from the previous iteration. The process 
of repeating optimization cycles stopped (which defined a "run") when the optimized 
cycle value of MI changed less than 0.0001 bit over 3 previous optimization cycles. 
This process of repeating optimizations from starting vectors randomly distributed 
around the previous cycle 's  solution is used to prevent entrapment by a local 
minimum. 



946 

3 Results 

As averaged over the 8 runs, 
the number of times the objective 
function was evaluated for each 
run was 12271 (sem = 1331). 
Each full run required an average 
of 2 hours on a 433 MHz DEC 
Alpha personal  works ta t ion  
running Digital UNIX V4.0C. 
Figure 1 describes the typical 
behavior of the cost function vs. 
number of iterations. 

The variance of each control 
point 's stopping position in each 
of the coordinate directions was computed and compared to the second partial 
derivative of the cost function in the same direction at one of the computed solutions 
for the same control point. Figure 2 illustrates the excellent inverse correlation 
between the components of the second partials and variance in the final control point 
positions. 

After removing the control point with the most variance, i.e. rms error for all three 
vector components, 8 more optimized registrations were completed. The same 
process was repeated using 16 and 10 control points where the points removed ranked 
highest in variance. In the original set of 18 control points, the standard error around 
the average solution for one (outlier) control point was more than 3 times that of the 
average, while two points were more than 2 times the average. In the distribution of 
final control point positions for the set of 17, all points had standard errors less than 
2 times the average. Figure 3 summarizes the generalized dependence of the final 
cost function, -MI, vs. number of control points or DOF. Although only the results 
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for < 16 control 
points are signif- 
icantly different 
from the result 
using 18 points, 
there appears to be 
a smooth trend 
towards lesser MI 
values  as the 
number of control 
points decrease, 
only. 

Finally in an 
effort to prospec- 
t ive ly  eva lua te  
which of the set of 
proposed control 
points might be 
the most valuable 
toward computing 
a good solution, 
we examined the 
initial  gradient  
magnitude of MI 
for each control 
po in t  at the 
manually selected 
starting vector. 

Fig. 4 illustra- 
tes the results of 
this experiment.  
Note that choos- 
ing control points 
according to rank 
by MI gradient 
magnitude at the 
start vector  re- 
moves  valuable  
points that had 
some  of the 
smaller variances 
around the final 
solution. The 
same lack of  
c o r r e l a t i o n  is 
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observed between init- 
ial gradient magnitude 
and the sum of the 
second partial deriv- 
ative components as 
shown in Fig. 5. 

The general problem 
is bet ter  visual ly 
illustrated by selecting 
the appropriate slices in 
the pre- and postmotion 
data sets. The presence 
of warping between the 
2 poses is clearly 
shown in Fig. 6 for the 
patient's left breast 
(seen on the reader's 
right, i.e. reader is 
viewing the patient 
f rom the front) .  
Although not demon- 
strated here, the right 
breast was much less 
de fo rmed  by the 
movement. 

Fig. 7 displays the 
geometr ic  warping 
computed to warp the 
postmotion data onto 
the premotion data 
using a gridded cube. 
One plane of the 
registered volume is 
shown in its correct 
position within the 
deformation grid (the 
viewer is now position- 
ed behind the patient). 
The deformation was 
computed using 18 
control points for the 
left breast. 

[Figure 61 Note significant deformation in left breast ($) before I 
I (upper) and after (lower) patient repositioning. I 

t,Figur  7. Volumetri c,deformation required to remove motion:, t 
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Figure 8. Difference volume obtained after mapping postmotion onto premotion data 
volume, where mapping was computed using 24 total control points. 

Figure 9. Difference volume obtained after mapping postmotion onto premotion data 
volume, where mapping was computed using 8 total control points. 
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Figs 8 and 9 demonstrate the improved spatial registration associated with the 
increase in number of effective control points or DOF. In Figs. 8 & 9 black-to-white 
represents a difference range from -128 to +128, respectively; perfect registration 
would be indicated by midscale gray corresponding to a difference of nearly zero. 
Essentially the same information is conveyed by Fig. 3 in terms of increasing MI 
(decreasing -MI)  as a function of number of control points, although the 
consequences are a little less visual. The use of a 6 control point, TPS warping was 
sufficient to register the right breast (seen in Fig. 9 on the reader's right as viewed 
from behind the patient). The combined registration was obtained using the 
separately computed, optimized positions for the 6 control points of the right breast 
and 18 control points of the left. A single 24 homologous point, TPS warping was 
computed to register the pre and post motion data sets. Data missing from the warped 
data set can be seen on the axial and sagittal planes in Fig. 8, where the mapping 
called for data that was outside the field of view of the postmotion data volume, and 
was thus rendered as zeros. In such cases of limited fields of view it is important not 
to penalize the resultant MI for the missing data that maps outside of the reference 
volume. 

4 Conclusions 

When the information content of the data volumes is sufficient, reliable TPS warped 
registrations can be routinely obtained, even in poses containing high bending energy. 
The minimal subset, i.e. number and placement, of control points in the reference and 
homologous data volumes is generally unknown to generate an acceptable solution as 
defined by a minimal mutual information criterion. In a retrospective evaluation of an 
overdetermined set of manually selected control points we found good inverse 
agreement between the curvature of the cost function, i.e. -MI, and the variance in the 
final positions of the control points. The greater the curvature of the cost function at 
its minimum with respect t o  movement of a control point in any one direction, the 
smaller the variance in the final resting position along that direction over repeated 
random trials. However, prospective evaluation of the local gradient magnitude of the 
cost function at potential, initial starting positions of the control functions was 
seemingly uncorrelated with the warping value of the control point as judged by either 
its variance or curvature at the locus of the final solution position. 

Clearly it is desirable to eliminate candidate control points from an automatic 
instantiation of an overdetermined grid of possible starting points. Just as clearly it is 
possible to eliminate some control points where one of the pairs lies centrally in a 
relatively large region of no texture where the optimizer can radically reposition the 
control point while generating large bending energies with little or no change in the 
MI cost function. However sorting of control points based on their registration value 
in computing the desired warping will likely require more than estimates of local MI 
gradients. 
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