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A b s t r a c t .  Ultrasonic acquisition, by its simplicity, low cost and non in- 
vasiveness, emerged as an essential supplementary examination for car- 
diovascular diseases. The aim of this study is to demonstrate the feasi- 
bility of a global branching artery modelling. A geometrical approach is 
used for that purpose. A surface, based on a deformable skeleton and 
envelope, is defined. Including the shape as an a priori knowledge, this 
surface is fitted with 3D ultrasonic data by an iterative downhill gradient 
descent. Quality of the fit is illustrated by figures and numerical results. 
This tool could be used for objective spatial quantification and can be a 
useful instrument for blood flow modelling. 

1 I N T R O D U C T I O N  

In industrialized countries, cardiovascular diseases are the most  significant mor- 
tality causes. In terms of frequency, morbidi ty and mortali ty,  coronary diseases 
represent the most  impor tant  part.  Infraclinic atherosclerosis is an abnormal-  
ity in-between cardiovascular risk factors and athero- thrombotic  complications. 
Its ultrasonic diagnosis on peripherical arteries, particularly carotid, is going to 
benefit f rom the introduction of 2.5D ultrasound (2D ultrasonic da ta  located in 
3D space [4]). Our objective is to initialize a 3D automat ic  analysis of the whole 
artery by fitting a global branching model to the branching of the carotid. This 
defines an absolute reference system, that  can improve the reproductibili ty of 
the ultrasonic exploration: tissular modifications can be followed in this refer- 
ence system. Such a system would be a potentially useful and objective tool to 
follow disease outcome or to describe therapeutic t reatment  efficiency. 

2 A N E W  B R A N C H I N G  M O D E L  

In the first approximation,  an arterial branching is a volumetric " Y " .  From this 
ensues one of the principal modelling difficulties: the shape is not homotopic  to 
a cylinder, a sphere, or a torus. So, we can not use deformable models like [5, 9] 
only defined for one of these different topologies. Furthermore,  generalization of 
these approaches to a branching topology appears as a difficult problem. 
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A branching rebuilding was considered in [6] but it doesn't deal with it glob- 
ally: each branch of the branching artery is rebuilt independently from the two 
others. The branching heart is then obtained by an interpolation between the 
three branches. In this context, the a priori knowledge intrinsically contained in 
the branching is not used for data  fitting. 

Another approach for rough branching reconstruction was presented in [1] by 
the use of implicit iso-surfaces generated by skeletons. In this rebuilding, we find 
again the previously described pitfall, but it could be interesting to establish 
relations between different parts of skeletons to integrate the a priori knowledge. 

Topologically adaptative deformable models are quoted in [8]. These have 
been shown to be promising in segmenting vascular structures in 2D and 3D 
images and in dealing effectively with branching. But contrary to these last two 
approaches, we focus on an explicit modeling of branches. 

The model that we developed includes the shape as an a priori knowledge. 
Its presentation is divided in two parts: the first one describes shape building, 
and the second one presents the classical rigid transformations applied to our 
model. 

2.1 T H E  S H A P E  

A shape description is presented figure 1. A surface M(t, v) is a function of two 
parameters t and v. Because a branching appears to be characterized by its up- 
per convexity, we model it by a plane curve, named e x t e r n a l  s k e l e t o n  Se and 
parameterized by t. To create the surface delimiting the branching, plane closed 
curves, parameterized by v, are built continuously on S~: their mathematical  
envelope then defines the branching. Each plane containing the plane curve is 
characterized by only one t; coefficients defining the curve are a function of t 
because of the continuous building. 

As regards the look of our plane curve, because we want to be synthetic and 
realistic, a plane superquadric seems to be a good candidate. Three elements are 
essential for its definition: the center and the two axis. One axis is defined in 
direction and norm by the center C of the superquadric and the point Me of S~ 
on which the superquadric is built. Now, if we consider the set of all centers when 
t is varying, we are naturally driven to the notion of the i n t e r n a l  s k e l e t o n  Si. 

So, the shape is made up of a skeleton and an envelope. This envelope is 
supported by the skeleton. The skeleton is split in two components, internal and 
external. 

T h e  e x t e r n a l  ske l e ton  Se. To keep the complexity down, Se must have 
a minimal number of degrees of freedom. We choose a "polynomial" paramet- 
ric plane curve coming from the cisso~d family [7] according to our modelling 
concept of the branching convexity and its simple definition by three shape pa- 
rameters. The coordinates of the current point Me(t) t E [-1..1] are shown in 
the equation (1). 
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Fig. 1. Description of the shape Fig. 2. Plane curves' base 

I al*t+a~*t2-I-a3*t3 I l + t  2 
Me(t )  = 0 = C + a l , M l ( t ) + a 2 . M 2 ( t ) + a 3 * M 3 ( t ) .  (1) t 2 

1 + 1+t2 

M3(t) covers a cissoYd and gives the branching idea. M2(t), describing a line, 
creates asymmetry. Ml(t)  is on a circle, making round S~ (see figure 2). This 
decomposition shows advantages of this external skeleton parameterization: we 
are "polynomial" with natural basic deformations. For the same degrees of free- 
dom, to build a model from a parabolic curve, for example, is not so obvious. 
Figure 4 shows different forms of S~ (thin upper curves). 

The  in te rna l  skeleton Si. The middle part of Si is defined by a plane curve 
coming from the cissoYd family (parameterized by u). Two splines with four con- 
trol points are added on each side to take information along upper branches into 
account. C1 continuity is assured. At this development state of the model, it is 
characterized by 14 parameters: three for S~, three for the central part of Si, and 
four parameters for each lateral splines. Figure 3 presents the building. Figure 4 
shows different forms of Si (thick lower curves). 

Cons is tency  of  the  skeleton. To guarantee the model definition, we must 
avoid geometric intersections between S~ and Si. For this reason, constraints on 
different shape parameters are imposed: Si is then characterized by five parame- 
ters. Figure 3 shows examples of constraints on control points: points at the ends 
of Si P4r and P4t are forced to travel on the half line orthogonal to the speed 
vector in Me(l) and Me(-1).  Points P3r and P31 cover segments of horizontal 
line. PI~, Plz, P2~, P2l are fixed by C1 continuity. Figure 4 shows different forms 
of skeleton. 

Furthermore, to build a surface parameterized by t, we have to establish a 
one-to-one mapping between S~ and S~. Let Mi(u) be the unique point of Si 
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Fig. 3. Internal skeleton building with 
constraints on control points 

Fig. 4. Example of skeleton for differ- 
ent shape parameters 

corresponding to Me(t), one point of Se. We propose to define M,(u) by the 
equation (2) : 

M,(u)M (tt dM   t(t - o . (2) 

This last equation is cubic in u. Thanks to the constraints on parameters ,  we 
obtain an explicit solution u of t by the use of CARDAN's  formula. Each point 
of S~ is then located by a unique t (see figure 5). An explicit relation between 
these two curves is a main point for the model efficiency, because no numericM 
estimations are needed for describing exactly the surface. 

Me(-1) 
Me(t) 

\ 

Me(l} 
Se(O / Si(u) _l ~with u~(t) 

Fig. 5. Illustration of the one-to-one 
mapping between S~ and Si 
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Fig. 6. Representation of the minor 
axis 
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T h e  enve lope .  The final surface is obtained by a continuous juxtaposition 
of 2D superquadrics [3]. Each superquadric i is bound to the external skeleton 
at point Me(ti). Its center is the image Mi (u(ti)) by the bijection defined in (2). 
Thus, the branching surface is defined by the following 3D vector: 

i ( t ,  v) = ~[(t, v) + ~ ( t ,  v) . 
~i~(t, v) = Mi(u(t))Me(t t * cos(v) ~(t) . (3) 

(t, v) = b(t) , , sin(v) (t) 

V(t-~ is the unit vector normal to the plane 7 ) in Mi(u(t)). 7 ) is defined by 
the equation (4). An illustration is shown in the figure 6. 

P:  (M,(u(t)), M,(u(t))Me(tl, ~ )  . (4) 

b(t) represents the "minor" axis norm of the 2D superquadric: it is defined 
for t E [-1, 1] by two splines with four control points, with a C1 continuity in 
t = 0. Six constraint parameters are necessary to characterize it. 

c(t) is a function defined for t C [-1, 1] with values in ]0, 1]. This function 
allows deformations of 2D superquadrics from an ellipse to a rectangle: a better 
fit can then be reached in the central region of the artery. Its definition using 
three parameters a,/~, 7 is the following: 

~2(,) 
c(t) = a + ( 1 -  a ) ,  " ( 5 )  

= ( t  + 

Finally, we build a branching shape with 17 parameters (shape parameters). 
Each parameter value has been specifically restricted according to geometric 
model properties to maintain a meaning shape. Examples of surfaces are pre- 
sented in the figure 7. 

2 .2  R I G I D  T R A N S F O R M A T I O N S  

The rigid transformations applied to our model are classically defined by 7 pa- 
rameters (spatial parameters): three Euler angles r three translation pa- 
rameters Tx,Ty,Tz and one size factor S. 

3 M I N I M I Z A T I O N  M E T H O D  

Let Nd data points Mi i----1..Nd extracted from ultrasonic data  (see section 4). An 
energy g is defined in (6) as the euclidean distance of data  points to the surface. 
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Nd 

s =  ~ - ] l l g i P M , ( t , ,  v , , X l l l  2 . (6) 
i = 1  

It is a function of 24 parameters )(3-/=1..24:17 shape parameters and 7 spa- 
tial parameters. "PM~(ti, vi, X) represents the projection of Mi on the surface, 
ti, vi its parameters. An explicit derivative of the cost function according to each 
parameter Xj is computed by Maple software (Maple V Release 4). We use a 
Fletcher-Reeves-Polak-Ribiere minimization [10]. During this iterative descent 
method, we respect the constraints on each parameter by a simple projection 
according to the descent direction. To decrease time consuming, we do not es- 
timate the energy function during a descent step. All spatial and shape param- 
eters are adjusted simultaneously, so most of the given data points lie close to 
the model's surface. Initial spatial position is defined manually by selection of 
the three branching ends. Initial shape parameters are fixed to neutral position 
according to the definition field. Because of the non convexity of the cost func- 
tion, and the non convexity of the constraints domain, this minimization drives 
us to the nearest local minima. 

4 D A T A  C O L L E C T I O N  

Data are obtained with collaboration of the Department of Internal Medicine 
and Cardiology at the Grenoble University Hospital. Echographic images are 
acquired by a HP SONOS (Hewlett-Packard, Santa Clara, California, USA) ul- 
trasonic system. They are stored on an optical disk and computed on a worksta- 
tion (HP 715/100). A set of 4366 2D points are generated by a semiautomatic 
segmentation step. 

During the medical exploration, the ultrasonic system is connected to an op- 
tical localizer (Optotrak Northern Digital Inc.). To collect 2.5D data [4], a six 
degrees-of-freedom optical tracking device attached to the ultrasound probe is 
used. The optical tracking system works with infrared diodes put on the probe 
which are then located by three fixed CCD cameras (Optotrak Northern Digi- 
tal Inc.). Position and orientation of the echographic planes are thus obtained 
during all the exploration. Thanks to a temporal synchronization between echo- 
graphic and spatial data, 3D spatial coordinates for each previous 2D points are 
computed. 

5 R E S U L T S  

Thanks to the a priori knowledge contained in the model, the initialization of 
the minimization process is easy. Figure 7c shows distance from data to surface 
resulting from the minimization process. Compared to the figure 7a, one can 
clearly notice a visual improvment with regard to the data fitting. Numerically, 
with the previously described data collection, the rms for the cost function de- 
creases from 1.17 to 0.56. Because of the great number of data, the time limiting 
element of the minimization process is the downhill direction evaluation. 
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Fig. 7. (a) shows initial surface, distance (gray lines) from data (white points) to 
the initial surface and parts of the skeleton (black lines). (b) represents data (black 
points) and deformations of the skeleton (black lines): the top part of the figure shows 
the initial skeleton; the bottom part, the final skeleton resulting from the minimization 
process. (c) illustrates final surface, distance (gray lines) from data (white points) to 
the final surface, and parts of the skeleton (black lines). 

6 DISCUSSION AND CONCLUSION 

6.1 A D V A N T A G E S  A N D  P I T F A L L S  

In medical ultrasonic investigation, image analysis is in progress, but only few 
methods are able to describe automatically the division of one artery in two 
branches [6, 2]: the first one uses an interpolation of explicit generalized cylin- 
ders; the second one uses an implicit approach. To our knowledge, no explicit 
deformable branching model incorporating the shape as an a priori information 
had been developed. The aim of this geometric model is to demonstrate the fea- 
sibility of modelling the branching artery globally. This region of interest is fitted 
in one step by 24 parameters. Our tool takes into account the angle between the 
two derived arterial branches. A potential asymmetry between the branches is 
included by our model, which confirms its deformation capacity. 

One of the pitfalls of our model is the relatively high number of parameters. 
Pertinence of model's parameters must be tested in the future. In the same time, 
parameters constraints may be reviewed to impose identifiability of the model. 

6.2 P E R S P E C T I V E S  

The top part of the figure 7b shows data and initial skeleton; the bottom, the 
same data, the skeleton resulting from the minimization process and an unappro- 
priatness between the size of each branch and the deepest point of the branching 
convexity. This remark could explain the relatively bad value of the residual er- 
ror. The minimization result seems overevaluated. It could be easily improved 
by adding another longitudinal scale parameter for the external skeleton. 
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Our da ta  collection corresponds to a cross sectionM study. We need some 
longitudinal information to test the reproducibility and the parameters  sensibil- 
ity of our model. This tool is promising. It  could be used for all the branching 
vessels acquired by ultrasonic system (femoral, renal, popliteal divisions). It  is 
known that  ultrasonic slices are very noisy. Investigations by CT scan or MRN 
could be interesting. The use of our model could be extended, particularly to 
cerebral, coronary or hepatic branching vessels. 

Our geometric model will be the first step to an accurate quantification of 
this artery part .  It  will be a measurement  tool to evaluate new medical thera- 
peutics tested to slow down atherosclerosis evolution. I t  could be an element in 
medical decision making, in order to optimize the cost/benefit  equation. 

At last, in physiological medical research, our model which creates a virtual 
branching surface from 3D real da ta  could be included in hemodynamic  vascular 
model to test the local repercussion of turbulence on the atherosclerosis outcome. 
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