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A b s t r a c t .  We provide in this article a generic framework for pose es- 
timation from geometric features. We propose more particularly two al- 
gorithms: a gradient descent on the Riemannian least squares distance 
and on the Mahalanobis distance. For each method, we provide a way 
to compute the uncertainty of the resulting transformation. The analysis 
and comparison of the algorithms show their advantages and drawbacks 
and point out the very good prediction on the transformation accuracy. 
An application in medical image analysis validates the uncertainty esti- 
mation on real data and demonstrates that, using adapted and rigorous 
tools, we can detect very small modifications in medical images. We 
believe that these algorithms could be easily embedded in many applica- 
tions and provide a thorough basis for computing many image statistics. 

1 Introduct ion 

Registration is a fundamental task in medical imaging to compare images taken 
at different times for diagnosis or therapy. In the case of images of the same 
patient, one often assume that  the motion between the images is rigid, and 
registration consists in estimating the six parameters of the 3D rotation and 
translation. When registration is based on features extracted from the images, 
the problem can be separated into two steps: (1) finding the correspondences be- 
tween features (matches) and (2) computing the geometric transformation that  
maps one set of features to the other. In this article, we do not discuss matching 
methods per se, but  rather the estimation of the geometric transformation from 
matched features. The quantification of the registration quality is also an im- 
portant  problem as most measurements are done after registration. For instance, 
registration errors can have a strong influence on the quantification of the lesion 
evolution [3]. Knowing the uncertainty of the transformation might even be vital 
in image guided surgery when it comes to operate close to important  anatomical 
structures. 

Most existing methods for computing 3D rigid motion deal with sets of 
matched points and minimize the sum of square distances after registration. 
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This is called the orthogonal Procrustes problem in statistics, the absolute orien- 
tation problem in photogrammetry and the pose estimation problem in computer 
vision. Several closed form solutions have been developed, using unit quaternions 
[4], singular value decomposition (SVD) [9, 11], Polar decomposition [5] or dual 
quaternions [12]. However, models of the real world often require more complex 
features like lines [2], planes, oriented points or frames. Traditional methods rely 
on the vector space structure of points and generalizing them directly to other 
types of features leads to paradoxes. For instance, depending on the representa- 
tion used, the standard expectation could take an arbitrary value [7]. Moreover, 
if uncertainty handling is a central topic in several works, like [1], there are much 
fewer studies dealing with the accuracy of the estimated transformation. 

We first review some notions of Pdemannian geometry in order to introduce 
proper tools on geometric features. Then, we develop a pose estimation criterion 
based on the Riemannian least-squares and another based on the intrinsic Ma- 
halanobis distance, and provide a way to compute an estimation of the result 
accuracy (generalizing the approache of [8] to any kind of features). In the last 
section, we investigate a practical case in Medical Image Analysis: the registra- 
tion of MRI images of the head, where the availability of each image in two 
different echoes allows us to test for the uncertainty prediction. 

2 G e o m e t r i c  F e a t u r e s  

Geodesics Geometric features like lines, planes, oriented points, frames, etc. 
generally belong to a manifold and not to a vector space. In the geometric 
framework, one specifies the structure of a manifold Az[ by a Riemannian metric. 
This is a continuous collection of dot products on the tangent space at each point 
x of the manifold. Thus, if we consider a curve on the manifold, we can compute 
at each point its instantaneous speed. The length of the curve is obtained as 
usual by integrating it along the curve. The distance between two points of 
a connected Riemannian manifold is the minimum length among the curves 
joining these points. The curves realizing this minimum for any two points of 
the manifold are called geodesics. 

Exponential charts Let us develop the manifold in the tangent space at point 
x along the geodesics (think of rolling a sphere along its tangent plane). The 
geodesics going through that point are transformed into straight lines and the 
distance along these geodesics are conserved. This generates a chart called the 
exponential chart. It covers all the manifold except a set of null measure called 
the cut locus. Let ~ be the representation of y in this chart. Then its distance 
to x is dist(x, y) = llx--~ll. This means that the exponential chart is a linear 
representation of the manifold with respect to the development point. 

Invariant distance Since we are working with a transformation group that mod- 
els the possible image viewpoints, it is natural to choose an invariant Riemannian 
metric on the manifold. This way, all the measurements based on distance are 
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independent of the image reference frame. Denoting by f , x  the action of trans- 
formation f on feature x, the distance is invariant if dist(x, y) = dis t ( f*  x, f ,  y). 
Existence conditions for such a metric are detailes in [7]. 

Principal chart Let o be a point of the manifold that  we call the origin and 
fx be a '~placement function" (a transformation such that  fx * o = x). We call 
principal chart the exponential chart at the origin and we denote by ~ the rep- 
resentation of x in this chart. In this chart, the distance becomes: dist(x, y) = 
dist (f~'~) * y, o) = II~ -~) *YH. In fact, we can express all operations of interest for 
us from the following "atomic operation~' and their Jacobians in the principal 
chart: t h e  ac t i on  [f ,~]  of a transformation and t he  p l a c e m e n t  f u n c t i o n  [f~]. 

The transformation group Since thegroup  acts on itself, we just  have to replace 
the action by the composition [f o ~ and add the inversion If'(-')] to the 
atomic operations. The placement function disappears (it is the identity). An 
important property of the invariant metric is that  it relates the exponential chart 
at  any point f with the principal chart. Using the non-orthogonal coordinate 
system induced by the principal chart, we have: ~g = JL(f)(f  (-~) o g), where 
j(~) = o(~O~)o~ ~= :d is the Jacobian of the left translation of the identity in the 
principal chart. From a practical point of view, this means that  we can '%ranslate" 
local calculations on points to the principal chart of our transformation group 
by replacing 9 - f with ~g and f + 5-~ with exp~(~)  = f o  (JL(f~)t-1)~f). 

Example of ]eatures We have implemented this framework for 3D rigid transfor- 
mations acting on frames, semi-oriented frames and points. Frames are composed 
of a point and an orthonormal trihedron and are equivalent to rigid transfor- 
mations. The principal chart is made of the rotation vector representing the 
trihedron or the rotation and the translation of the point position vector. Semi- 
oriented frames model the differential properties of a point on a surface. In 
particular, they model the "extremal points" we will extract on medical im- 
ages in Sec. 4. They are composed of a point and a trihedron (tl, t2, n) where 
(tl, t2) - ( - t l ,  - t 2 )  are the principal directions and n the normal of the surface. 

3 F e a t u r e - B a s e d  P o s e  E s t i m a t i o n  

3.1 R i e m a n n i a n  L e a s t - S q u a r e s  

Let {xi} and {yi} be two sets of matched features. The Least squares criterion 
is easily written using the invariant Pdemannian distance: 

1 
C(f) = ~ E dist(yl, f* xl) 2 

i 

Now, thanks to the good properties of the principal chart, it turns out that  
this criterion can be expressed as a classical sum of squares of vector norms. 
Let gi = ~-1~ o ( f ,  ~i) be the error vector in the principal chart. The criterion 
becomes 2C(f) = E dist (fr o ( f ,  xl) ,  o) 2 = E [[ffiH2. 

i i 
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From the atomic operations, and using the composition rule for differentials, 
we can compute the error vector Zi and its Jacobians ~,~ ~of,, and -~ .  The 
first derivative of the criterion C(f) is: q5 = ~-]i ~ z~. Neglecting the term in ~z 
with respect to the terms in ~ in the second derivatives, we obtain: H = -~f 
Z i  OZi T Ozl O0 ~.~ OZi W 

-~ -~ and ~-~--~ . 

A gradient descent algorithm Assume that ~f is a vector. The 2nd order Taylor 
expansion of the criterion is C(f  +~ff) ~_ C(f) +~T~ff + 15fTHSf. The minimum 
of this approximation is obtained for 5f  = -H(-~)r Now, since f'is the expression 
of a transformation in the principal chart, we just have to replace f + 5f  by 
expr(5--~) = ~o (JL('f)r and iterate the process: 

As an initial estimate, we can choose the identity if nothing else is given. The 
process is stopped when the norm II~---~t [I of the adjustment transformation be- 
comes too small (we use ~ = 10 -1~ or when the number of iterations becomes 
too high (practically, it converges in about 10 iterations). 

Estimation of the uncertainty at the minimum Let :~ be the vector of observed 
data and ] the corresponding state vector. The minimum f(x) of the criterion for 
a data vector X is characterized by ~(f(x),X) = 0. A Taylor expansion around 
the actual values (:~, ])  gives a modification of the state 5f  = - / t (~)]~5X for a 
modification of the data vector 5X, where J~ = ~ Thus, the covariance of ] 
is Z I ]  = E ((~f6f T) = / ~ ( 4 )  2~:~;~21/~(-1) .  Assuming that all our measurements 
are independent, we can simplify J ~ J ~  to obtain: 

Z~  =/:/(-1) ( V  0~ ~ =  .,., ~0~ ~ / / ( -~ )  

In our case, the data and the state are not vectors, but features and trans- 
formations in a Pdemannian manifold. In fact, we can do the same derivation by 

~. ~.(-~) 
replacing ~ff with ~ = J(f)(f  o ~ )  and ~f X with a somehow similar expression. 
It turns out that the definition of the covariance is changed accordingly and that 
finally nothing is changed in equation (2). 

3.2 Maha lanob i s  Dis tance  Minimiza t ion  

To allow different and non isotropic covariance matrices for different measures, 
we can minimize the sum of squared Mahalanobis distances after registration. 
It turns out that this Mahalanobis distance can be expressed with exactly the 
same error vector as before: 

1 1 
c ( f )  = = 

i i 
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Thus, the algorithm is the same as for least squares, but the derivatives of the 
0_hT ~(-1) 0_h criterion are different: q5 = \(~ j = )-]i ~ F'(-1)0~ -z~z'~" ~ H -'~ ~ 0~ --z,z, 0 f  and 

0 ~  ~ 0 Z "  T ( - 1 )  " . . . . .  -- ~ Ez~ ~. Now, with these new derivatives, the Taylor expansion for the 
criterion is the same, and the evolution for the gradient descent is still given 
by equation (1). We can use the:same starting value and stopping criterion as 
before. Practically, we have observeda convergence in about 15 iterations when 
starting from identity and in 5 to :10 iterations when starting from the least- 
squares solution. For the uncertainty:of the solution, we replace the values of H 
and o~ into equation'(2)and obta2n: ~ /~(~) = 

3.3 Algorithm Comparison 

we have performed test on synthetic data simulating the MRI data of Sect. (4) 
to evaluate these two algorithms (denoted by LSQ and MAHA). Since all our 
features can be simplified into points, we took as reference the unit quaternion 
technique (QUAT) [4]. Concerning accuracy, we found that QUAT and LSQ 
perform very similarly, but MAHA is 1.2 to 1.5 times more accurate. LSQ and 
MAHA computation times are much higher than QUAT (by a factor 10 to 40) 
but the times are still reasonable (we have applied these algorithms to more than 
500 registrations of MR images in next section). 

To verify the uncertainty prediction, we used the validation index developped 
in [8]: under the Gaussian hypothesis, the Mahalanobis distance between the 
estimated and the exact transformation (the validation index) should be X~ 
distributed. By repeating the registration experiment, we can verify that the 
empirical mean value I = /22 = -~ ~ #2 and variance a 2 correspond to the 
expected values (here 6 and 12 for a X~), and that the empirical distribution 
corresponds to the exact distribution using the Kolmogorov-Smirnov (K-S) test. 
As expected, the most accuracy estimation is given by MAHA (I = 6.05, a2 = 
11.90), which proves that the uncertainty estimation is very accurate. For LSQ, 
the uncertainty on the transformation is still well predicted (but it is larger that 
the one of MAHA) and QUAT needs a minimum number of 15 matches tp pass 
the K-S test since we have to estimate the noise on features from mesurements. 

As a conclusion, MAHA gives the most accurate transformation and a good 
uncertainty in all cases, even with very few matches, but it should be initialized 
with QUAT to keep the computation time low. 

4 R e g i s t r a t i o n  o f  R e a l  M R I  I m a g e s  

The experiment is performed using multiple 2D contiguous Magnetic Resonance 
images (MRI) which constitute a 3D representation of the head. The images are 
part of an extensive study of the evolution of the Multiple Sclerosis (MS) disease 
performed at the Brigham and Woman's Hospital (Harvard Medical School, 
Boston). Each patient underwent a complete head MR examination several times 
during one year (up to 24 different 3D acquisitions). Each acquisition provides 
a first echo image and a second echo image (256 x 256 x 54 voxels of size .9375 
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x .9375 x 3mm) representing the same T2 weighted signal imaged at different 
echo times. Thus, they are expected to be approximately in the same coordinate 
system. This protocol was designed to optimize the contrast in the two channels 
for an easier tissue segmentation. Considering two acquisitions A and B, the 
registration of echo-1 images (A1 to B1) and echo-2 images (A~ to B~) give 
two relatively independent estimates of the genuine transformation from A to 
B. The comparison of these two transformations gives a Real Validation Index 
which can be tested for the accuracy of the uncertainty estimation. 

Fig. 1. Left: Example of MS images. The same slice of one acquisition in echo-1 (left) 
and echo-2 (right). Right: evolution of an image row going through a lesion across 
24 time points over a year. Left: without registration; Right: after registration and 
intensity correction. 

Our registration algorithm relies on the extraction of Extrernal Points (see 
[10]) that we model as semi-oriented frames (see Sec. 2). Matches between ex- 
tremal points of two images are determined using an iterative closest point al- 
gorithm adapted to such features. Typically, we match 1000 extremal points 
out of the about 3000 extracted with a residual mean square error (RMS) of 
about 1ram. We initialize the registration with QUAT and then iterate a loop 
consisting of a noise estimation on features [8] followed by a MAHA registration. 

In a first experiment, we compared directly the 
registrations between corresponding echo-1 and 
echo-2 images. This diagram represents three ac- 
quisitions A, B and C with the three echo-1 im- 
ages (A1, B1, C1) and the three echo-2 images 
(A2, B2, C2). The echo-1 and echo-2 registra- 
tions are significantly different (#2(lAB1, lAB2), 
IJb2(fao~.,fAC2), p,2(fBCI,fBC2) > 50) but the 
intra-echo-1 and intra-echo2 registrations are 

~AC, 

" |AB |Br ~, 

,,( ( 
}A.,i-.. -,- B2 --. .,,-i0,i 

"'--.. ...................... i/" 

compatible (#2(fBc~ o fABI , fACl)  ~-- 6 and ~2( fBc  2 o fAB2,fAC2) ~ 6). This 
led us to assume a global bias for each acquisition between echo-1 and echo-2 
images, represented here by the transformations fA, f s ,  and f c .  

To estimate the biases, we observed first that the transformation from image 
A1 to image B2 can be written fAiS2 = fB o fAB~ = lAB2 o fA. If measurements 
where perfect, the bias fA could be expressed for any other image Z: fA = 
fA r o.fz o fAZ~ Since measurements are noisy, we obtain an estimator of the bias Z2 
f a  by taking the Fr~chet mean value [7]. The biases we obtain are different for 
each acquisition and could be considered as translations of standard deviations 
az = 0.09, a u = 0.11 and az = 0.13 mm. 
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Although the biases appear very small, they are sufficient to explain the 
previous errors in the registration accuracy prediction: the mean value and stan- 
dard deviation of this new index across all registrations are now very close to 
their theoretical value (see table 1). For the uncertainty of the transformations, 
we found a typical boundary precision around aco~ -- 0.11 mm and a typical 
object precision far below the voxel size: aoby = 0.05 mm for echo-1 registra- 
tions. Values are even a little smaller for echo-2 registrations: aco~ = 0.10 and 
troby = 0.045 mm. 

I x/ a1 {K-S test{num, im. num. reg. 
Theoretical values 6 ---- 3.4610.01 - 1{ n < 24 n *  ( n -  1)/2 

patient 1 6.29 4.58 0.14 15 105 
patient 2 5.42 3.49 0.12 18 153 
patient 3 6.5{] 3.68 0.25 14 91 
patient 4 6.21 3.67 0.78 21 210 

Table 1. Real Validation Index with bias correction for different patients. The mean 
validation index is within 10% of its theoretical value and the K-S test exhibits im- 
pressively high values. 

Most of the extremal points we match are situated on the surface of the 
brain and the ventricles. These surfaces appear differently in echo-1 and echo-2 
images due to the difference in contrast. Other artifacts such as chemical shift 
or susceptibility effects may also account for the observed bias as they influence 
the detection of extremal points. Indeed, the two echoes are acquired with dif- 
ferent receiver RF bandwidth to improve the signal/noise ratio [6]. Therefore, 
the chemical shift and the susceptibility effect are different in the two echoes. In 
a future work, we plan to correlate the biases with diverse quantities in the im- 
ages in order to  understand their origin. Ultimately, we would like to predict the 
biases in each acquisition before registration. This would allow the indubitable 
validation of the registration accuracy prediction. 

5 C o n c l u s i o n  

We show in this article how to generalize the classical least squares and least 
Mahalanobis distance pose estimation algorithms to generic geometric features, 
and how to estimate the uncertainty of the result. The  uncertainty prediction on 
the transformation is validated on synthetic data  within a bound of 5% for all al- 
gorithms, decreasing to less than 1% of inaccuracy for the algorithm MAHA. We 
believe tha t  these algorithms could be easily embedded in many applications and 
provide a thorough basis for computing many image statistics. Further improve- 
ments could include the generalization of this framework to non rigid transfor- 
mations, the estimation of a multiple registration of n sets of matched features 
and the coupling with statistical matching algorithms to provide a complete 
registration system. 

From the application point of view, we show an example in medical imaging 
where we reached a sub-voxel registration accuracy (0.05 ram) that  allowd us 
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to detect and estimate a systematic bias in each acquisition between features 
extracted from the echo-1 and the echo-2 images. After the correction of the 
biases, multiple experiments on several patients show that our prediction of the 
registration accuracy is validated within a bound of 10%. These experiments 
demonstrate that, using adapted and rigorous tools, we can detect very small 
modifications in medical images. In a future work, we plan to determine the 
origin of the bias in order to predict it. Other applications include the automatic 
detection and correction of the misalignment of the slices in contiguous slice 
images and the statistical study of deformations in MR images. 
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