Lecture Notes in Computer Science1498Edited by G. Goos, J. Hartmanis and J. van Leeuwen1498

Agoston E. Eiben Thomas Bäck Marc Schoenauer Hans-Paul Schwefel (Eds.)

Parallel Problem Solving from Nature – PPSN V

5th International Conference Amsterdam, The Netherlands September 27-30, 1998 Proceedings

Volume Editors

Agoston E. Eiben Leiden University, Department of Mathematics and Computer Science Niels Bohrweg 1, 2333 CA Leiden, The Netherlands E-mail: gusz@wi.leidenuniv.nl

Thomas Bäck Informatik Centrum Dortmund, CASA Joseph-von-Fraunhofer-Str. 20, D-44227 Dortmund, Germany E-mail: baeck@icd.de and Leiden University, Department of Mathematics and Computer Science Niels Bohrweg 1, 2333 CA Leiden, The Netherlands E-mail: baeck@wi.leidenuniv.nl

Marc Schoenauer CMAP, Ecole Polytechnique Route de Saclay, F-91128 Palaiseau Cedex, France E-mail: marc.schoenauer@polytechnique.fr

Hans-Paul Schwefel University of Dortmund, Department of Computer Science D-44221 Dortmund, Germany E-mail: hps@icd.de

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Parallel problem solving from nature : 5th international conference ; proceedings / PPSN V, Amsterdam, The Netherlands, September 27 - 30, 1998. Agoston E. Eiben ... (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Budapest ; Hong Kong ; London ; Milan ; Paris ; Singapore ; Tokyo : Springer, 1998 (Lecture notes in computer science ; Vol. 1498) ISBN 3-540-65078-4

CR Subject Classification (1991): C.1.2, D.1.3, F.1-2, I.2.6, I.2.8, I.2.11, J.3

ISSN 0302-9743 ISBN 3-540-65078-4 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1998 Printed in Germany

Typesetting: Camera-ready by author SPIN 10638928 06/3142 - 5 4 3 2 1 0 Printed on acid-free paper

Preface

We are pleased to introduce the reader to the proceedings of the Fifth International Conference on Parallel Problem Solving from Nature, PPSN V – International Conference on Evolutionary Computation, held in Amsterdam, September 27-30, 1998. PPSN V is organized in cooperation with the International Society for Genetic Algorithms (ISGA) and the Evolutionary Programming Society (EPS), reflecting the beneficial interaction between the conference activities in Europe and the USA in the field of evolutionary computation.

Following the 1990 meeting in Dortmund [1], this biennial event was held in Brussels [2], Jerusalem [3], and Berlin [4], where it was decided that the 1998 location should be Amsterdam with Agoston E. Eiben as the general chair.

The scientific content of the PPSN conference focuses on the topic of problem solving paradigms gleaned from a natural model, including (but not limited to) organic evolution, neural network based learning processes, immune systems, life and its properties in general, DNA strands, and chemical and physical processes. The term *natural computing* perfectly summarizes the essential idea of the PPSN conference series, and the organizers of PPSN V are delighted that the Leiden Center for Natural Computation (LCNC) is involved in the organization of this conference.

As with the previous PPSN meetings, these proceedings also emphasize the topic of evolution, represented in computer science by the field of *evolutionary computation* with its evolutionary algorithms. Historically this field has been represented by areas such as genetic algorithms, evolution strategies, evolutionary programming, genetic programming, and classifier systems. In recent years these artificial terminological boundaries have been dropped to the benefit of a more general understanding of evolutionary principles applied to different search spaces with different aims, such as problem solving, investigating evolutionary principles, or understanding life. In these proceedings, the reader will find a variety of sections focusing on aspects of evolutionary algorithms, such as for instance Convergence Theory, Multi-Criteria and Constrained Optimization, Coevolution and Learning, just to name a few. Besides these evolutionary themes, there are also contributions on other aspects of natural computation, such as Cellular Automata, Fuzzy Systems and Neural Networks or Ant Colonies, Immune Systems, and Other Paradigms.

In total, these proceedings contain 100 contributions which were selected from 185 papers submitted to the conference organizers. The members of the program committee (listed on the following pages) undertook the extremely challenging task of submitting their scientific reviews to facilitate the final decision making for the acceptance of the top 54% of all submissions. We are very grateful to these reviewers for their willingness to volunteer their scientific expertise to ensure the decision making process was as fair as possible. We would also like to thank the EvoNet Electronic Communication Committee for its support with the Web-based submission and review procedure which greatly simplified the review process, facilitating a smooth exchange of papers and reviews. As this software was used for the very first time in a real conference setting, inevitably a few technical problems occured and a special thanks is owed to those reviewers who provided their reviews in a very short time. We are confident that the – debugged – system will provide a good support for future events.

Following the PPSN spirit, PPSN V is a poster-only conference, i.e., all papers are presented as posters to facilitate personal discussion and exchange of ideas between the presenter and the audience. Although this might imply a smaller audience than would be the case for an oral presentation, it gives presenters a better chance to communicate with the people most interested in their topic, and to chat with them in a more relaxed atmosphere. Consequently, posters are not "second-class" papers as in some other conferences – they are the preferred method of open presentation. The 100 papers presented at the conference are grouped into 5 groups of about 20 papers each. To simplify orientation within a session, and to allow the audience to get a good overview of posters, each poster session is introduced by a volunteer giving a brief overview. We believe that this is very helpful for the conference participants, and we appreciate the efforts of these volunteers for helping with this.

The conference includes oral presentations from three invited speakers including Grzegorz Rozenberg (DNA Computing), Nicholas Gessler (Artificial Culture: Experiments in Synthetic Anthropology), and Lawrence Davis (Commercial Applications of Evolutionary Algorithms: Some Case Studies), all addressing hot topics in the context of natural computation.

On the first day of the conference, September 27th, eight tutorials will be given by well-known experts in evolutionary computation and related fields. These tutorials are designed for an audience looking for some particular aspects of the state of the art. The list of tutorials and their presenters can be found on the introductory pages.

Finally, we would like to thank our sponsors, who helped in many different ways to make this conference possible. These sponsors are (in alphabetic order) the European Network of Excellence on Evolutionary Computation (EvoNet), Informatik Centrum Dortmund (ICD), Institute for Programming Technology and Algorithmics (IPA), International Society for Genetic Algorithms (ISGA), Leiden Center for Natural Computing (LCNC), the Municipality of Amsterdam, Philips, Siemens AG, and the Stichting European Evolutionary Computing Conferences (EECC), a Dutch-based non-profit-making organization aimed at the support of European research and organizational activities in the field of natural and evolutionary computation. The continuous support and invaluable help of Nathalie Limonta at Ecole Polytechnique was highly appreciated and we also would like to thank Ben Pechter for his efforts to make PPSN V a success.

We feel these proceedings bear witness to the fruitful cooperation and exchange of ideas between evolutionary computation groups from all parts of the world and mark some major progress in the field – and we look forward to seeing how the Amsterdam environment with its coffee-shops and nightlife will help to support this development, and smoothen the cultural barriers ... Have fun at the conference, and with the proceedings !

July 1998

Agoston E. Eiben, General Chair Thomas Bäck and Marc Schoenauer, Program Co-Chairs Hans-Paul Schwefel, Publication Chair

References

- H.-P. Schwefel and R. Männer, editors. Proceedings of the 1st Conference on Parallel Problem Solving from Nature, number 496 in Lecture Notes in Computer Science. Springer-Verlag, 1991.
- 2. R. Männer and B. Manderick, editors. Proceedings of the 2nd Conference on Parallel Problem Solving from Nature. North-Holland, 1992.
- 3. Y. Davidor, H.-P. Schwefel, and R. Männer, editors. *Proceedings of the 3rd Conference on Parallel Problem Solving from Nature*, number 866 in Lecture Notes in Computer Science. Springer-Verlag, 1994.
- 4. H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors. *Proceedings* of the 4th Conference on Parallel Problem Solving from Nature, number 1141 in Lecture Notes in Computer Science. Springer, Berlin, 1996.

PPSN V Conference Committee

Agoston E. Eiben Leiden University, The Netherlands *General Chair*

Thomas Bäck Informatik Centrum Dortmund, Germany Leiden University, The Netherlands

and

Marc Schoenauer CNRS, Ecole Polytechnique, France Program Co-Chairs

Hans-Paul Schwefel Universität Dortmund, Germany Proceedings Chair

Hans-Michael Voigt Gesellschaft zur Förderung angewandter Informatik e.V. (GFaI), Germany *Tutorial Chair*

> Terry Fogarty Napier University, Scotland, UK Publicity Chair

Thea van Wijk Leids Congres Bureau, The Netherlands Local Arrangements

PPSN Steering Committee

Yuval Davidor Schema Ltd., Israel

Kenneth A. De Jong George Mason University, USA

Agoston E. Eiben Leiden University, The Netherlands

Hiroaki Kitano Sony Computer Science Lab., Japan

Reinhard Männer Universität Mannheim, Germany

Hans-Paul Schwefel Universität Dortmund, Germany

Hans-Michael Voigt Gesellschaft zur Förderung angewandter Informatik e.V. (GFaI), Germany

PPSN V Program Committee

Emile Aarts, Philips Research Laboratories, The Netherlands Jean-Marc Alliot, CENA, France Lee Altenberg, University of Hawaii at Manoa, USA Peter J. Angeline, Natural Selection Inc., USA Jarek Arabas, Instytut Podstaw Elektroniki, Poland Wolfgang Banzhaf, Universität Dortmund, Germany David Beasley, Praxis plc, UK Richard K. Belew, University of California at San Diego, USA Hans-Georg Beyer, Universität Dortmund, Germany George Bilchev, BT Labs, UK Andrea Bonarini, Politecnico di Milano, Italy Lashon B. Booker, The MITRE Corporation, USA Edmund Burke, Nottingham University, UK Udav Chakrabortv, Jadavpur University, India Shu-Heng Chen, National Chengchi University, Taiwan Y. P. Stanley Chien, Purdue University, USA Art Corcoran, Plano, USA David Corne, University of Reading, UK Joseph Culberson, University of Alberta, Canada Paul James Darwen, Brandeis University, USA Dipankar Dasgupta, The University of Memphis, USA Yuval Davidor, Schema Ltd., Israel Dave Davis, Tica Technologies Inc., USA Kenneth A. De Jong, George Mason University, USA Kalyanmoy Deb, Indian Institute of Technology, India Daniel Delahaye, CENA, France Marco Dorigo, Université Libre de Bruxelles, Belgium Gerry Dozier, Auburn University, USA Nicolas Durand, CENA, France Larry J. Eshelman, Philips Laboratories, USA Terence C. Fogarty, Napier University, Scotland, UK David Fogel, Natural Selection Inc., USA Gary Fogel, UCLA, USA Bernd Freisleben, Universität Siegen, Germany Toshio Fukuda, Nagoya University, Japan Takeshi Furuhashi, Naqoya University, Japan Roman Galar, Institute of Engineering Cybernetics, Poland Attilio Giordana, Università di Torino, Italy David E. Goldberg, University of Illinois at Urbana-Champaign, USA Eric Goodman, Michigan State University, USA

Ulrich Hammel, Universität Dortmund, Germany Jin-Kao Hao, EMA-ERRIE, France Bill Hart, Sandia National Labs, USA Tetsuya Higuchi, Electrotechnical Laboratory, Japan Claus Hillermeier, Siemens AG, Germany Robert Hinterding, Victoria University of Technology, Australia Wim Hordijk, Santa Fe Institute, USA Jeff Horn, Northern Michigan University, USA Phil Husbands, COGS, University of Sussex, UK Hitoshi Iba, Electrotechnical Laboratory (ETL), Japan Mark J. Jakiela, Washington University in St. Louis, USA Cezary Janikow, University of Missouri in St. Louis, USA Leila Kallel, CMAP, Ecole Polytechnique, France Chuck Karr, University of Alabama, USA Jong-Hwan Kim, Korea Advanced Institute of Science & Technology (KAIST), Republic of Korea Kenneth E. Kinnear, Boxboro, USA Joost Kok, Leiden University, The Netherlands John Koza, Stanford University, USA Frank Kursawe, Universität Dortmund, Germany Jim Levenick, Willamette University, USA Henri Luchian, Alexandru Ioan Cuza University, Romania Evelyne Lutton, INRIA Rocquencourt, France Reinhard Männer, Universität Mannheim, Germany Sam Mahfoud, Sam's Research & Investment, USA Bernard Manderick, Free University Brussels, Belgium Martin Mandischer, Universität Dortmund, Germany Elena Marchiori, Leiden University, The Netherlands Worthy N. Martin, University of Virginia, USA Keith Mathias, Philips Laboratories, USA J. J. Merelo, University of Granada, Spain Zbigniew Michalewicz, University of North Carolina, USA Olivier Michel, EPFL, Switzerland Heinz Mühlenbein, Gesellschaft für Mathematik und Datenverarbeitung, Germany Zensho Nakao, University of the Ryukyus, Japan Volker Nissen, Universität Göttingen, Germany Peter Nordin, DaCapo AB, Sweden Una-May O'Reilly, MIT Artificial Intelligence Lab, USA Charles Palmer, IBM T. J. Watson Research Center, USA Jan Paredis, Universiteit Maastricht, The Netherlands Ian Parmee, University of Plymouth, UK Raymond Paton, The University of Liverpool, UK Chrisila C. Pettey, Middle Tennessee State University, USA Mitchell Potter, George Mason University, USA

Nick Radcliffe, Quadstone Ltd., Scotland, UK Connie Ramsey, Naval Research Laboratory, USA Colin Reeves, Coventry University, UK Robert G. Reynolds, Wayne State University, USA Rick Riolo, University of Michigan, USA Edmund Ronald, CMAP, Ecole Polytechnique, France Justinian Rosca, University of Rochester, USA Peter Ross, University of Edinburgh, Scotland, UK Grzegorz Rozenberg, Leiden University, The Netherlands Mike Rudnick, Oregon Graduate Institute, USA Günter Rudolph. Universität Dortmund. Germany Lorenza Saitta, Università di Torino, Italy Jayshree Sarma, George Mason University, USA Dave Schaffer, Philips Laboratories, USA Martin Schütz, Universität Dortmund, Germany Hans-Paul Schwefel, Universität Dortmund, Germany Michele Sebag, CNRS-LMS, Ecole Polytechnique, France Eugene Semenkin, Krasnoyarsk University, Russia Yuhui Shi, Indiana University, USA Moshe Sipper, EPFL, Switzerland Alice E. Smith, University of Pittsburgh, USA Robert E. Smith, University of West of England, UK Stephen F. Smith, Carnegie Mellon University, USA Dominique Snyers, ENSTB, France Bill Spears, Naval Research Laboratory, USA Russel Stonier, Central Queensland University, Australia Gilbert Syswerda, I2 Technologies, USA Walter Alden Tackett, Neuromedia Inc., USA Dirk Thierens, Utrecht University, The Netherlands Manuel Valenzuela-Rendón, Center for Artificial Intelligence, Mexico Gilles Venturini, E3I, Université de Tours, France Michael D. Vose, The University of Tennessee, USA Peter Alexander Whigham, CSIRO Division of Water Resources, Australia Darrell Whitley, Colorado State University, USA Willfried Wienholt, Siemens AG, Germany Kit Po Wong, The University of Western Australia, Australia Annie S. Wu, Naval Research Laboratory, USA Xin Yao, Australian Defence Force Academy, Australia

PPSN V Tutorials

Hans-Georg Beyer, Universität Dortmund, Germany: An Introduction into ES-Theory

Kalyanmoy Deb and Jeffrey Horn, Indian Institute of Technology, Kanpur, India, and Northern Michigan University, Marquette, USA: Evolutionary Computation for Multiobjective Optimization

Marco Dorigo, Université Libre de Bruxelles, Belgium: Ant Colony Optimization

Agoston E. Eiben and Zbigniew Michalewicz, Leiden University, The Netherlands, and University of North Carolina, Charlotte, USA: Parameter Control, Adaptation, and Self-Adaptation in Evolutionary Algorithms

Christian Jacob, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany: Evolutionary Algorithms and Agent-Based Distributed Systems

Riccardo Poli and William B. Langdon, The University of Birmingham, UK: Introduction to Genetic Programming

Joachim Sprave, Universität Dortmund, Germany: Evolutionary Algorithms: Spatially Structured Populations and Parallelism

Hans-Michael Voigt, Gesellschaft zur Förderung angewandter Informatik e.V., Berlin, Germany: Introduction to Quantitative Genetics with Applications to Evolutionary Computation

Table of Contents

Convergence Theory

Modelling Genetic Algorithms: From Markov Chains to Dependence with Complete Connections A. Agapie	3
On the Optimization of Unimodal Functions with the $(1+1)$ Evolutionary Algorithm S. Droste, Th. Jansen, and I. Wegener	13
A Timing Analysis of Convergence to Fitness Sharing Equilibrium J. Horn and D.E. Goldberg	23
Where Elitists Start Limping: Evolution Strategies at Ridge Functions A.I. Oyman, HG. Beyer, HP. Schwefel	34
Fitness Landscapes and Problem Difficulty	
A Bit-Wise Epistasis Measure for Binary Search Spaces C. Fonlupt, D. Robilliard, and P. Preux	47
Inside GA Dynamics: Ground Basis for Comparison L. Kallel	57
The Effect of Spin-Flip Symmetry on the Performance of the Simple GA B. Naudts and J. Naudts	67
Fitness Distance Correlation and Ridge Functions R.J. Quick, V.J. Rayward-Smith, and G.D. Smith	77
Accelerating the Convergence of Evolutionary Algorithms by Fitness Landscape Approximation A. Ratle	87
Modeling Building-Block Interdependency R. A. Watson, G. S. Hornby, and J. B. Pollack	97

Noisy and Non-stationary Objective Functions

Mutate Large, But Inherit Small! On the Analysis of Rescaled Mutations in $(\tilde{1}, \tilde{\lambda})$ -ES with Noisy Fitness Data HG. Beyer	109
Creating Robust Solutions by Means of Evolutionary Algorithms $J. Branke$	119
Analytic Curve Detection from a Noisy Binary Edge Map Using Genetic Algorithm S. Chakraborty and K. Deb	129
A Comparison of Dominance Mechanisms and Simple Mutation on Non-stationary Problems J. Lewis, E. Hart, and G. Ritchie	139
Adaptation to a Changing Environment by Means of the Feedback Thermodynamical Genetic Algorithm N. Mori, H. Kita, and Y. Nishikawa	149
Optimization with Noisy Function Evaluations V. Nissen and J. Propach	159
On Risky Methods for Local Selection under Noise G. Rudolph	169
Polygenic Inheritance - A Haploid Scheme that Can Outperform Diploidy C. Ryan and J.J. Collins	178
Averaging Efficiently in the Presence of Noise P. Stagge	188

Multi-criteria and Constrained Optimization

Solving	Binary	$\operatorname{Constraint}$	Satisfaction	Problems	Using	
Evolutio	nary Algo	rithms with a	n Adaptive Fi	tness Function	on	201
A.E. Eil	ben, J.I. va	an Hemert, E.	. Marchiori, an	d A.G. Steer	ıbeek	
Varving	Fitness F	unctions in G	Penetic Algorit	hms. Studvi	ng the	
Rate of 1	Increase of	f the Dynami	c Penalty Terr	ns	ng the	211
S. Kazar	rlis and V.	Petridis	v			

Landscape Changes and the Performance of Mapping Based Constraint Handling Methods D.G. Kim and P. Husbands	221
A Decoder-Based Evolutionary Algorithm for Constrained Parameter Optimization Problems S. Kozieł and Z. Michalewicz	231
A Spatial Predator-Prey Approach to Multi-objective Optimization: A Preliminary Study M. Laumanns, G. Rudolph, and HP. Schwefel	241
Selective Breeding in a Multiobjective Genetic Algorithm $G.T.$ Parks and I. Miller	250
Niching and Elitist Models for MOGAs S. Obayashi, S. Takahashi, and Y. Takeguchi	260
Parallel Evolutionary Optimisation with Constraint Propagation A. Ruiz-Andino, L. Araujo, J. Ruz, and F. Sáenz	270
Methods to Evolve Legal Phenotypes T. Yu and P. Bentley	280
Multiobjective Optimization Using Evolutionary Algorithms – A Comparative Case Study E. Zitzler, L. Thiele	292
Representation Issues	
Utilising Dynastically Optimal Forma Recombination in Hybrid Genetic Algorithms C. Cotta, E. Alba, and J.M. Troya	305
Further Experimentations on the Scalability of the GEMGA H. Kargupta and S. Bandyopadhyay	315
Indexed Memory as a Generic Protocol for Handling Vectors of Data in Genetic Programming I.S. Lim and D. Thalmann	325
On Genetic Algorithms and Lindenmayer Systems G. Ochoa	335
Genome Length as an Evolutionary Self-Adaptation C.L. Ramsey, K.A. De Jong, J.J. Grefenstette, A.S. Wu, and D.S. Burke	345

Selection, Operators and Evolution Schemes

Restart Scheduling for Genetic Algorithms A.S. Fukunaga			
A Comparative Study of Global and Local Selection in Evolution Strategies M. Gorges-Schleuter	367		
UEGO, an Abstract Niching Technique for Global Optimization $M.$ Jelasity	378		
Development of Problem-Specific Evolutionary Algorithms A. Leonhardi, W. Reissenberger, T. Schmelmer, K. Weicker, and N. Weicker	388		
The Effects of Control Parameters and Restarts on Search Stagnation in Evolutionary Programming K.E. Mathias, J.D. Schaffer, L.J. Eshelman, and M. Mani	398		
Accelerating the Evolutionary-Gradient-Search Procedure: Individual Step Sizes R. Salomon	408		
Extending Population-Based Incremental Learning to Continuous Search Spaces M. Sebag and A. Ducoulombier	418		
Multi-parent Recombination in Genetic Algorithms with Search Space Boundary Extension by Mirroring S. Tsutsui	428		
Selective Crossover in Genetic Algorithms: An Empirical Study K . Vekaria and C. Clack	438		
Line-Breeding Schemes for Combinatorial Optimization R . Yang	448		
Coevolution and Learning			
Finding Regions of Uncertainty in Learned Models: An Application to Face Detection S. Baluja	461		
On ZCS in Multi-agent Environments L. Bull	471		

Empirical Analysis of the Factors that Affect the Baldwin Effect $K.W.C.$ Ku and M.W. Mak	481
Promoting Generalization of Learned Behaviours in Genetic Programming I. Kuscu	491
Generalization in Wilson's Classifier System P.L. Lanzi	501
Symbiotic Coevolution of Artificial Neural Networks and Training Data Sets H.A. Mayer	511
Information-Theoretic Analysis of a Mobile Agent's Learning in a Discrete State Space C. Pötter	521 `
The Coevolution of Antibodies for Concept Learning M.A. Potter and K.A. De Jong	530
Does Data-Model Co-evolution Improve Generalization Performance of Evolving Learners? J.L. Shapiro	540
A Corporate Classifier System A. Tomlinson and L. Bull	550
Applying Diffusion to a Cooperative Coevolutionary Model $R.P.$ Wiegand	560
	_

Cellular Automata, Fuzzy Systems and Neural Networks

Studying Parallel Evolutionary Algorithms: The Cellular Programming Case	573
M. Capcarrère, A. Tettamanzi, M. Tomassini, and M. Sipper	
Learning to Avoid Moving Obstacles Optimally for Mobile Robots Using a Genetic-Fuzzy Approach K. Deb, D.K. Pratihar, and A. Ghosh	583
Evolutionary Neural Networks for Nonlinear Dynamics Modeling I. De Falco, A. Iazzetta, P. Natale, and E. Tarantino	593
Hybrid Distributed Real-Coded Genetic Algorithms F. Herrera, M. Lozano, and C. Moraga	603

Mechanisms of Emergent Computation in Cellular Automata W. Hordijk, J.P. Crutchfield, and M. Mitchell	613
Towards Designing Neural Network Ensembles by Evolution Y . Liu and X . Yao	623
Selection of Training Data for Neural Networks by a Genetic Algorithm $C.R.$ Reeves and S.J. Taylor	633
Discovery with Genetic Algorithm Scheduling Strategies for Cellular Automata F. Seredyński	643
Simple + Parallel + Local = Cellular Computing M. Sipper	653
Evolution, Learning and Speech Recognition in Changing Acoustic Environments A. Spalanzani and H. Kabré	663

Ant Colonies, Immune Systems, and Other Paradigms

Ant Colonies for Adaptive Routing in Packet-Switched Communications Networks G. Di Caro and M. Dorigo	673
The Stud GA: A Mini Revolution? W. Khatib and P.J. Fleming	683
An Island Model Based Ant System with Lookahead for the Shortest Supersequence Problem R. Michel and M. Middendorf	692
Parameter-Free Genetic Algorithm Inspired by "Disparity Theory of Evolution" H. Sawai and S. Kizu	702
Immune Network Dynamics for Inductive Problem Solving V. Slavov and N.I. Nikolaev	712
Parallelization Strategies for Ant Colony Optimization Th. Stützle	722

Self-Organizing Pattern Formation: Fruit Flies and Cellular Phones. 73 R. Tateson	32
Applications	
TSP, Graphs and Satisfiability	
A New Genetic Local Search Algorithm for Graph Coloring 74 R. Dorne and JK. Hao	45
Improving the Performance of Evolutionary Algorithms for the Satisfiability Problem by Refining Functions75J. Gottlieb and N. Voss75	55
Memetic Algorithms and the Fitness Landscape of the Graph Bi-partitioning Problem 76 P. Merz and B. Freisleben	35
Investigating Evolutionary Approaches to Adaptive DatabaseManagement Against Various Quality of Service Metrics77M.J. Oates and D. Corne77	75
Genetic Algorithm Behavior in the MAXSAT Domain 78 S. Rana and D. Whitley	35
An Adaptive Mutation Scheme for a Penalty-Based Graph- Colouring GA79P. Ross and E. Hart79) 5
Inver-over Operator for the TSP80G. Tao and Z. Michalewicz)3
Repair and Brood Selection in the Traveling Salesman Problem 81 T. Walters	٤3
The Traveling Salesrep Problem, Edge Assembly Crossover, and 2-opt JP. Watson, C. Ross, V. Eisele, J. Denton, J. Bins, C. Guerra, D. Whitley, and A. Howe	23

Scheduling, Partitioning and Packing

Load Balancing in Parallel Circuit Testing with Annealing-Based	
and Genetic Algorithms	835
C. Gil, J. Ortega, A.F. Díaz, M.G. Montoya, and A. Prieto	

A Heuristic Combination Method for Solving Job-Shop Scheduling Problems E. Hart and P. Ross	845
Reduction of Air Traffic Congestion by Genetic Algorithms S. Oussedik and D. Delahaye	855
Timetabling the Classes of an Entire University with an Evolutionary Algorithm B. Paechter, R.C. Rankin, A. Cumming, and T.C. Fogarty	865
Genetic Algorithms for the Multiple Container Packing Problem G.R. Raidl, and G. Kodydek	875
Buffer Memory Optimization in DSP Applications – An Evolutionary Approach J. Teich, E. Zitzler, and S. Bhattacharyya	885

Design and Telecommunications

The Breeder Genetic Algorithm for Frequency Assignment C. Crisan and H. Mühlenbein	897
A Permutation Based Genetic Algorithm for Minimum Span Frequency Assignment C. Valenzuela, S. Hurley, and D. Smith	907
Comparison of Evolutionary Algorithms for Design Optimization W . Jakob, M . Gorges-Schleuter, and I. Sieber	917
Aspects of Digital Evolution: Evolvability and Architecture $J.F.$ Miller and P. Thomson	927
Integrated Facility Design Using an Evolutionary Approach with a Subordinate Network Algorithm B.A. Norman, A.E. Smith, and R.A. Arapoglu	937
An Evolutionary Algorithm for Synthesizing Optical Thin-Film Designs JM. Yang and CY. Kao	947

Model Estimations and Layout Problems

Implementing Genetic Algorithms with Sterical Constraints for Protein Structure Prediction E. Bindewald, J. Hesser, and R. Männer	959
Optimal Placements of Flexible Objects: An Adaptive Simulated Annealing Approach S.K. Cheung, K.S. Leung, A. Albrecht, and C.K. Wong	968
Encapsulated Evolution Strategies for the Determination of Group Contribution Model Parameters in Order to Predict Thermodynamic Properties H. Geyer, P. Ulbig, and S. Schulz	978
Recombination Operators for Evolutionary Graph Drawing D. Kobler and A.G B. Tettamanzi	988
Optimisation of Density Estimation Models with Evolutionary Algorithms M. Kreutz, A.M. Reimetz, B. Sendhoff, C. Weihs, and W. von Seelen	998
Genetic Algorithm in Parameter Estimation of Nonlinear Dynamic Systems E. Paterakis, V. Petridis, and A. Kehagias	1008
Optimizing Web Page Layout Using an Annealed Genetic Algorithm as Client-Side Script J. González Peñalver and J. J. Merelo	1018
Solving the Capacitor Placement Problem in a Radial Distribution System Using an Adaptive Genetic Algorithm K. Hatta, M. Suzuki, S. Wakabayashi, and T. Koide	1028
Author Index	1039