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Abstract .  It is sometimes claimed that genetic algorithms using diploid 
representations will be more suitable for problems in which the environ- 
ment changes from time to time, as the additional information stored in 
the double chromosome will ensure diversity, which in turn allows the 
system to respond more quickly and robustly to a change in the fitness 
function. We have tested various diploid algorithms, with and without 
mechanisms for dominance change, on non-stationary problems, and con- 
clude that some form of dominance change is essential, as a diploid encod- 
ing is not enough in itself to allow flexible response to change. Moreover, 
a haploid method which randomly mutates chromosomes whose fitness 
has fallen sharply also performs well on these problems. 

1 I n t r o d u c t i o n  

Genetic algorithms (GAs) are often used to tackle problems which are stationary, 
in that the success criteria embodied in the fitness function do not change in the 
course of the computation. In a non-stationary problem, the environment may 
fluctuate, resulting in sharp changes in the fitness of a chromosome from one 
cycle to the next. It is sometimes claimed that  a diploid encoding of a problem 
is particularly suited to non-stationary situations, as the additional information 
stored in the genotype provides a latent source of diversity in the population, 
even where the phenotypes may show very little diversity. This genotypic diver- 
sity, it is argued, will allow the population to respond more quickly and effectively 
when the fitness function changes. As well as incorporating diversity, it may be 
possible for a diploid to maintain some kind of long term memory, which enables 
it to quickly adapt  to changing environments by remembering past solutions. 

The effectiveness of a diploid GA may depend on the exact details of its 
dominance scheme. Moreover, where a changing environment is the central issue, 
it is important to consider changes which affect the dominance behaviour of 
chromosomes over time, as this may provide added flexibility. 

We have carried out tests on a number of diploid methods, including some 
where dominance change can occur. We found that  diploid schemes without 
some form of dominance change are not significantly bet ter  than haploid GAs 
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for non-stationary problems, but certain dominance change mechanisms produce 
a distinct improvement. Also, certain representations are very effective at main- 
taining memory, whilst others are more effective at maintaining diversity. Thus, 
the nature of the non-stationary problem may influence the methodology cho- 
sen. Furthermore, we show that in some situations, a haploid GA with a suitable 
mutation mechanism is equally effective. 

2 P r e v i o u s  w o r k  

Ng and Wong[4] describe a diploid representation with simple dominance change, 
as follows (for simplicity, we will confine our attention to phenotypes which 
are strings of 0s and ls). There are 4 genotypic alleles: 1, 0(dominant) and i, 
o(recessive). The expressed gene always takes the value of the dominant allele. If 
there is a contention between two dominant or two recessive alleles, then one of 
the two alleles is arbitrarily chosen to be expressed. The dominance mapping to 
compute phenotype from genotype is shown in figure 1, where "0/1" indicates 
an equal probability of either value. The occurrence of li  or 0o is prohibited - -  if 
this does occur, the recessive gene is promoted to be dominant in the genotype. 
This last stipulation is a simple form of dominance change observed in nature 
in which recessive genes tend to be eliminated, over time, in favour of their 
dominant counterparts. We will refer to this arrangement as "basic Ng-Wonff'. 

0 o 1 i A B C D 

0 0 0 0]1 0 A 0 0 0 1 

o 0 0 1 0/1 B 0 0 0 1 

1 0/1 1 1 1 C 0 0 1 1 

i 0 0/1 1 1 D 1 1 1 1 

Fig. 1. Ng-Wong Fig. 2. Additive 

Ryan [5] proposed a notion of additive dominance. In this scheme, the geno- 
typic alleles are regarded as having quasi-numeric (or at least ordered) values, 
and these values are combined using some suitably designed form of pseudo- 
arithmetic, with the resulting phenotypic allele depending on the value of this 
"addition". One way to effect this scheme is to associate actual numbers with 
the genotype alleles, and then apply some threshold to the result. Ryan uses 4 
genotypic values A, B, C, D, and allocates these the values 2, 3, 7 and 9 re- 
spectively, with any result greater than 10 being mapped to 1 and lower values 
mapped to 0. The resulting dominance map is shown in figure 2. 

In both these schemes, the probability of creating a phenotypic 0 is exactly 
0.5, and hence the mapping in each case is unbiased. 



141 

Other forms of dominance exist which are not explored in this paper. These 
include using a "dominance mask", for instance, [1, 2], or implementing a form 
of meiosis, as observed in natural systems, in which a haploid chromosome is 
produced from a chromosome pair via recombination operators, for instance [6]. 
See [3] for further discussion of some of the issues. 

3 D o m i n a n c e  C h a n g e  

In natural systems, dominance can change over time, as a result of the presence 
or absence of particular enzymes. Ng and Wong [4] define a specific condition for 
dominance change to occur (which we adopt in this paper for all our dominance 
change methods): if the fitness of a population member drops by a particular 
percentage A between successive evaluation cycles, then the dominance status 
of the alleles in the genotype of that member is altered. That is, the dominance 
mapping for computing the phenotype does not change, but the allele values 
alter their dominance characteristics. 

Dominance change is achieved in the Ng-Wong diploid by inverting the dom- 
inance values of all allele-pairs, such that 11 becomes ii, 00 becomes oo, lo 
becomes i0 and vice versa. It can be shown that this results in a probability 3/8 
of obtaining a 1 in the phenotype where there was originally a 0, after applying 
the inversion. We will refer to this method as "Full-Ng-Won~'. 

We have extended Ryan's additive GA by adding a similar dominance change 
mechanism, in which the genotypic alleles are promoted or demoted by a single 
grade. Thus demoting 'B' by 1 grade makes it an 'A' whereas promoting it makes 
it a 'C'. Furthermore 'A' cannot be demoted, and 'D' cannot be promoted. For 
each locus, we choose at random one of the two genotypic alleles and then use 
the following procedure: 

- If the phenotypic expression at this locus is '1' then demote the chosen 
genotypic allele by one grade, unless it is an 'A'. 

- If the phenotypic expression at this locus is '0' then promote the chosen 
genotypic allele by one grade, unless it is 'D' 

It can be proved that this "Extended-Additive" method results in a 3/8 prob- 
ability of changing a phenotypic 0 to a phenotypic 1. 

Finally, we introduce a comparable "recovery" mechanism for the haploid 
GA, in which a bit-flip mutation operator is applied to each locus of the haploid 
genotype with probability 3/8, whenever a decrease of A in the fitness of that 
individual is observed between successive generations. 

The Extended-Additive and Haploid-Recovery schemes have been designed 
with a 3/8 probability of flipping a phenotypic 0 to a 1 after a change in domi- 
nance so as to make them exactly comparable with the Full-Ng-Wong method. 

4 E x p e r i m e n t s  

Methods tested. To investigate the benefit of a dominance change mechanism, we 
tested the Simple Additive and Basic Ng-Wong GAs (Section 2 above) without 
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dominance change, and also an ordinary haploid GA with mutation rate 0.01. 
The dominance change GAs tested were those described in Section 3 above: 
Full-Ng-Wong, Extended-Additive and Haploid-Recover. 

Parameters.  All GAs were run with population size 150. Rank selection was 
used, with uniform cross-over, steady-state reproduction, and mutation rate 0.01. 
During crossover of diploid genotypes, chromosome I of the first parent diploid 
was always crossed with chromosome I of the second parent diploid. The thresh- 
old A for applying dominance change (Full-Ng-Wong and Extended-Additive) 
or recovery mutation (for Haploid-Recover) was a drop of 20% in the fitness of 
a phenotype. The modified version of an individual replaced the original with 
probability 1.0 if the modified version was no less fit; otherwise with probability 
0.5. Each experiment was repeated 50 times, and the results averaged. 

Test Problems. The GAs were tested on an oscillating version of the commonly 
known single knapsack problem. The object is to fill a knapsack using a subset 
of objects from an available set of size n, such that the sum of object weights 
is as close as possible to the target weight t. In the oscillating version, the 
target oscillates between two values tl and t2 every o generations. A solution is 
represented by a phenotype of length n, where each gene xi has a value 0 or 1, 
indicating if the object is to be included in the knapsack. The fitness f of any 
solution E is defined by 

1 
f (E )  = 1 + Itarget n x 

In the following experiments, 14 objects were used. Each object had a weight 
w~ = 2 i, where i ranged from 0 to 13. This ensures that any randomly chosen 
target is attainable by a unique combination of objects. Two targets were chosen 
at random, given the condition that at least half their bits should differ. The 
actual targets used were 12643 and 2837, which have a Hamming separation of 
9. The target weight was changed every 1500 generations. Each period of 1500 
generations is referred to as an oscillatory period in the remainder of the text. 

5 R e s u l t s  

5.1 Oscillating Knapsack, Fixed Targets - Simple Diploidy 

The results for the basic GAs are shown in figures 3, 4 and 5. Simple Ad- 
ditive and the haploid GA perform very poorly for both targets after the first 
target change. The Basic Ng-Wong GA makes better progress towards finding a 
solution for the first target value, but never manages to find a solution for the 
second target that has fitness greater than 0.05. Clearly, diploidy alone does not 
maintain sufficient diversity to allow readjustment to a new target. 
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Fig. 3. Simple Haploid GA with 
Fixed Target Oscillation 

Fig. 4. Ryan's Additive GA with 
Fixed Target Oscillation 
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Fig. 5. Basic Ng-Wong with Fixed Target Oscillation 

5.2 Oscillating Knapsack,  Fixed ' lhrgets  - Dominance  Change  

Figures 6, 7, and 8 show the averaged fitness over the 50 runs, plotted against 
generation for each of the 3 GAs. Each graph shows the best and average fitness 
of the population at each generation. Table 1 shows the number of the 50 ex- 

Oscillation Period 
1 2 3 4 5 6 7 8 9 10 

Haploid-Recover 45 44 33 45 33 44 29 43 37 47 
Extended-Additive]43 29 44 42 39 40 45 3739 40 

Ng-Wong [32 21 41 25 34 27 32 26 32 27 

Table 1. Number of instances in which optimum was achieved in each period. Periods 
in which the target was 2837 (low) are shown in italics. 

periments in which the optimal fitness of 1 was attained during each oscillatory 
period. 

Comparison of the graphs obtained for Extended-Additive and Haploid- 
Recover show very similar performance. Extended-Additive finds a solution within 
20% of the optimal fitness (i.e. > 0.8)in 90% of oscillation periods, compared to 
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Fig. 6. Haploid-Recover with Fixed 
Target Oscillation 

Fig. 7. Extended-Additive 
Fixed Target Oscillation 
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Fig. 8. Full-Ng-Wong with Fixed Target Oscillation 
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the haploid which finds a solution within 20% of optimum in 60% of periods. 
However, if we look at periods in which the solution obtained was within 10% of 
optimum, (i.e. > 0.9), then we find that Haploid-Recover outperforms Extended- 
Additive, with success rates of 35% and 15% respectively. Both methods show 
a rapid response to the change in environment, where the GA rapidly improves 
the quality of the new, poorly fit, solutions that are produced as a result of 
the environment change. This suggests that sufficient diversity is created in the 
population as a result of the dominance change of recovery mutation to allow 
evolution to continue efficiently. 

The Full-Ng-Wong GA behaves very differently however. Firstly, we notice a 
incremental improvement in the best fitness obtained for the lower, 2nd target. 
A clear "learning curve" is observed, until after 12 complete oscillatory periods 
the GA is able to maintain a constant value for this target immediately after 
the environment changes. Secondly, the GA quickly finds a good solution for the 
high target, and this solution is rapidly reverted to each time the target switches. 
Thirdly, after 2 periods, there is no decrease in fitness for the population when 
the target switches from the low target to the high target. Finally, best solutions 
achieved for both targets are poor when compared to the haploid-recover and 
additive-recovery GAs - -  0.62 for the low target and 0.77 for the high target. 

The performance of Full-Ng-Wong can be explained by examining the domi- 
nance mechanism. If no '10' or 'io' contentions exist, then a genotype can encode 
two arbitrary solutions, changing from one solution to another by merely apply- 
ing the dominance change mechanism. Thus, it is possible to encode a genotype 
that represents the perfect solution to both targets, and flip between the two by 
inverting the dominance, without any requirement for further evolution. Thus 
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the gradient shown in figure 8 is due to the population simply "learning" a se- 
quence of dominance values that enables this rapid change to take place. Notice 
that this mechanism allows the "remembering" of only 2 solutions in the geno- 
type, so this mechanism will not be useful in an environment where there are 
more than 2 possible situations, or, more generally, where environmental change 
results in a completely new fitness function, or target in this case. To confirm 
this and to investigate the ability of the other GAs to cope with such changes, 
we repeated the experiments using a random-oscillating knapsack problem. 

5.3 Knapsack with Randomly Changing Targets 

The 14-object knapsack problem was repeated, but this time a random new 
target was chosen at the end of each oscillation period of 1500 generations. Target 
values were confined to the range 0 to 16383. Figures 9, 10 and 11 illustrate the 
performance of the three GAs on this problem. 

The results show that Full-Ng-Wong performs poorly compared to the other 
two methods. Maintaining a memory of the environment is not useful in the 
random target case, and any GA must rely on maintaining a sufficiently diverse 
population to be able to adapt to the changing conditions. The results imply that 
the dominance change mechanism in the Full-Ng-Wong case does not reintroduce 
diversity into the population, whereas the use of straightforward mutation can 
be extremely useful. 

Fig. 9. Haploid-Recover with 
Random Target Oscillation 

~ i  . . . . .  - -  h . J  

Fig. I0. Extended-Additive 
with Random Target Oscillation 

, ~ r a l m  

Fig. 11. Full-Ng-Wong with Random Target Oscillation 
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5.4 Analysis of  Populat ion Variance 

In order to analyse the performance of each GA in more detail, we can look at 
the phenotypic variance in the population as each GA evolves, and for Full-Ng- 
Wong and Extended-Additive we can compare the phenotypic diversity to the 
genotypic diversity. Figures 12, 13 and 14 show the phenotypic gene-variance 
across the population at each locus in the phenotype plotted against generation 
for the fixed target experiments. For each type of GA, two graphs are plotted 
showing the variance (vertical axis) either side of the two target changes (low to 
high, generation 3000; high to low, generation 4500). 

Generation ~:c~ 0 

Target Change 2837 12643 at 
generation 3000 

".~ ~t" / 
> o 0 5 ~ o r  

~ o  so ocus 

Target Chanse,~2.643 to 2837 at 
generation ,~5tr4 

Fig. 12. Phenotypic Population Variance: Haploid-Recover 

:7o Locus 

Target Change 2,8.37^12643 at 
generation 3L~J Target Change 12643 to 2837 at 

generation 4500 

Fig. 13. Phenotypic Population Variance: Extended-Additive 
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o 

Gener'a/io~ ~ ~ , ~  

Targe~ change 2837 to 12643 at 
uenera~ion 3000 

Target change 12643 to 2837 at 
tJeneratmn 4500 

Fig. 14. Phenotypic Population Variance: Full-Ng-Wong 
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Figure 12 shows that Haploid-Recover has almost converged each time the 
target changes, but diversity is rapidly introduced due to the recovery mutation. 
Extended-Additive maintains slightly more phenotypic diversity in its popula- 
tion throughout the run than Haploid-Recover. This is unsurprising as a diploid 
GA would be expected to converge more slowly than a haploid. The effect of the 
dominance change is the same however. Full-Ng-Wong shows a slightly different 
picture. Just before the change from the low to high target, diversity in the pop- 
ulation is high. However, the next time the target switches, phenotypic divei~sity 
is low across all loci and only a small increase is gained as a result of applying 
the dominance change mechanism. The effect becomes more pronounced as the 
number of target switches the population is exposed to increases. 

o'1 IO 
4~oo ~ Locus 

Chromo~rne I 

o ~  ta 
43o0 ~ Lo ce~~ 

44~~162 ~ 
Gcncrauoll 47oo 

Chromosome II 

Fig. 15. Genotypic Population Variance for Extended-Additive 

, W_J I '~ 
43004~44C ~ r L~us ' ~ 4 4 ~ ~  I~cus 

Chromo~me 1 

Fig. 16. Genotypic Population Variance for Full-Ng-Wong 

We examine the genotypic diversity by plotting a similar graph for each of 
the two strings that make up the diploid genotype. Figures 15 and 16 show 
the genotypic diversity for Full-Ng-Wong and Extended-Additive either side of 
the 3rd target change, at generation 4500. For Extended-Additive, both parts 
of the genotype retain diversity, but the mapping from genotype to phenotype 
results in a less diverse phenotype than genotype. The genotypic diversity for 
Full-Ng-Wong shows a series of peaks running parallel to the generation axis, 
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indicating some loci with very diverse genotypes and others tha t  have completely 
converged. Closer examination reveals that  those loci with little variance are 
exactly those loci in which the phenotype remains invariant from the optimal 
solution of target 1 to the optimal solution of target 2, hence even at generation 
4500 the population is already starting to learn the two different solutions. 

6 Conclusions 

Using two variations of a non-stationary problem, we have shown that  a simple 
diploid scheme does not perform well in either case. Adding some form of dom- 
inance change mechanism considerably improves matters, but  the form of the 
change mechanism can have a significant effect. In the case of Full-Ng-Wong, the 
dominance change mechanism introduces a form of memory, which allows a pop- 
ulation to "learn" two different solutions. Although this may be useful in certain 
situations, it cannot be used if there are more than two possible solutions, or if 
the environment changes do not follow a regular pattern. 

For the problems considered, extending the additive dominance scheme with 
a change mechanism improves it considerably. It responds quickly to changes 
in the environment, even when the changes are random. However, there is lit- 
tle difference in performance between this GA and a simple haploid GA which 
undergoes heavy mutat ion when a decrease in fitness is observed between evalu- 
ations. Future experimentation with other non-stationary problems will make it 
possible to observe if these results can be generalised across this class of prob- 
lems. If so, then the case for implementing a diploid mechanism as opposed to a 
simple mutation operator may be weakened, given that  diploid schemes require 
more storage space and extra evaluations to decode genotype into phenotype. 
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