Skip to main content

An evolutionary algorithm for synthesizing optical thin-film designs

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1498))

Abstract

This paper presents an evolutionary approach, called Family Competition Evolutionary Algorithm (FCEA), to design optical thin-film multilayer systems. FCEA integrates self-adaptive mutations, decreasing-based mutations, and four-layer selections to balance exploration and exploitation. One antireflection coating and one narrow-band rejection filter are presented to demonstrate that our approach is a powerful technique. Our approach consistently performs better than other evolutionary algorithms and other published results on these two problems. From experimental results of antireflection coating, our optimal solutions exhibit a pronounced semiperiodic clustering of layers and these solutions also confirm the theoretical prediction between the optical thickness and the best achievable reflectance.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Aguilera, et al., “Antireflection coatings for germanium IR optics: a comparison of numerical design methods,” Applied Optics 27(14), pp. 2832–2840, 1988.

    Google Scholar 

  2. T. Bäck and H. P. Schwefel, “An overview of evolution algorithms for Parameter Optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 1–23, 1993.

    Google Scholar 

  3. T. Bäck and M. Schutz, “Evolution strategies for mix-integer optimization of optical multilayer systems,” in Proc. of Fourth Ann. Conf. on Evolutionary Programming, 1995, pp. 33–51.

    Google Scholar 

  4. J. A. Dobrowolski and R. A. Kemp, “Refinement of optical multilayer systems with different optimization procedures,” Applied Optics 29(19), pp. 2876–2893, 1990.

    Google Scholar 

  5. J. A. Dobrowolski, et al., “Optimal single-band normal-incidence antireflection coatings,” Applied Optics 35(4), pp. 644–658, 1996.

    Google Scholar 

  6. J. A. Dobrowolski, “Numerical methods for optical thin films,” Optics and Photonics News 8(6), pp. 24–33, Jun, 1997.

    Article  Google Scholar 

  7. J. Druessel and J. Grantham, “Optimal phase modulation for gradient-index optical filters,” Optics Letters 18(19), pp. 1583–1585, 1993.

    Google Scholar 

  8. T. Eisenhammer, et al., “Optimization of interference filters with genetic algorithms applied to silver-based heat mirrors,” Applied Optics 32(31), pp. 6310–6315, 1993.

    Google Scholar 

  9. D. B. Fogel and J. W. Atmar, “Comparing Genetic Operators with Gaussian Mutations in Simulated Evolutionary Processes Using linear Systems,” Biological Cybernetic, vol. 63, pp. 111–114, 1993.

    Article  Google Scholar 

  10. D. B. Fogel and A. Ghozeil, “Using fitness distribution to design more efficient evolutionary computations,” in Proc. of the IEEE Int. Conf. on Evolutionary Computation, 1996, pp. 11–19.

    Google Scholar 

  11. D. E. Goldberg, Genetic Algorithms in search, Optimization & Machine Learning, Reading. MA: Addison-Welsley, 1989.

    MATH  Google Scholar 

  12. H. Greniner, “Robust optical coating design with evolutionary strategies,” Applied Optics 35(28), pp. 5477–5482, 1996.

    Google Scholar 

  13. R. Hinterding, Z. Michalewicz, and A. E. Eiben, “Adaptation in evolutionary computation: A survey,” In Proceeding of the Fourth IEEE. Conference on Evolutionary Computation, 1997, pp. 65–69.

    Google Scholar 

  14. L. Li and J. A. Dobrowolski, “Computation speeds of different optical thin-film synthesis methods,” Applied Optics 31(19), pp. 3790–3799, 1992.

    Google Scholar 

  15. H. A. Macleod, Thin film optical filters, McGraw-Hill, New York, 1986.

    Google Scholar 

  16. S. Martin, J. Rivory, and M. Schoeanauer, “Synthesis of optical multilayer systems using genetic algorithms,” Applied Optics 34(13), pp. 2247–2254, 1995.

    Google Scholar 

  17. M. Schutz and J. Sprave, “Application of parallel mixed-integer evolutionary strategies with mutation rate pooling,” in Proc. of Fifth Ann. Conf. on Evolutionary Programming, 1996, pp. 345–354.

    Google Scholar 

  18. A. V. Tikhonravov, “Some theoretical aspects of thin-film optics and their applications,” Applied Optics 32(28), pp. 5417–5426, 1993.

    Google Scholar 

  19. W. J. Wild and H. Buhay, “Thin film multilayer design optimization using Monte Carlo approach,” Optics Letters 11(1), pp. 745–747, 1986

    Article  Google Scholar 

  20. R. A. Willy, “Predicting achievable design performance of broadband antireflective coating,” Applied Optics 32(28), pp. 5447–5451, 1993.

    Article  Google Scholar 

  21. J. M. Yang, Y. P. Chen, J. T. Horng, and C. Y. Kao, “Applying family competition to evolution strategies for constrained optimization,” in the Lecture Notes in Computer Science, 1213, P. J. Angline et al.(Eds), Evolutionary Programming VI, 201–211, 1997.

    Google Scholar 

  22. J. M. Yang, C. Y. Kao and J. T. Horng, “A continuous genetic algorithm for global optimization.” In Proceeding of the Seventh Intl. Conference on Genetic Algorithm 1997, 230–237.

    Google Scholar 

  23. X. Yao and Y. Liu, “Fast evolutionary programming,” in the Fifth Annual Conf. on Evolutionary Programming, 1996, pp. 451–460.

    Google Scholar 

  24. G. Bovard, “Derivation of a matrix describing a rugate dielectric thin film,” Applied Optics 27(10), pp. 1998–2005, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Agoston E. Eiben Thomas Bäck Marc Schoenauer Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, JM., Kao, CY. (1998). An evolutionary algorithm for synthesizing optical thin-film designs. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN V. PPSN 1998. Lecture Notes in Computer Science, vol 1498. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056936

Download citation

  • DOI: https://doi.org/10.1007/BFb0056936

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65078-2

  • Online ISBN: 978-3-540-49672-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics