Skip to main content

Aspects of digital evolution: Geometry and learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1478))

Abstract

In this paper we present a new chromosome representation for evolving digital circuits. The representation is based very closely on the chip architecture of the Xilinx 6216 FPGA. We examine the effectiveness of evolving circuit functionality by using randomly chosen examples taken from the truth table. We consider the merits of a cell architecture in which functional cells alternate with routing cells and compare this with an architecture in which any cell can implement a function or be merely used for routing signals. It is noteworthy that the presence of elitism significantly improves the Genetic Algorithm performance.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lecture Notes in Computer Science — Towards Evolvable Hardware, Vol. 1062, Springer-Verlag, 1996.

    Google Scholar 

  2. Higuchi T., Iwata M., and Liu W., (Editors), Proceedings of The First International Conference on Evolvable Systems: From Biology to Hardware (ICES96), Lecture Notes in Computer Science, Vol. 1259, Springer-Verlag, Heidelberg, 1997.

    Google Scholar 

  3. Fogarty T. C., Miller J. F., and Thomson P., “Evolving Digital Logic Circuits on Xilinx 6000 Family FPGAs” in Soft Computing in Engineering Design and Manufacturing, P.K. Chawdhry,R. Roy and R.K. Pant (eds),Springer-Verlag, London, pages 299–305,1998.

    Google Scholar 

  4. Goeke M., Sipper M., Mange D., Stauffer A., Sanchez E., and Tomassini M., “Online Autonomous Evolware”, in [B], pp. 96–106

    Google Scholar 

  5. Higuchi T., Iwata M., Kajitani I., Iba H., Hirao Y., Furuya T., and Manderick B., “Evolvable Hardware and Its Applications to Pattern Recognition and Fault-Tolerant Systems”, in [A], pp. 118–135.

    Google Scholar 

  6. Hemmi H., Mizoguchi J., and Shimonara K., “ Development and Evolution of Hardware Behaviours”, in [A], pp. 250–265.

    Google Scholar 

  7. Iba H., Iwata M., and Higuchi T., Machine Learning Approach to Gate-Level Evolvable Hardware, in [B]., pp. 327–343

    Google Scholar 

  8. Kitano H., “Morphogenesis of Evolvable Systems”, in [A], pp. 99–107.

    Google Scholar 

  9. Koza J. R., Genetic Programming, The MIT Press, Cambridge, Mass., 1992.

    Google Scholar 

  10. Koza J. R., Andre D., Bennett III F. H., and Keane M. A., “Design of a High-Gain Operational Amplifier and Other Circuits by Means of Genetic Programming”, in Evolutionary Programming VI, Lecture Notes in Computer Science, Vol. 1213, pp. 125–135, Springer-Verlag 1997.

    Google Scholar 

  11. Miller J. F., Thomson P., and Fogarty T. C., “Designing Electronic Circuits Using Evolutionary Algorithms. Arithmetic Circuits: A Case Study”, in Genetic Algorithms and Evolution Strategies in Engineering and Computer Science: D. Quagliarella, J. Periaux, C. Poloni and G. Winter (eds), Wiley, 1997.

    Google Scholar 

  12. Sipper M., Sanchez E., Mange D., Tomassini M., Perez-Uribe A., and Stauffer A., “A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware Systems”, IEEE Transactions on Evolutionary Computation, Vol. 1, No 1., pp. 83–97.

    Google Scholar 

  13. Thompson A., “An evolved circuit, intrinsic in silicon, entwined with physics”, in [B]., pp. 390–405.

    Google Scholar 

  14. Zebulum R. S., Pacheco M. A., and Vellasco M., “Evolvable Systems in Hardware Design: Taxonomy, Survey and Applications”, in [B]., pp. 344–358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Moshe Sipper Daniel Mange Andrés Pérez-Uribe

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miller, J.F., Thomson, P. (1998). Aspects of digital evolution: Geometry and learning. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds) Evolvable Systems: From Biology to Hardware. ICES 1998. Lecture Notes in Computer Science, vol 1478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0057604

Download citation

  • DOI: https://doi.org/10.1007/BFb0057604

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64954-0

  • Online ISBN: 978-3-540-49916-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics