Skip to main content

Embryonics: A macroscopic view of the cellular architecture

  • Conference paper
  • First Online:
Evolvable Systems: From Biology to Hardware (ICES 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1478))

Included in the following conference series:

Abstract

The ontogenetic development of living beings suggests the design of a new kind of multicellular automaton endowed with novel quasi-biological properties: self-repair and self-replication. In the framework of the Embryonics (embryonic electronics) project, we have developed such an automaton. Its macroscopic architecture is defined by three features: multicellular organization, cellular differentiation, and cellular division. Through a simple example, a stopwatch, we show that the artificial organism possesses the macroscopic properties of self-replication (cloning) and self-repair. In order to cope with the complexity of real problems, the cell will be decomposed into an array of smaller elements, the molecules, themselves defined by three features: multimolecular organization, self-test and self-repair, and finally cellular self-replication, which is the basis of the macroscopic process of cellular division. These microscopic properties are the subject of a companion paper [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. C. Aarden, E. Blok, H. Bouma, and R. Schiphorst. Leven op silicium. Technical Report BSC-44N97, Faculteit den elektrotechniek, Universiteit Twente, 1997.

    Google Scholar 

  2. M. A. Arbib. Simple self-reproducing universal automata. Information and Control, 9:177–189, 1966.

    Article  MATH  Google Scholar 

  3. M. A. Arbib. Theories of Abstract Automata. Prentice-Hall, Englewood Cliffs, N.J., 1969.

    Google Scholar 

  4. H. Kitano. Designing neural networks using genetic algorithms with graph generation system. Complex Systems, 4:461–476, 1990.

    MATH  Google Scholar 

  5. H. Kitano. Morphogenesis for evolvable systems. In E. Sanchez and M. Tomassini, editors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science, pages 99–117. Springer-Verlag, Heidelberg, 1996.

    Google Scholar 

  6. C. G. Langton. Self-reproduction in cellular automata. Physica D, 10:135–144, 1984.

    Article  Google Scholar 

  7. D. Mange, D. Madon, A. Stauffer, and G. Tempesti. Von Neumann revisited: A Turing machine with self-repair and self-reproduction properties. Robotics and Autonomous Systems, 22(1):35–58, 1997.

    Article  Google Scholar 

  8. D. Mange and M. Sipper. Von Neumann’s quintessential message: Genotype + ribotype = phenotype. Artificial Life, (to appear).

    Google Scholar 

  9. D. Mange, A. Stauffer, and G. Tempesti. Embryonics: A microscopic view of the molecular architecture. In M. Sipper, D. Mange, and A. Perez, editors, Proceedings of The Second International Conference on Evolvable Systems: From Biology to Hardware (ICES98), Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1998.

    Google Scholar 

  10. D. Mange and M. Tomassini, editors. Bio-Inspired Computing Machines. Presses polytechniques et universitaires romandes, Lausanne, 1998.

    Google Scholar 

  11. P. Marchai, C. Piguet, D. Mange, A. Stauffer, and S. Durand. Embryological development on silicon. In R. A. Brooks and P. Maes, editors, Artificial Life IV, pages 365–370, Cambridge, Massachusetts, 1994. The MIT Press.

    Google Scholar 

  12. P. Nussbaum, P. Marchal, and C. Piguet. Functional organisms growing on silicon. In T. Higuchi, M. Iwata, and W. Liu, editors, Proceedings of The First International Conference on Evolvable Systems: From Biology to Hardware (ICES96), volume 1259 of Lecture Notes in Computer Science, pages 139–151. Springer-Verlag, Heidelberg, 1997.

    Google Scholar 

  13. C. Ortega and A. Tyrrell. Design of a basic cell to construct embryonic arrays. In IEE Proceedings on Computers and Digital Techniques. (to appear).

    Google Scholar 

  14. C. Ortega and A. Tyrrell. Biologically inspired reconfigurable hardware for dependable applications. In Proceedings of the Colloquium on Hardware Systems for Dependable Applications. IEEE Professional Group A2, 1997.

    Google Scholar 

  15. C. Ortega and A. Tyrrell. Fault-tolerant systems: The way biology does it. In Proceedings of the 23rd Euromicro Conference. IEEE Computer Society Press, 1997.

    Google Scholar 

  16. J.-Y. Perrier, M. Sipper, and J. Zahnd. Toward a viable, self-reproducing universal computer. Physica D, 97:335–352, 1996.

    Article  MathSciNet  Google Scholar 

  17. P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-Verlag, New York, 1990.

    Google Scholar 

  18. J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng. Simple systems that exhibit self-directed replication. Science, 259:1282–1287, February 1993.

    MathSciNet  Google Scholar 

  19. A. Stauffer and M. Sipper. L-hardware: Modeling and implementing cellular development using L-systems. In D. Mange and M. Tomassini, editors, Bio-Inspired Computing Machines. Presses polytechniques et universitaires romandes, Lausanne, 1998.

    Google Scholar 

  20. A. Stauffer and M. Sipper. Modeling cellular development using L-systems. In M. Sipper, D. Mange, and A. Perez, editors, Proceedings of The Second International Conference on Evolvable Systems: From Biology to Hardware (ICES98), Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1998.

    Google Scholar 

  21. G. Tempesti. A new self-reproducing cellular automaton capable of construction and computation. In F. MorĂ¡n, A. Moreno, J. J. Merelo, and P. ChacĂ³n, editors, ECAL’95: Third European Conference on Artificial Life, volume 929 of Lecture Notes in Computer Science, pages 555–563, Heidelberg, 1995. Springer-Verlag.

    Google Scholar 

  22. J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois Press, Illinois, 1966. Edited and completed by A. W. Burks.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Moshe Sipper Daniel Mange Andrés Pérez-Uribe

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mange, D., Stauffer, A., Tempesti, G. (1998). Embryonics: A macroscopic view of the cellular architecture. In: Sipper, M., Mange, D., PĂ©rez-Uribe, A. (eds) Evolvable Systems: From Biology to Hardware. ICES 1998. Lecture Notes in Computer Science, vol 1478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0057619

Download citation

  • DOI: https://doi.org/10.1007/BFb0057619

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64954-0

  • Online ISBN: 978-3-540-49916-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics