Skip to main content

Evolution of a control architecture for a mobile robot

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1478))

Abstract

Most work in evolutionary robotics used a neural net approach for control of a mobile robot. Genetic programming has mostly been used for computer simulations. We wanted to see if genetic programming is capable to evolve a hierarchical control architecture for simple reactive navigation on a large physical mobile robot. First, we evolved hierarchical control algorithms for a mobile robot using computer simulations. Then we repeated one of the experiments with a large physical mobile robot. The results achieved are summarized in this paper.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Banzhaf, P. Nordin, and M. Olmer. Generating adaptive behavior using function regression within genetic programming and a real robot. In 2nd International Conference on Genetic Programming, Stanford, 1997.

    Google Scholar 

  2. V. Braitenberg. Vehicles: Experiments in Synthetic Psychology. The MIT Press, Cambridge, Massachusetts, 1984.

    Google Scholar 

  3. R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2(1):14–23, March 1986.

    Google Scholar 

  4. R. A. Brooks. Artifical life and real robots. In F. J. Varela and P. Bourgine, editors, Toward a practice of autonomous systems: Proceedings of the First European Conference on Artificial Life, pages 3–10, Cambridge, MA, 1992. The MIT Press.

    Google Scholar 

  5. D. Cliff, P. Husbands, and I. Harvey. Evolving visually guided robots. In J.-A. Meyer, H. L. Roitblat, and S. W. Wilson, editors, From animals to animats 2: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, Honolulu, Hawaii, 1992, pages 374–383. The MIT Press, 1993.

    Google Scholar 

  6. M. Ebner and A. Zell. Evolution of a control architecture under real world constraints using genetic programming, unpublished manuscript, 1997.

    Google Scholar 

  7. D. Floreano and F. Mondada. Automatic creation of an autonomous agent: Genetic evolution of a neural network driven robot. In D. Cliff, P. Husbands, J.-A. Meyer, and S. W. Wilson, editors, From animals to animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Behavior, Brighton, England, 1994, pages 421–430. The MIT Press, 1994.

    Google Scholar 

  8. D. Floreano and F. Mondada. Evolution of homing navigation in a real mobile robot. IEEE Trans. Syst., Man, and Cybern. B, 26(3):396–407, 1996.

    Article  Google Scholar 

  9. I. Harvey. Artificial evolution and real robots. Artificial Life and Robotics, 1(1):35–38, 1997.

    Article  Google Scholar 

  10. I. Harvey, P. Husbands, and D. Cliff. Issues in evolutionary robotics. In J.-A. Meyer, H. L. Roitblat, and S. W. Wilson, editors, From animals to animats 2: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, Honolulu, Hawaii, 1992, pages 364–373. The MIT Press, 1993.

    Google Scholar 

  11. I. Harvey, P. Husbands, and D. Cliff. Seeing the light: Artificial evolution, real vision. In D. Cliff, P. Husbands, J.-A. Meyer, and S. W. Wilson, editors, From animals to animats 3: Proc. of the Third International Conference on Simulation of Adaptive Behavior, Brighton, England, 1994, pages 392–401. The MIT Press, 1994.

    Google Scholar 

  12. I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolutionary robotics: the Sussex approach. Robotics and Autonomous Systems, 20:205–224, 1997.

    Article  Google Scholar 

  13. J. R. Koza. Genetic Programming, On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge, Massachusetts, 1992.

    Google Scholar 

  14. J. R. Koza. Evolution of Subsumption. In J. R. Koza. Genetic Programming I: On the Programming of Computers by Means of Natural Selection, pages 357–393. The MIT Press, Cambridge, Massachusetts, 1992.

    Google Scholar 

  15. J. R. Koza. Genetic Programming II, Automatic Discovery of Reusable Programs. The MIT Press, Cambridge, Massachusetts, 1994.

    Google Scholar 

  16. John R. Koza. Obstacle-Avoiding Robot. In J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs, pages 365–376. The MIT Press, Cambridge, Massachusetts, 1994.

    Google Scholar 

  17. M. Matarić and D. Cliff. Challenges in evolving controllers for physical robots. Robotics and Autonomous Systems, 19:67–83, 1996.

    Article  Google Scholar 

  18. L. A. Meeden. An incremental approach to developing intelligent neural network controllers for robots. IEEE Trans. Syst., Man, and Cybern.B, 26(3):474–485, 1996.

    Article  Google Scholar 

  19. F. Mondada and D. Floreano. Evolution of neural control structures: some experiments on mobile robots. Robotics and Autonomous Systems, 16:183–195, 1995.

    Article  Google Scholar 

  20. S. Nolfi. Evolving non-trivial behaviors on real robots: A garbage collecting robot. Robotics and Autonomous Systems, 22:187–198, 1997.

    Article  Google Scholar 

  21. S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to evolve autonomous robots: different approaches in evolutionary robotics. In R. A. Brooks and P. Maes, editors, Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pages 190–197. The MIT Press, 1994.

    Google Scholar 

  22. P. Nordin and W. Banzhaf. Genetic programming controlling a miniature robot. In Working Notes of the AAAI-95 Fall Symposium Series, Symposium on Genetic Programming, MIT, Cambridge, MA, 10–12 November 1995, pages 61–67, 1995.

    Google Scholar 

  23. P. Nordin and W. Banzhaf. A genetic programming system learning ostacle avoiding behavior and controlling a miniature robot in real time. Technical Report Sys-Report 4/95, Dept. of Computer Science, University of Dortmund, Germany, 1995.

    Google Scholar 

  24. P. Nordin and W. Banzhaf. Real time evolution of behavior and a world model for a miniature robot using genetic programming. Technical Report SysReport 5/95, Dept. of Computer Science, University of Dortmund, Germany, 1995.

    Google Scholar 

  25. M. Olmer, P. Nordin, and W. Banzhaf. Evolving real-time behavioral modules for a robot with gp. In M. Jamshidi, F. Pin, and P. Danchez, editors, Robotics and Manufacturing, Proc. 6th International Symposium on Robotics and Manufactoring (ISRAM-96), Montpellier, France, pages 675–680, New York, 1996. Asme Press.

    Google Scholar 

  26. C. W. Reynolds. An evolved, vision-based model of obstacle avoidance behavior. In C. G. Langten, editor, Proceedings of the Workshop of Artificial Life III SFI Studies in the Sciences of Complexity, pages 327–346. Addison-Wesley, 1994.

    Google Scholar 

  27. C. W. Reynolds. Evolution of corridor following behavior in a noisy world. In D. Cliff, P. Husbands, J.-A. Meyer, and S. W. Wilson, editors, From animals to animais 3: Proceedings of the Third International Conference on Simulation of Adaptive Behavior, Brighton, England, 1994, pages 402–410. The MIT Press, 1994.

    Google Scholar 

  28. C. W. Reynolds. The difficulty of roving eyes. In Proceedings of the First IEEE Conference on Evolutionary Computation, pages 262–267. IEEE, 1994.

    Google Scholar 

  29. C. W. Reynolds. Evolution of obstacle avoidance bahavior: Using noise to promote robust solutions. In K. E. Kinnear, Jr., editor, Advances in Genetic Programming, pages 221–241, Cambridge, Massachusetts, 1994. The MIT Press.

    Google Scholar 

  30. M. S. Wilson, C. M. King, and J. E. Hunt. Evolving hierarchical robot behaviours. Robotics and Autonomous Systems, 22:215–230, 1997.

    Article  Google Scholar 

  31. D. Zongker and B. Punch. lil-gp 1.01 User’s Manual (support and enhancements Bill Rand). Michigan State University, March 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Moshe Sipper Daniel Mange Andrés Pérez-Uribe

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ebner, M. (1998). Evolution of a control architecture for a mobile robot. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds) Evolvable Systems: From Biology to Hardware. ICES 1998. Lecture Notes in Computer Science, vol 1478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0057632

Download citation

  • DOI: https://doi.org/10.1007/BFb0057632

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64954-0

  • Online ISBN: 978-3-540-49916-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics