Skip to main content

Hardware evolution with a massively parallel dynamicaly reconfigurable computer: POLYP

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1478))

Abstract

POLYP is a second generation, massively parallel reconfigurable computer based on micro-reconfigurable Field Programmable Gate Arrays (Xilinx XC6000) with a high density of additional distributed memory under local control and broad-band dynamically reroutable optical interconnect technology. Inspired by and designed to study the dynamical self-organization of distributed molecular biological systems using the programmable matter paradigm (like its predecessor NGEN), the new hardware allows the study of large interacting evolving populations of functional design elements in hardware. POLYP includes 144 FPGAs and 400 MB of high speed distributed memory on twelve 18-layer extended VME boards each interconnected via 2 crossbars to 80 unidirectional optical fibers. It is extendable to 20 boards in a single chassis and further to asynchronous multiple host operation. Local reconfiguration of the hardware is mediated by an intermediate hierarchical level of distributed macro-reconfigurable FPGAs, so that the machine is capable of simultaneously evolving functional circuits and their binary representation under user-configurable local control. The process of hierarchical configuration reached the fine-grained level in November 1997, and this paper reports a first experiment in hardware evolution performed with the machine. In contrast with previous evolvable hardware examples, the example is designed to explore the evolution of interconnection structures. As a first step with the new hardware, it by no means yet exploits the powerful potential of the machine. Just as NGEN allowed the study of spatially distributed epigenetic effects in interacting populations of molecules in user-configurable hardware, POLYP allows the study of such effects with individuals dynamically reconfiguring the local hardware.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eigen M. Selforganization of Matter and the Evolution of Biological Macromolecules Naturwissenschaften, 58:465–523, 1971.

    Article  Google Scholar 

  2. Eigen M., McCaskill J., Schuster P. Molecular Quasi-Species J. Phys. Chem., 92:6881–6891, 1988.

    Article  Google Scholar 

  3. Kauffman S. A., Johnsen S. Coevolution to the Edge of Chaos: Coupled Fitness Landscapes, Poised States, and Coevolutionary Avalanches 1991.

    Google Scholar 

  4. McCaskill J. S. A Localization Threshold for Macromolecular Quasispecies from Continuously Distributed Replication Rates J. Chem. Phys., 80:5194–5202, 1984.

    Article  MathSciNet  Google Scholar 

  5. Fontana W., Stadler P., Bornberg-Bauer E. G., Griesmacher T., Hofacker I. L., Tacker M., Tarazona P., Weinberger E. D., Schuster P. RNA Folding and Combinatory Landscapes Phys. Rev. E, 47:2083–2099, 1993.

    Article  Google Scholar 

  6. Boerlijst M. C., Hogeweg P. Spiral Wave Structure in Pre-Biotic Evolution: Hypercycles Stable Against Parasites Physica D, 48:17–28, 1991.

    Article  MATH  Google Scholar 

  7. McCaskill J. S., Chorongiewski H., Mekelburg K., Tangen U., Gemm U. NGEN — Configurable Computer Hardware to Simulate Long-Time Self-Organization of Biopolymers (Abstract) Physical Chemistry, 98:1114–1114, 1994.

    Google Scholar 

  8. McCaskill J. S., Maeke T., Gemm U., Schulte L., Tangen U. NGEN A Massively Parallel Reconfigurable Computer for Biological Simulation: towards a Self-Organizing Computer Lec. Note Corny. Sci, 1259:260–276, 1997.

    Google Scholar 

  9. Thompson A. An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics Lct. Not. Comp. Sci., 1259:390–405, 1996.

    Google Scholar 

  10. Harvey I., Thompson A. Through the Labyrinth Evolution Finds a Way: A Silicon Ridge Lect. Not. Comp. Sci., 1259:406–422, 1996.

    Google Scholar 

  11. Koza J. R., Bennett III F. H., Hutchings J. L., Bade S. L., Keane M. A., Andre D. Rapidly Reconfigurable Field-Programmable Gate Arrays for Accelerating Fitness Evaluation in Genetic Programming In Koza J. R., editor, Late Breaking Papers at the Genetic Programming 1997 Conference, pages 121–131 Standford University Bookstore, Standford CA, 1997.

    Google Scholar 

  12. Chapman K. Dynamic Microcontroller in an XC4000 FPGA Xilinx Application Note, 1994.

    Google Scholar 

  13. Gokhale M., Holmes B., Kopser A., Kunze D., Lopresti D., Lucas S., Minnich R., Olsen R. SPLASH: A Reconfigurable Linear Logic Array SRC-TR-90-012, 1:1–16, 1992 Preprint.

    Google Scholar 

  14. Holland J. H. Adaptation in Natural and Artificial Systems University of Michigan Press, Ann Arbor, 1975.

    Google Scholar 

  15. Goldberg D. E. Genetic Algorithms in Search, Optimization & Machine Learning Addison Wesley, Reading, Massachusetts, 1985.

    Google Scholar 

  16. Rumelhart D. E., McClelland J. L. Parallel Distributed Processing, Vol. 1 The MIT Press, Cambridge, England, 1986.

    Google Scholar 

  17. Keymeulen D., Durantez M., Konaka K., Kuniyoshi Y., Higuchi T. An Evolutionary Robot Navigation System using a Gate-Level Evolvable Hardware Lect. Not. Comp. Sci., 1259:159–209, 1997.

    Google Scholar 

  18. Armstrong W. W. Hardware Requirements for Fast Evaluation of Functions Learned by Adaptive Logic Networks Lect. Not. Comp. SCi., 1259:17–22, 1997.

    Google Scholar 

  19. Nussbaum P., Marchal P., Piguet C. Functional Organisms Growing on Silicon Lect. Not. Comp. Sci., 1259:139–151, 1997.

    Google Scholar 

  20. Bennett III F. H., Koza J. R., Andre D., Keane M. A. Evolution of a 60 Decibel Op Amp Using Genetic Programming Lect. Not. Comp. Sci., 1259:312–326, 1997.

    Google Scholar 

  21. Koza J. R., Bennett III F. H., Andre D., Keane M. A. Reuse, Parametrized Reuse, and Hierarchical Reuse of Substructures in Evolving Electrical Circuits Using Genetic Programming Lect. Not. Comp. Sci., 1259:312–326, 1997.

    Google Scholar 

  22. Lee, McCormick W. D., Pearson J. E., Swinney H. L. Experimental Observation of Self-Replicating Spots in a Reaction-Diffusion System Nature, 369:215–217, 1994.

    Article  Google Scholar 

  23. Pearson J. E. Complex Patterns in a Simple System Science, 261:189–192, 1993.

    Google Scholar 

  24. Böddeker B., McCaskill J. S. Do Self-Replicating Spots Provide a Platform For Heriditary Molecular Diversity J. Theor. Biol., 1996 Submitted.

    Google Scholar 

  25. Kauffman S. A., Weinberger E. D. The NK Model of Rugged Fitness Landscapes And Its Application to Maturation of the Immune Response J. Theor. Biol., 141:211–245, 1989.

    Article  Google Scholar 

  26. von Neumann J. Theory of Self-Reproducing Automata Burks, A. W. University of Illinois Press, Urbana, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Moshe Sipper Daniel Mange Andrés Pérez-Uribe

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tangen, U., McCaskill, J.S. (1998). Hardware evolution with a massively parallel dynamicaly reconfigurable computer: POLYP. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds) Evolvable Systems: From Biology to Hardware. ICES 1998. Lecture Notes in Computer Science, vol 1478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0057638

Download citation

  • DOI: https://doi.org/10.1007/BFb0057638

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64954-0

  • Online ISBN: 978-3-540-49916-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics